#pragma once #include "esphome/core/component.h" #include "esphome/components/ledc/ledc_output.h" #include "esphome/components/light/light_output.h" #include "esphome/components/gpio/output/gpio_binary_output.h" // What seems to be a bug in ESPHome transitioning: when turning on // the device, the brightness is scaled along with the state (which // runs from 0 to 1), but when turning off the device, the brightness // is kept the same while the state goes down from 1 to 0. As a result // when turning off the lamp with a transition time of 1s, the light // stays on for 1s and then turn itself off abruptly. // // Reported the issue + fix at: // https://github.com/esphome/esphome/pull/1643 // // A work-around for this issue can be enabled using the following // define. Note that the code provides a forward-compatible fix, so // having this define active with a fixed ESPHome version should // not be a problem. #define TRANSITION_TO_OFF_BUGFIX namespace esphome { namespace rgbww { static const char *TAG = "yeelight_bs2.light"; // Same range as supported by the original Yeelight firmware. static const int HOME_ASSISTANT_MIRED_MIN = 153; static const int HOME_ASSISTANT_MIRED_MAX = 588; // The PWM frequencies as used by the original device // for driving the LED circuitry. const float RGB_PWM_FREQUENCY = 3000.0f; const float WHITE_PWM_FREQUENCY = 3000.0f; class YeelightBS2LightOutput : public Component, public light::LightOutput { public: light::LightTraits get_traits() override { auto traits = light::LightTraits(); traits.set_supports_rgb(true); traits.set_supports_color_temperature(true); traits.set_supports_brightness(true); traits.set_supports_rgb_white_value(false); traits.set_supports_color_interlock(true); traits.set_min_mireds(HOME_ASSISTANT_MIRED_MIN); traits.set_max_mireds(HOME_ASSISTANT_MIRED_MAX); return traits; } void set_red_output(ledc::LEDCOutput *red) { red_ = red; red_->set_frequency(RGB_PWM_FREQUENCY); } void set_green_output(ledc::LEDCOutput *green) { green_ = green; green_->set_frequency(RGB_PWM_FREQUENCY); } void set_blue_output(ledc::LEDCOutput *blue) { blue_ = blue; blue_->set_frequency(RGB_PWM_FREQUENCY); } void set_white_output(ledc::LEDCOutput *white) { white_ = white; white_->set_frequency(WHITE_PWM_FREQUENCY); } void set_master1_output(gpio::GPIOBinaryOutput *master1) { master1_ = master1; } void set_master2_output(gpio::GPIOBinaryOutput *master2) { master2_ = master2; } void write_state(light::LightState *state) override { auto values = state->current_values; ESP_LOGD(TAG, "B = State %f, RGB %f %f %f, BRI %f, TEMP %f", values.get_state(), values.get_red(), values.get_green(), values.get_blue(), values.get_brightness(), values.get_color_temperature()); // Power down the light when its state is 'off'. if (values.get_state() == 0) { turn_off_(); #ifdef TRANSITION_TO_OFF_BUGFIX previous_state_ = -1; previous_brightness_ = 0; #endif return; } auto brightness = values.get_brightness(); #ifdef TRANSITION_TO_OFF_BUGFIX // Remember the brightness that is used when the light is fully ON. if (values.get_state() == 1) { previous_brightness_ = brightness; } // When transitioning towards zero brightness ... else if (values.get_state() < previous_state_) { // ... check if the prevous brightness is the same as the current // brightness. If yes, then the brightness isn't being scaled ... if (previous_brightness_ == brightness) { // ... and we need to do that ourselves. brightness = values.get_state() * brightness; } } previous_state_ = values.get_state(); #endif // Leave it to the default tooling to figure out the basics. // Because of the color interlocking, there are two possible outcomes: // - red, green, blue zero -> the light is in color temperature mode // - cwhite, wwhite zero -> the light is in RGB mode float red, green, blue, cwhite, wwhite; state->current_values_as_rgbww(&red, &green, &blue, &cwhite, &wwhite, true, false); if (cwhite > 0 || wwhite > 0) { turn_on_in_white_mode_(values.get_color_temperature(), brightness); } else { // The RGB mode does not use the RGB values as determined by // current_values_as_rgbww(). The device has LED driving circuitry // that takes care of the required brightness curve while ramping up // the brightness. Therefore, the actual RGB values are passed here. turn_on_in_rgb_mode_( values.get_red(), values.get_green(), values.get_blue(), brightness, values.get_state()); } } protected: ledc::LEDCOutput *red_; ledc::LEDCOutput *green_; ledc::LEDCOutput *blue_; ledc::LEDCOutput *white_; esphome::gpio::GPIOBinaryOutput *master1_; esphome::gpio::GPIOBinaryOutput *master2_; esphome::rgbww::yeelight_bs2::WhiteLight white_light_; #ifdef TRANSITION_TO_OFF_BUGFIX float previous_state_ = 1; float previous_brightness_ = -1; #endif void turn_off_() { red_->set_level(1); green_->set_level(1); blue_->set_level(1); white_->set_level(0); master2_->turn_off(); master1_->turn_off(); } void turn_on_in_rgb_mode_(float red, float green, float blue, float brightness, float state) { ESP_LOGD(TAG, "Activate RGB %f, %f, %f, BRIGHTNESS %f", red, green, blue, brightness); // The brightness must be at least 3/100 to light up the LEDs. // During transitions (where state is a fraction between 0 and 1, // indicating the transition progress) we don't apply this to // get smoother transitioning when turning on the light. if (state == 1 && brightness < 0.03f) brightness = 0.03f; // Apply proper color mixing around the RGB white point. // Overall, the RGB colors are very usable when simply scaling the // RGB channels with the brightness, but around the white point, // the color is a bit on the red side of the spectrum. The following // scaling was created to fix that. auto red_w = (0.07f + brightness*(0.57f - 0.07f)) * red; auto green_w = (0.13f + brightness*(1.00f - 0.13f)) * green; auto blue_w = (0.06f + brightness*(0.45f - 0.06f)) * blue; // For other colors, we can simply scale the RGB channels with the // requested brightness, resulting in a very usable color. Not 100% // the same as the original firmware, but sometimes even better IMO. auto red_c = red * brightness; auto green_c = green * brightness; auto blue_c = blue * brightness; // The actual RGB values are a weighed mix of the above two. // The closer to the white point, the more the white point // value applies. auto level_red = (red_w * ((green+blue)/2)) + (red_c * (1-(green+blue)/2)); auto level_green = (green_w * ((red+blue)/2)) + (green_c * (1-(red+blue)/2)); auto level_blue = (blue_w * ((red+green)/2)) + (blue_c * (1-(red+green)/2)); // Invert the signal. The LEDs in the lamp's circuit are brighter // when the pwm levels on the GPIO pins are lower. level_red = 1.0f - level_red; level_green = 1.0f - level_green; level_blue = 1.0f - level_blue; ESP_LOGD(TAG, "New LED state : RGBW %f, %f, %f, off", level_red, level_green, level_blue); // Drive the LEDs. master2_->turn_on(); master1_->turn_on(); red_->set_level(level_red); green_->set_level(level_green); blue_->set_level(level_blue); white_->set_level(0); } void turn_on_in_white_mode_(float temperature, float brightness) { ESP_LOGD(TAG, "Activate TEMPERATURE %f, BRIGHTNESS %f", temperature, brightness); white_light_.set_color(temperature, brightness); ESP_LOGD(TAG, "New LED state : RGBW %f, %f, %f, %f", white_light_.red, white_light_.green, white_light_.blue, white_light_.white); master2_->turn_on(); master1_->turn_on(); red_->set_level(white_light_.red); green_->set_level(white_light_.green); blue_->set_level(white_light_.blue); white_->set_level(white_light_.white); } }; } // namespace rgbww } // namespace esphome