#pragma once // What seems to be a bug in ESPHome transitioning: when turning on // the device, the brightness is scaled along with the state (which // runs from 0 to 1), but when turning off the device, the brightness // is kept the same while the state goes down from 1 to 0. As a result // when turning off the lamp with a transition time of 1s, the light // stays on for 1s and then turn itself off abruptly. // // Reported the issue + fix at: // https://github.com/esphome/esphome/pull/1643 // // A work-around for this issue can be enabled using the following // define. Note that the code provides a forward-compatible fix, so // having this define active with a fixed ESPHome version should // not be a problem. #define TRANSITION_TO_OFF_BUGFIX namespace esphome { namespace yeelight { namespace bs2 { /// This is an interface definition that is used to extend the /// YeelightBS2LightOutput class with methods to access properties /// of an active LightTranformer from the YeelightBS2LightOutput /// class. /// The transformer is protected in the light output class, making /// it impossible to access these properties directly from the /// light output class. class LightStateDataExposer { public: virtual bool has_active_transformer() = 0; virtual bool transformer_is_transition() = 0; virtual light::LightColorValues get_transformer_values() = 0; virtual light::LightColorValues get_transformer_end_values() = 0; virtual float get_transformer_progress() = 0; }; /// This class is used to handle color transition requirements. /// /// When using the default ESPHome logic, transitioning is done by /// transitioning all light properties linearly from the original /// values to the new values, and letting the light output object /// translate these properties into light outputs on every step of the /// way. While this does work, it does not work nicely. /// /// This class will take care of transitioning LEDC light outputs /// instead, which is what the original firmware in the device does as /// well. This makes transitions a lot cleaner. class TransitionHandler { public: TransitionHandler(LightStateDataExposer *exposer) : exposer_(exposer) {} bool handle() { if (!do_handle_()) { active_ = false; return false; } if (is_fresh_transition_()) { auto start = exposer_->get_transformer_values(); auto end = exposer_->get_transformer_end_values(); active_ = true; } return true; } protected: LightStateDataExposer *exposer_; bool active_ = false; DutyCycles start_; DutyCycles end_; /// Checks if this class will handle the light output logic. /// This is the case when a transformer is active and this /// transformer does implement a transitioning effect. bool do_handle_() { if (!exposer_->has_active_transformer()) return false; if (!exposer_->transformer_is_transition()) return false; return true; } /// Checks if a fresh transitioning is started. /// A transitioning is fresh when either no transition is known to /// be in progress or when a new end state is found during an /// ongoing transition. bool is_fresh_transition_() { bool is_fresh = false; if (active_ == false) { is_fresh = true; } return is_fresh; } }; /// An implementation of the LightOutput interface for the Yeelight /// Bedside Lamp 2. class YeelightBS2LightOutput : public Component, public light::LightOutput { public: light::LightTraits get_traits() override { auto traits = light::LightTraits(); traits.set_supports_rgb(true); traits.set_supports_color_temperature(true); traits.set_supports_brightness(true); traits.set_supports_rgb_white_value(false); traits.set_supports_color_interlock(true); traits.set_min_mireds(MIRED_MIN); traits.set_max_mireds(MIRED_MAX); return traits; } /// Set the LEDC output for the red LED circuitry channel. void set_red_output(ledc::LEDCOutput *red) { red_ = red; } /// Set the LEDC output for the green LED circuitry channel. void set_green_output(ledc::LEDCOutput *green) { green_ = green; } /// Set the LEDC output for the blue LED circuitry channel. void set_blue_output(ledc::LEDCOutput *blue) { blue_ = blue; } /// Set the LEDC output for the white LED circuitry channel. void set_white_output(ledc::LEDCOutput *white) { white_ = white; } /// Set the first GPIO binary output, used as internal master /// switch for the LED light circuitry. void set_master1_output(gpio::GPIOBinaryOutput *master1) { master1_ = master1; } /// Set the second GPIO binary output, used as internal master /// switch for the LED light circuitry. void set_master2_output(gpio::GPIOBinaryOutput *master2) { master2_ = master2; } void write_state(light::LightState *state) { if (transition_->handle()) { ESP_LOGD(TAG, "HANDLE transition!"); } auto values = state->current_values; // Power down the light when its state is 'off'. if (values.get_state() == 0) { turn_off_(); #ifdef TRANSITION_TO_OFF_BUGFIX previous_state_ = -1; previous_brightness_ = 0; #endif return; } auto brightness = values.get_brightness(); #ifdef TRANSITION_TO_OFF_BUGFIX // Remember the brightness that is used when the light is fully ON. if (values.get_state() == 1) { previous_brightness_ = brightness; } // When transitioning towards zero brightness ... else if (values.get_state() < previous_state_) { // ... check if the prevous brightness is the same as the current // brightness. If yes, then the brightness isn't being scaled ... if (previous_brightness_ == brightness) { // ... and we need to do that ourselves. brightness = values.get_state() * brightness; } } previous_state_ = values.get_state(); #endif // At the lowest brightness setting, switch to night light mode. // In the Yeelight integration in Home Assistant, this feature is // exposed trough a separate switch. I have found that the switch // is both confusing and made me run into issues when automating // the lights. // I don't simply check for a brightness at or below 0.01 (1%), // because the lowest brightness setting from Home Assistant // turns up as 0.011765 in here (which is 3/255). if (brightness < 0.012f && values.get_state() == 1) { turn_on_in_night_light_mode_(); return; } // Leave it to the default tooling to figure out the basics. // Because of color interlocking, there are two possible outcomes: // - red, green, blue zero -> white light color temperature mode // - cwhite, wwhite zero -> RGB mode float red, green, blue, cwhite, wwhite; state->current_values_as_rgbww( &red, &green, &blue, &cwhite, &wwhite, true, false); if (cwhite > 0 || wwhite > 0) { turn_on_in_white_mode_( values.get_color_temperature(), brightness); } else { turn_on_in_rgb_mode_( values.get_red(), values.get_green(), values.get_blue(), brightness, values.get_state()); } } protected: ledc::LEDCOutput *red_; ledc::LEDCOutput *green_; ledc::LEDCOutput *blue_; ledc::LEDCOutput *white_; esphome::gpio::GPIOBinaryOutput *master1_; esphome::gpio::GPIOBinaryOutput *master2_; ColorWhiteLight white_light_; ColorRGBLight rgb_light_; ColorNightLight night_light_; TransitionHandler *transition_; #ifdef TRANSITION_TO_OFF_BUGFIX float previous_state_ = 1; float previous_brightness_ = -1; #endif friend class YeelightBS2LightState; /// Called by the YeelightBS2LightState class, to set the object that /// can be used to access protected data from the light state object. void set_light_state_data_exposer(LightStateDataExposer *exposer) { transition_ = new TransitionHandler(exposer); } void turn_off_() { red_->set_level(1); green_->set_level(1); blue_->set_level(1); white_->set_level(0); master2_->turn_off(); master1_->turn_off(); } void turn_on_in_night_light_mode_() { ESP_LOGD(TAG, "Activate Night light feature"); night_light_.set_color(1, 1, 1, 0.01, 1); ESP_LOGD(TAG, "New LED state : RGBW %f, %f, %f, %f", night_light_.red, night_light_.green, night_light_.blue, night_light_.white); // Drive the LEDs. master2_->turn_on(); master1_->turn_on(); red_->set_level(night_light_.red); green_->set_level(night_light_.green); blue_->set_level(night_light_.blue); white_->set_level(night_light_.white); } void turn_on_in_rgb_mode_(float red, float green, float blue, float brightness, float state) { ESP_LOGD(TAG, "Activate RGB %f, %f, %f, BRIGHTNESS %f", red, green, blue, brightness); rgb_light_.set_color(red, green, blue, brightness, state); ESP_LOGD(TAG, "New LED state : RGBW %f, %f, %f, off", rgb_light_.red, rgb_light_.green, rgb_light_.blue); // Drive the LEDs. master2_->turn_on(); master1_->turn_on(); red_->set_level(rgb_light_.red); green_->set_level(rgb_light_.green); blue_->set_level(rgb_light_.blue); white_->turn_off(); } void turn_on_in_white_mode_(float temperature, float brightness) { ESP_LOGD(TAG, "Activate TEMPERATURE %f, BRIGHTNESS %f", temperature, brightness); white_light_.set_color(temperature, brightness); ESP_LOGD(TAG, "New LED state : RGBW %f, %f, %f, %f", white_light_.red, white_light_.green, white_light_.blue, white_light_.white); master2_->turn_on(); master1_->turn_on(); red_->set_level(white_light_.red); green_->set_level(white_light_.green); blue_->set_level(white_light_.blue); white_->set_level(white_light_.white); } }; class YeelightBS2LightState : public light::LightState, public LightStateDataExposer { public: YeelightBS2LightState(const std::string &name, YeelightBS2LightOutput *output) : light::LightState(name, output) { output->set_light_state_data_exposer(this); } bool has_active_transformer() { return this->transformer_ != nullptr; } bool transformer_is_transition() { return this->transformer_->is_transition(); } light::LightColorValues get_transformer_values() { return this->transformer_->get_values(); } light::LightColorValues get_transformer_end_values() { return this->transformer_->get_end_values(); } float get_transformer_progress() { return this->transformer_->get_progress(); } }; } // namespace bs2 } // namespace yeelight } // namespace esphome