#pragma once
|
|
|
|
#include "esphome.h"
|
|
|
|
#define CONSTANT_BRIGHTNESS true
|
|
|
|
// The lamp circuitry does not support having RGB and white
|
|
// channels active at the same time. Therefore, color interlock
|
|
// must be enabled.
|
|
#define COLOR_INTERLOCK true
|
|
|
|
// Same range as supported by the original Yeelight firmware.
|
|
#define HOME_ASSISTANT_MIRED_MIN 153
|
|
#define HOME_ASSISTANT_MIRED_MAX 588
|
|
|
|
#define TAG "yeelight_bs2"
|
|
|
|
//#define YEELIGHT_DEBUG_LOG
|
|
//#define TRANSITION_TO_OFF_BUGFIX
|
|
|
|
namespace esphome
|
|
{
|
|
namespace rgbww
|
|
{
|
|
|
|
class YeelightBedsideLampV2LightOutput : public Component, public LightOutput
|
|
{
|
|
public:
|
|
YeelightBedsideLampV2LightOutput(
|
|
FloatOutput *r, FloatOutput *g, FloatOutput *b, FloatOutput *w,
|
|
esphome::gpio::GPIOBinaryOutput *m1, esphome::gpio::GPIOBinaryOutput *m2) : red_(r), green_(g), blue_(b), white_(w), master1_(m1), master2_(m2) {}
|
|
|
|
LightTraits get_traits() override
|
|
{
|
|
auto traits = LightTraits();
|
|
traits.set_supports_rgb(true);
|
|
traits.set_supports_color_temperature(true);
|
|
traits.set_supports_brightness(true);
|
|
traits.set_supports_rgb_white_value(false);
|
|
traits.set_supports_color_interlock(COLOR_INTERLOCK);
|
|
traits.set_min_mireds(HOME_ASSISTANT_MIRED_MIN);
|
|
traits.set_max_mireds(HOME_ASSISTANT_MIRED_MAX);
|
|
return traits;
|
|
}
|
|
|
|
void write_state(LightState *state) override
|
|
{
|
|
auto values = state->current_values;
|
|
|
|
//#ifdef YEELIGHT_DEBUG_LOG
|
|
ESP_LOGD(TAG, "B = State %f, RGB %f %f %f, BRI %f, TEMP %f",
|
|
values.get_state(),
|
|
values.get_red(), values.get_green(), values.get_blue(),
|
|
values.get_brightness(), values.get_color_temperature());
|
|
//#endif
|
|
|
|
// Power down the light when its state is 'off'.
|
|
if (values.get_state() == 0)
|
|
{
|
|
this->turn_off_();
|
|
return;
|
|
}
|
|
|
|
auto brightness = values.get_brightness();
|
|
|
|
#ifdef TRANSITION_TO_OFF_BUGFIX
|
|
// What seems to be a bug in ESPHome transitioning: when turning on
|
|
// the device, the brightness is scaled along with the state (which
|
|
// runs from 0 to 1), but when turning off the device, the brightness
|
|
// is kept the same while the state goes down from 1 to 0. As a result
|
|
// when turning off the lamp with a transition time of 1s, the light
|
|
// stays on for 1s and then turn itself off abruptly.
|
|
// For turning off, I implemented this hack here to make the
|
|
// transition work better.
|
|
if (previous_state_ > values.get_state()) {
|
|
brightness = values.get_state() * brightness;
|
|
}
|
|
previous_state_ = values.get_state();
|
|
#endif
|
|
|
|
// Leave it to the default tooling to figure out the basics.
|
|
// Because of the color interlocking, there are two possible outcomes:
|
|
// - red, green, blue zero -> the light is in color temperature mode
|
|
// - cwhite, wwhite zero -> the light is in RGB mode
|
|
float red, green, blue, cwhite, wwhite;
|
|
state->current_values_as_rgbww(
|
|
&red, &green, &blue, &cwhite, &wwhite,
|
|
CONSTANT_BRIGHTNESS, COLOR_INTERLOCK);
|
|
|
|
if (cwhite > 0 || wwhite > 0)
|
|
{
|
|
this->turn_on_in_color_temperature_mode_(
|
|
values.get_color_temperature(), brightness);
|
|
}
|
|
else
|
|
{
|
|
// The RGB mode does not use the RGB values as determined by
|
|
// current_values_as_rgbww(). The device has LED driving circuitry
|
|
// that takes care of the required brightness curve while ramping up
|
|
// the brightness. Therefore, the actual RGB values are passed here.
|
|
this->turn_on_in_rgb_mode_(
|
|
values.get_red(), values.get_green(), values.get_blue(), brightness);
|
|
}
|
|
}
|
|
|
|
private:
|
|
FloatOutput *red_;
|
|
FloatOutput *green_;
|
|
FloatOutput *blue_;
|
|
FloatOutput *white_;
|
|
esphome::gpio::GPIOBinaryOutput *master1_;
|
|
esphome::gpio::GPIOBinaryOutput *master2_;
|
|
// Used for a bug hack in turn_on_in_rgb_mode_()
|
|
float previous_state_ = 1;
|
|
|
|
void turn_off_()
|
|
{
|
|
// Using set_level() calls for the RGB GPIOs, and not
|
|
// turn_off(), because turn_off() causes some unwanted
|
|
// flashing when powering off at low brightness.
|
|
red_->set_level(1);
|
|
green_->set_level(1);
|
|
blue_->set_level(1);
|
|
white_->turn_off();
|
|
master1_->turn_off();
|
|
master2_->turn_off();
|
|
}
|
|
|
|
void turn_on_in_rgb_mode_(float red, float green, float blue, float brightness)
|
|
{
|
|
#ifdef YEELIGHT_DEBUG_LOG
|
|
ESP_LOGD(TAG, "Activate RGB %f, %f, %f, BRIGHTNESS %f", red, green, blue, brightness);
|
|
#endif
|
|
|
|
// The brightness must be at least 3/100 to light up the LEDs.
|
|
if (brightness < 0.03f)
|
|
brightness = 0.03f;
|
|
|
|
// Apply brightness.
|
|
red = red * brightness;
|
|
green = green * brightness;
|
|
blue = blue * brightness;
|
|
|
|
// Inverse the signal. The LEDs in the lamp's circuit are brighter
|
|
// when the pwm levels on the GPIO pins are lower.
|
|
red = 1.0f - red;
|
|
green = 1.0f - green;
|
|
blue = 1.0f - blue;
|
|
|
|
#ifdef YEELIGHT_DEBUG_LOG
|
|
ESP_LOGD(TAG, "New LED state : RGBW %f, %f, %f", red, green, blue);
|
|
#endif
|
|
|
|
// Drive the LEDs.
|
|
red_->set_level(red);
|
|
green_->set_level(green);
|
|
blue_->set_level(blue);
|
|
white_->turn_off();
|
|
master1_->turn_on();
|
|
master2_->turn_on();
|
|
}
|
|
|
|
void turn_on_in_color_temperature_mode_(float temperature, float brightness)
|
|
{
|
|
#ifdef YEELIGHT_DEBUG_LOG
|
|
ESP_LOGD(TAG, "Activate TEMPERATURE %f, BRIGHTNESS %f", temperature, brightness);
|
|
#endif
|
|
|
|
// Empirically determined during programming the temperature GPIO output
|
|
// code from below, by checking how far my outputs were off from the
|
|
// original lamp firmeware's outputs. This scaler is used for correcting
|
|
// my output towards the original output.
|
|
float scaler;
|
|
|
|
float red = 1.0;
|
|
float green = 1.0;
|
|
float blue = 1.0;
|
|
float white = 1.0;
|
|
|
|
// Temperature band 370 - 588
|
|
if (temperature <= HOME_ASSISTANT_MIRED_MAX && temperature >= 371)
|
|
{
|
|
scaler = 3.23f;
|
|
|
|
float start = 371;
|
|
float end = 588;
|
|
float band = end - start;
|
|
|
|
float red_volt = 2.86f * (1.0f - brightness);
|
|
red = red_volt / scaler;
|
|
|
|
float green_1 = 2.90f + (temperature - start) * (2.97f - 2.90f) / band;
|
|
float green_100 = 0.45f + (temperature - start) * (1.13f - 0.45f) / band;
|
|
float green_volt = green_1 + brightness * (green_100 - green_1);
|
|
green = green_volt / scaler;
|
|
|
|
float white_1 = 0.28f - (temperature - start) * (0.28f - 0.19f) / band;
|
|
float white_100 = 1.07f - (temperature - start) * (1.07f - 0.22f) / band;
|
|
float white_volt = white_1 + brightness * (white_100 - white_1);
|
|
white = white_volt / scaler;
|
|
}
|
|
// Temperature band 334 - 370
|
|
else if (temperature >= 334)
|
|
{
|
|
scaler = 3.23f;
|
|
|
|
float red_volt = (1.0f - brightness) * 2.86f;
|
|
red = red_volt / scaler;
|
|
|
|
float green_volt = 2.9f - brightness * (2.9f - 0.45f);
|
|
green = green_volt / scaler;
|
|
|
|
float white_volt = 0.28f + brightness * (1.07f - 0.28f);
|
|
white = white_volt / scaler;
|
|
}
|
|
// Temperature band 313 - 333
|
|
//
|
|
// The light becomes noticably brighter when moving from temperature 334 to
|
|
// temperature 333. There's a little jump in the lighting output here.
|
|
// Possibly this is a switch from warm to cold lighting as imposed by the
|
|
// LED circuitry, making this unavoidable. However, it would be interesting
|
|
// to see if we can smoothen this out.
|
|
// BTW: This behavior is in sync with the original firmware.
|
|
else if (temperature >= 313)
|
|
{
|
|
scaler = 3.23f;
|
|
|
|
float red_volt = 2.89f - brightness * (2.89f - 0.32f);
|
|
red = red_volt / scaler;
|
|
|
|
float green_volt = 2.96f - brightness * (2.96f - 1.03f);
|
|
green = green_volt / scaler;
|
|
|
|
float white_volt = 0.42f + brightness * (2.43f - 0.42f);
|
|
float scaler_white = 3.45f;
|
|
white = white_volt / scaler_white;
|
|
}
|
|
// Temperature band 251 - 312
|
|
else if (temperature >= 251)
|
|
{
|
|
scaler = 3.48f;
|
|
|
|
float white_correction = 1.061;
|
|
float white_volt = 0.5f + brightness * (3.28f * white_correction - 0.5f);
|
|
white = white_volt / scaler;
|
|
}
|
|
// Temperature band 223 - 250
|
|
else if (temperature >= 223)
|
|
{
|
|
scaler = 3.25f;
|
|
|
|
float green_volt = 2.94f - brightness * (2.94f - 0.88f);
|
|
green = green_volt / scaler;
|
|
|
|
float blue_volt = 3.02f - brightness * (3.02f - 1.59f);
|
|
blue = blue_volt / scaler;
|
|
|
|
float white_correction = 1.024f;
|
|
float white_volt = 0.42f + brightness * (2.51f * white_correction - 0.42f);
|
|
float scaler_white = 3.36f;
|
|
white = white_volt / scaler_white;
|
|
}
|
|
// Temperature band 153 - 222
|
|
else if (temperature >= HOME_ASSISTANT_MIRED_MIN)
|
|
{
|
|
float start = 153;
|
|
float end = 222;
|
|
float band = end - start;
|
|
|
|
scaler = 3.23f;
|
|
|
|
float green_volt = 2.86f - brightness * 2.86f;
|
|
green = green_volt / scaler;
|
|
|
|
float blue_1 = 2.92f + (temperature - start) * (2.97f - 2.92f) / band;
|
|
float blue_100 = 0.62f + (temperature - start) * (1.17f - 0.62f) / band;
|
|
float blue_volt = blue_1 - brightness * (blue_1 - blue_100);
|
|
blue = blue_volt / scaler;
|
|
|
|
float white_1 = 0.28f + (temperature - start) * (0.37f - 0.28f) / band;
|
|
float white_100 = 1.1f + (temperature - start) * (2.0f - 1.1f) / band;
|
|
float white_volt = white_1 + brightness * (white_100 - white_1);
|
|
float scaler_white = 3.27f;
|
|
white = white_volt / scaler_white;
|
|
}
|
|
|
|
#ifdef YEELIGHT_DEBUG_LOG
|
|
ESP_LOGD(TAG, "New LED state : RGBW %f, %f, %f, %f", red, green, blue, white);
|
|
#endif
|
|
|
|
red_->set_level(red);
|
|
green_->set_level(green);
|
|
blue_->set_level(blue);
|
|
white_->set_level(white);
|
|
master2_->turn_on();
|
|
master1_->turn_on();
|
|
}
|
|
};
|
|
|
|
} // namespace rgbww
|
|
} // namespace esphome
|