|
|
- #pragma once
-
- #include "esphome.h"
-
- #define CONSTANT_BRIGHTNESS true
-
- // The lamp circuitry does not support having RGB and white
- // channels active at the same time. Therefore, color interlock
- // must be enabled.
- #define COLOR_INTERLOCK true
-
- // Same range as supported by the original Yeelight firmware.
- #define HOME_ASSISTANT_MIRED_MIN 153
- #define HOME_ASSISTANT_MIRED_MAX 588
-
- namespace esphome {
- namespace rgbww {
-
- class YeelightBedsideLampV2LightOutput : public Component, public LightOutput
- {
- public:
- YeelightBedsideLampV2LightOutput(
- FloatOutput *r, FloatOutput *g, FloatOutput *b, FloatOutput *w,
- esphome::gpio::GPIOBinaryOutput *m1, esphome::gpio::GPIOBinaryOutput *m2) :
- red_(r), green_(g), blue_(b), white_(w), master1_(m1), master2_(m2) {}
-
- LightTraits get_traits() override
- {
- auto traits = LightTraits();
- traits.set_supports_rgb(true);
- traits.set_supports_color_temperature(true);
- traits.set_supports_brightness(true);
- traits.set_supports_rgb_white_value(false);
- traits.set_supports_color_interlock(COLOR_INTERLOCK);
- traits.set_min_mireds(HOME_ASSISTANT_MIRED_MIN);
- traits.set_max_mireds(HOME_ASSISTANT_MIRED_MAX);
- return traits;
- }
-
- void write_state(LightState *state) override
- {
- auto values = state->current_values;
-
- ESP_LOGD("custom", "B = State %f, RGB %f %f %f, BRI %f, TEMP %f",
- values.get_state(),
- values.get_red(), values.get_green(), values.get_blue(),
- values.get_brightness(), values.get_color_temperature());
-
- // Power down the light when its state is 'off'.
- if (values.get_state() == 0) {
- this->turn_off_();
- return;
- }
-
- // Leave it to the default tooling to figure out the basics.
- // Because of the color interlocking, there are two possible outcomes:
- // - red, green, blue zero -> the light is in color temperature mode
- // - cwhite, wwhite zero -> the light is in RGB mode
- float red, green, blue, cwhite, wwhite;
- state->current_values_as_rgbww(
- &red, &green, &blue, &cwhite, &wwhite,
- CONSTANT_BRIGHTNESS, COLOR_INTERLOCK);
-
- if (cwhite > 0 || wwhite > 0) {
- this->turn_on_in_color_temperature_mode_(
- values.get_color_temperature(), values.get_brightness());
- } else {
- this->turn_on_in_rgb_mode_(
- values.get_red(), values.get_green(), values.get_blue(), values.get_brightness());
- }
- }
-
- private:
- FloatOutput *red_;
- FloatOutput *green_;
- FloatOutput *blue_;
- FloatOutput *white_;
- esphome::gpio::GPIOBinaryOutput *master1_;
- esphome::gpio::GPIOBinaryOutput *master2_;
-
- void turn_off_()
- {
- master1_->turn_off();
- red_->set_level(0);
- green_->set_level(0);
- blue_->set_level(0);
- white_->set_level(0);
- }
-
- void turn_on_in_rgb_mode_(float red, float green, float blue, float brightness)
- {
- ESP_LOGD("custom", "Activate RGB %f, %f, %f, BRIGHTNESS %f", red, green, blue, brightness);
-
- // This tunes the power for the red channel a bit, to bring
- // the red=1, green=1, blue=1 color more towards white.
- // (on my lamps, there is a faint hint of red in the color)
- red = red * 0.93f;
-
- // Compensate for brightness.
- red = red * brightness;
- green = green * brightness;
- blue = blue * brightness;
-
- // Inverse the signal. The LEDs in the lamp's circuit are brighter
- // when the voltages on the GPIO pins are lower.
- red = 1.0f - red;
- green = 1.0f - green;
- blue = 1.0f - blue;
-
- float white = 0.0;
-
- ESP_LOGD("rgb_mode", "LED state : RGBW %f, %f, %f, %f", red, green, blue, white);
-
- // Drive the LEDs.
- red_->set_level(red);
- green_->set_level(green);
- blue_->set_level(blue);
- white_->set_level(white);
- master1_->turn_on();
- }
-
- void turn_on_in_color_temperature_mode_(float temperature, float brightness)
- {
- ESP_LOGD("temperature_mode", "Activate TEMPERATURE %f, BRIGHTNESS %f", temperature, brightness);
-
- // Empirically determined during programming the temperature GPIO output
- // code from below, by checking how far my outputs were off from the
- // original lamp firmeware's outputs. This scaler is used for correcting
- // my output towards the original output.
- float volt_scaler;
-
- float red = 1.0;
- float green = 1.0;
- float blue = 1.0;
- float white = 1.0;
-
- // Temperature band 370 - 588
- if (temperature <= HOME_ASSISTANT_MIRED_MAX && temperature >= 371)
- {
- volt_scaler = 3.23f;
-
- float start = 371;
- float end = 588;
- float band = end - start;
-
- float red_volt = 2.86f * (1.0f - brightness);
- red = red_volt / volt_scaler;
-
- float green_1 = 2.90f + (temperature - start) * (2.97f - 2.90f) / band;
- float green_100 = 0.45f + (temperature - start) * (1.13f - 0.45f) / band;
- float green_volt = green_1 + brightness * (green_100 - green_1);
- green = green_volt / volt_scaler;
-
- float white_1 = 0.28f - (temperature - start) * (0.28f - 0.19f) / band;
- float white_100 = 1.07f - (temperature - start) * (1.07f - 0.22f) / band;
- float white_volt = white_1 + brightness * (white_100 - white_1);
- white = white_volt / volt_scaler;
- }
- // Temperature band 334 - 370
- else if (temperature >= 334)
- {
- volt_scaler = 3.23f;
-
- float red_volt = (1.0f - brightness) * 2.86f;
- red = red_volt / volt_scaler;
-
- float green_volt = 2.9f - brightness * (2.9f - 0.45f);
- green = green_volt / volt_scaler;
-
- float white_volt = 0.28f + brightness * (1.07f - 0.28f);
- white = white_volt / volt_scaler;
- }
- // Temperature band 313 - 333
- //
- // The light becomes noticably brighter when moving from temperature 334 to
- // temperature 333. There's a little jump in the lighting output here.
- // Possibly this is a switch from warm to cold lighting as imposed by the
- // LED circuitry, making this unavoidable. However, it would be interesting
- // to see if we can smoothen this out.
- // BTW: This behavior is in sync with the original firmware.
- else if (temperature >= 313)
- {
- volt_scaler = 3.23f;
-
- float red_volt = 2.89f - brightness * (2.89f - 0.32f);
- red = red_volt / volt_scaler;
-
- float green_volt = 2.96f - brightness * (2.96f - 1.03f);
- green = green_volt / volt_scaler;
-
- float white_volt = 0.42f + brightness * (2.43f - 0.42f);
- float volt_scaler_white = 3.45f;
- white = white_volt / volt_scaler_white;
- }
- // Temperature band 251 - 312
- else if (temperature >= 251)
- {
- volt_scaler = 3.48f;
-
- float white_correction = 1.061;
- float white_volt = 0.5f + brightness * (3.28f * white_correction - 0.5f);
- white = white_volt / volt_scaler;
- }
- // Temperature band 223 - 250
- else if (temperature >= 223)
- {
- volt_scaler = 3.25f;
-
- float green_volt = 2.94f - brightness * (2.94f - 0.88f);
- green = green_volt / volt_scaler;
-
- float blue_volt = 3.02f - brightness * (3.02f - 1.59f);
- blue = blue_volt / volt_scaler;
-
- float white_correction = 1.024f;
- float white_volt = 0.42f + brightness * (2.51f * white_correction - 0.42f);
- float volt_scaler_white = 3.36f;
- white = white_volt / volt_scaler_white;
- }
- // Temperature band 153 - 222
- else if (temperature >= HOME_ASSISTANT_MIRED_MIN)
- {
- float start = 153;
- float end = 222;
- float band = end - start;
-
- volt_scaler = 3.23f;
-
- float green_volt = 2.86f - brightness * 2.86f;
- green = green_volt / volt_scaler;
-
- float blue_1 = 2.92f + (temperature - start) * (2.97f - 2.92f) / band;
- float blue_100 = 0.62f + (temperature - start) * (1.17f - 0.62f) / band;
- float blue_volt = blue_1 - brightness * (blue_1 - blue_100);
- blue = blue_volt / volt_scaler;
-
- float white_1 = 0.28f + (temperature - start) * (0.37f - 0.28f) / band;
- float white_100 = 1.1f + (temperature - start) * (2.0f - 1.1f) / band;
- float white_volt = white_1 + brightness * (white_100 - white_1);
- float volt_scaler_white = 3.27f;
- white = white_volt / volt_scaler_white;
- }
-
- ESP_LOGD("temperature_mode", "LED state : RGBW %f, %f, %f, %f", red, green, blue, white);
-
- red_->set_level(red);
- green_->set_level(green);
- blue_->set_level(blue);
- white_->set_level(white);
- master2_->turn_on();
- master1_->turn_on();
- }
- };
-
- } // namespace rgbww
- } // namespace esphome
|