#pragma once #include "esphome.h" #define CONSTANT_BRIGHTNESS true // The lamp circuitry does not support having RGB and white // channels active at the same time. Therefore, color interlock // must be enabled. #define COLOR_INTERLOCK true // Same range as supported by the original Yeelight firmware. #define HOME_ASSISTANT_MIRED_MIN 153 #define HOME_ASSISTANT_MIRED_MAX 588 namespace esphome { namespace rgbww { class YeelightBedsideLampV2LightOutput : public Component, public LightOutput { public: YeelightBedsideLampV2LightOutput( FloatOutput *r, FloatOutput *g, FloatOutput *b, FloatOutput *w, esphome::gpio::GPIOBinaryOutput *m1, esphome::gpio::GPIOBinaryOutput *m2) : red_(r), green_(g), blue_(b), white_(w), master1_(m1), master2_(m2) {} LightTraits get_traits() override { auto traits = LightTraits(); traits.set_supports_rgb(true); traits.set_supports_color_temperature(true); traits.set_supports_brightness(true); traits.set_supports_rgb_white_value(false); traits.set_supports_color_interlock(COLOR_INTERLOCK); traits.set_min_mireds(HOME_ASSISTANT_MIRED_MIN); traits.set_max_mireds(HOME_ASSISTANT_MIRED_MAX); return traits; } void write_state(LightState *state) override { auto values = state->current_values; ESP_LOGD("custom", "B = State %f, RGB %f %f %f, BRI %f, TEMP %f", values.get_state(), values.get_red(), values.get_green(), values.get_blue(), values.get_brightness(), values.get_color_temperature()); // Power down the light when its state is 'off'. if (values.get_state() == 0) { this->turn_off_(); return; } // Leave it to the default tooling to figure out the basics. // Because of the color interlocking, there are two possible outcomes: // - red, green, blue zero -> the light is in color temperature mode // - cwhite, wwhite zero -> the light is in RGB mode float red, green, blue, cwhite, wwhite; state->current_values_as_rgbww( &red, &green, &blue, &cwhite, &wwhite, CONSTANT_BRIGHTNESS, COLOR_INTERLOCK); if (cwhite > 0 || wwhite > 0) { this->turn_on_in_color_temperature_mode_( values.get_color_temperature(), values.get_brightness()); } else { this->turn_on_in_rgb_mode_( values.get_red(), values.get_green(), values.get_blue(), values.get_brightness()); } } private: FloatOutput *red_; FloatOutput *green_; FloatOutput *blue_; FloatOutput *white_; esphome::gpio::GPIOBinaryOutput *master1_; esphome::gpio::GPIOBinaryOutput *master2_; void turn_off_() { master2_->turn_off(); master1_->turn_off(); red_->turn_off(); green_->turn_off(); blue_->turn_off(); white_->turn_off(); } void turn_on_in_rgb_mode_(float red, float green, float blue, float brightness) { ESP_LOGD("custom", "Activate RGB %f, %f, %f, BRIGHTNESS %f", red, green, blue, brightness); // Compensate for brightness. red = red * brightness; green = green * brightness; blue = blue * brightness; // Inverse the signal. The LEDs in the lamp's circuit are brighter // when the voltages on the GPIO pins are lower. red = 1.0f - red; green = 1.0f - green; blue = 1.0f - blue; float white = 0.0; ESP_LOGD("rgb_mode", "LED state : RGBW %f, %f, %f, %f", red, green, blue, white); // Drive the LEDs. red_->set_level(red); green_->set_level(green); blue_->set_level(blue); white_->set_level(white); master1_->turn_on(); master2_->turn_on(); } void turn_on_in_color_temperature_mode_(float temperature, float brightness) { ESP_LOGD("temperature_mode", "Activate TEMPERATURE %f, BRIGHTNESS %f", temperature, brightness); // Empirically determined during programming the temperature GPIO output // code from below, by checking how far my outputs were off from the // original lamp firmeware's outputs. This scaler is used for correcting // my output towards the original output. float volt_scaler; float red = 1.0; float green = 1.0; float blue = 1.0; float white = 1.0; // Temperature band 370 - 588 if (temperature <= HOME_ASSISTANT_MIRED_MAX && temperature >= 371) { volt_scaler = 3.23f; float start = 371; float end = 588; float band = end - start; float red_volt = 2.86f * (1.0f - brightness); red = red_volt / volt_scaler; float green_1 = 2.90f + (temperature - start) * (2.97f - 2.90f) / band; float green_100 = 0.45f + (temperature - start) * (1.13f - 0.45f) / band; float green_volt = green_1 + brightness * (green_100 - green_1); green = green_volt / volt_scaler; float white_1 = 0.28f - (temperature - start) * (0.28f - 0.19f) / band; float white_100 = 1.07f - (temperature - start) * (1.07f - 0.22f) / band; float white_volt = white_1 + brightness * (white_100 - white_1); white = white_volt / volt_scaler; } // Temperature band 334 - 370 else if (temperature >= 334) { volt_scaler = 3.23f; float red_volt = (1.0f - brightness) * 2.86f; red = red_volt / volt_scaler; float green_volt = 2.9f - brightness * (2.9f - 0.45f); green = green_volt / volt_scaler; float white_volt = 0.28f + brightness * (1.07f - 0.28f); white = white_volt / volt_scaler; } // Temperature band 313 - 333 // // The light becomes noticably brighter when moving from temperature 334 to // temperature 333. There's a little jump in the lighting output here. // Possibly this is a switch from warm to cold lighting as imposed by the // LED circuitry, making this unavoidable. However, it would be interesting // to see if we can smoothen this out. // BTW: This behavior is in sync with the original firmware. else if (temperature >= 313) { volt_scaler = 3.23f; float red_volt = 2.89f - brightness * (2.89f - 0.32f); red = red_volt / volt_scaler; float green_volt = 2.96f - brightness * (2.96f - 1.03f); green = green_volt / volt_scaler; float white_volt = 0.42f + brightness * (2.43f - 0.42f); float volt_scaler_white = 3.45f; white = white_volt / volt_scaler_white; } // Temperature band 251 - 312 else if (temperature >= 251) { volt_scaler = 3.48f; float white_correction = 1.061; float white_volt = 0.5f + brightness * (3.28f * white_correction - 0.5f); white = white_volt / volt_scaler; } // Temperature band 223 - 250 else if (temperature >= 223) { volt_scaler = 3.25f; float green_volt = 2.94f - brightness * (2.94f - 0.88f); green = green_volt / volt_scaler; float blue_volt = 3.02f - brightness * (3.02f - 1.59f); blue = blue_volt / volt_scaler; float white_correction = 1.024f; float white_volt = 0.42f + brightness * (2.51f * white_correction - 0.42f); float volt_scaler_white = 3.36f; white = white_volt / volt_scaler_white; } // Temperature band 153 - 222 else if (temperature >= HOME_ASSISTANT_MIRED_MIN) { float start = 153; float end = 222; float band = end - start; volt_scaler = 3.23f; float green_volt = 2.86f - brightness * 2.86f; green = green_volt / volt_scaler; float blue_1 = 2.92f + (temperature - start) * (2.97f - 2.92f) / band; float blue_100 = 0.62f + (temperature - start) * (1.17f - 0.62f) / band; float blue_volt = blue_1 - brightness * (blue_1 - blue_100); blue = blue_volt / volt_scaler; float white_1 = 0.28f + (temperature - start) * (0.37f - 0.28f) / band; float white_100 = 1.1f + (temperature - start) * (2.0f - 1.1f) / band; float white_volt = white_1 + brightness * (white_100 - white_1); float volt_scaler_white = 3.27f; white = white_volt / volt_scaler_white; } ESP_LOGD("temperature_mode", "LED state : RGBW %f, %f, %f, %f", red, green, blue, white); red_->set_level(red); green_->set_level(green); blue_->set_level(blue); white_->set_level(white); master2_->turn_on(); master1_->turn_on(); } }; } // namespace rgbww } // namespace esphome