You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 

251 lines
8.0 KiB

#pragma once
#include "esphome.h"
#define CONSTANT_BRIGHTNESS true
// The lamp circuitry does not support having RGB and white
// channels active at the same time. Therefore, color interlock
// must be enabled.
#define COLOR_INTERLOCK true
// Same range as supported by the original Yeelight firmware.
#define HOME_ASSISTANT_MIRED_MIN 153
#define HOME_ASSISTANT_MIRED_MAX 588
namespace esphome {
namespace rgbww {
class YeelightBedsideLampV2LightOutput : public Component, public LightOutput
{
public:
YeelightBedsideLampV2LightOutput(
FloatOutput *r, FloatOutput *g, FloatOutput *b, FloatOutput *w,
esphome::gpio::GPIOBinaryOutput *m1, esphome::gpio::GPIOBinaryOutput *m2) :
red_(r), green_(g), blue_(b), white_(w), master1_(m1), master2_(m2) {}
LightTraits get_traits() override
{
auto traits = LightTraits();
traits.set_supports_rgb(true);
traits.set_supports_color_temperature(true);
traits.set_supports_brightness(true);
traits.set_supports_rgb_white_value(false);
traits.set_supports_color_interlock(COLOR_INTERLOCK);
traits.set_min_mireds(HOME_ASSISTANT_MIRED_MIN);
traits.set_max_mireds(HOME_ASSISTANT_MIRED_MAX);
return traits;
}
void write_state(LightState *state) override
{
auto values = state->current_values;
ESP_LOGD("custom", "B = State %f, RGB %f %f %f, BRI %f, TEMP %f",
values.get_state(),
values.get_red(), values.get_green(), values.get_blue(),
values.get_brightness(), values.get_color_temperature());
// Power down the light when its state is 'off'.
if (values.get_state() == 0) {
this->turn_off_();
return;
}
// Leave it to the default tooling to figure out the basics.
// Because of the color interlocking, there are two possible outcomes:
// - red, green, blue zero -> the light is in color temperature mode
// - cwhite, wwhite zero -> the light is in RGB mode
float red, green, blue, cwhite, wwhite;
state->current_values_as_rgbww(
&red, &green, &blue, &cwhite, &wwhite,
CONSTANT_BRIGHTNESS, COLOR_INTERLOCK);
if (cwhite > 0 || wwhite > 0) {
this->turn_on_in_color_temperature_mode_(
values.get_color_temperature(), values.get_brightness());
} else {
this->turn_on_in_rgb_mode_(
values.get_red(), values.get_green(), values.get_blue(), values.get_brightness());
}
}
private:
FloatOutput *red_;
FloatOutput *green_;
FloatOutput *blue_;
FloatOutput *white_;
esphome::gpio::GPIOBinaryOutput *master1_;
esphome::gpio::GPIOBinaryOutput *master2_;
void turn_off_()
{
master1_->turn_off();
red_->set_level(0);
green_->set_level(0);
blue_->set_level(0);
white_->set_level(0);
}
void turn_on_in_rgb_mode_(float red, float green, float blue, float brightness)
{
ESP_LOGD("custom", "Activate RGB %f, %f, %f, BRIGHTNESS %f", red, green, blue, brightness);
// Compensate for brightness.
red = red * brightness;
green = green * brightness;
blue = blue * brightness;
// Inverse the signal. The LEDs in the lamp's circuit are brighter
// when the voltages on the GPIO pins are lower.
red = 1.0f - red;
green = 1.0f - green;
blue = 1.0f - blue;
float white = 0.0;
ESP_LOGD("rgb_mode", "LED state : RGBW %f, %f, %f, %f", red, green, blue, white);
// Drive the LEDs.
red_->set_level(red);
green_->set_level(green);
blue_->set_level(blue);
white_->set_level(white);
master1_->turn_on();
}
void turn_on_in_color_temperature_mode_(float temperature, float brightness)
{
ESP_LOGD("temperature_mode", "Activate TEMPERATURE %f, BRIGHTNESS %f", temperature, brightness);
// Empirically determined during programming the temperature GPIO output
// code from below, by checking how far my outputs were off from the
// original lamp firmeware's outputs. This scaler is used for correcting
// my output towards the original output.
float volt_scaler;
float red = 1.0;
float green = 1.0;
float blue = 1.0;
float white = 1.0;
// Temperature band 370 - 588
if (temperature <= HOME_ASSISTANT_MIRED_MAX && temperature >= 371)
{
volt_scaler = 3.23f;
float start = 371;
float end = 588;
float band = end - start;
float red_volt = 2.86f * (1.0f - brightness);
red = red_volt / volt_scaler;
float green_1 = 2.90f + (temperature - start) * (2.97f - 2.90f) / band;
float green_100 = 0.45f + (temperature - start) * (1.13f - 0.45f) / band;
float green_volt = green_1 + brightness * (green_100 - green_1);
green = green_volt / volt_scaler;
float white_1 = 0.28f - (temperature - start) * (0.28f - 0.19f) / band;
float white_100 = 1.07f - (temperature - start) * (1.07f - 0.22f) / band;
float white_volt = white_1 + brightness * (white_100 - white_1);
white = white_volt / volt_scaler;
}
// Temperature band 334 - 370
else if (temperature >= 334)
{
volt_scaler = 3.23f;
float red_volt = (1.0f - brightness) * 2.86f;
red = red_volt / volt_scaler;
float green_volt = 2.9f - brightness * (2.9f - 0.45f);
green = green_volt / volt_scaler;
float white_volt = 0.28f + brightness * (1.07f - 0.28f);
white = white_volt / volt_scaler;
}
// Temperature band 313 - 333
//
// The light becomes noticably brighter when moving from temperature 334 to
// temperature 333. There's a little jump in the lighting output here.
// Possibly this is a switch from warm to cold lighting as imposed by the
// LED circuitry, making this unavoidable. However, it would be interesting
// to see if we can smoothen this out.
// BTW: This behavior is in sync with the original firmware.
else if (temperature >= 313)
{
volt_scaler = 3.23f;
float red_volt = 2.89f - brightness * (2.89f - 0.32f);
red = red_volt / volt_scaler;
float green_volt = 2.96f - brightness * (2.96f - 1.03f);
green = green_volt / volt_scaler;
float white_volt = 0.42f + brightness * (2.43f - 0.42f);
float volt_scaler_white = 3.45f;
white = white_volt / volt_scaler_white;
}
// Temperature band 251 - 312
else if (temperature >= 251)
{
volt_scaler = 3.48f;
float white_correction = 1.061;
float white_volt = 0.5f + brightness * (3.28f * white_correction - 0.5f);
white = white_volt / volt_scaler;
}
// Temperature band 223 - 250
else if (temperature >= 223)
{
volt_scaler = 3.25f;
float green_volt = 2.94f - brightness * (2.94f - 0.88f);
green = green_volt / volt_scaler;
float blue_volt = 3.02f - brightness * (3.02f - 1.59f);
blue = blue_volt / volt_scaler;
float white_correction = 1.024f;
float white_volt = 0.42f + brightness * (2.51f * white_correction - 0.42f);
float volt_scaler_white = 3.36f;
white = white_volt / volt_scaler_white;
}
// Temperature band 153 - 222
else if (temperature >= HOME_ASSISTANT_MIRED_MIN)
{
float start = 153;
float end = 222;
float band = end - start;
volt_scaler = 3.23f;
float green_volt = 2.86f - brightness * 2.86f;
green = green_volt / volt_scaler;
float blue_1 = 2.92f + (temperature - start) * (2.97f - 2.92f) / band;
float blue_100 = 0.62f + (temperature - start) * (1.17f - 0.62f) / band;
float blue_volt = blue_1 - brightness * (blue_1 - blue_100);
blue = blue_volt / volt_scaler;
float white_1 = 0.28f + (temperature - start) * (0.37f - 0.28f) / band;
float white_100 = 1.1f + (temperature - start) * (2.0f - 1.1f) / band;
float white_volt = white_1 + brightness * (white_100 - white_1);
float volt_scaler_white = 3.27f;
white = white_volt / volt_scaler_white;
}
ESP_LOGD("temperature_mode", "LED state : RGBW %f, %f, %f, %f", red, green, blue, white);
red_->set_level(red);
green_->set_level(green);
blue_->set_level(blue);
white_->set_level(white);
master2_->turn_on();
master1_->turn_on();
}
};
} // namespace rgbww
} // namespace esphome