You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 

243 lines
9.5 KiB

#pragma once
#include "esphome/core/component.h"
#include "esphome/components/ledc/ledc_output.h"
#include "esphome/components/light/light_output.h"
#include "esphome/components/gpio/output/gpio_binary_output.h"
// What seems to be a bug in ESPHome transitioning: when turning on
// the device, the brightness is scaled along with the state (which
// runs from 0 to 1), but when turning off the device, the brightness
// is kept the same while the state goes down from 1 to 0. As a result
// when turning off the lamp with a transition time of 1s, the light
// stays on for 1s and then turn itself off abruptly.
//
// Reported the issue + fix at:
// https://github.com/esphome/esphome/pull/1643
//
// A work-around for this issue can be enabled using the following
// define. Note that the code provides a forward-compatible fix, so
// having this define active with a fixed ESPHome version should
// not be a problem.
#define TRANSITION_TO_OFF_BUGFIX
namespace esphome {
namespace rgbww {
static const char *TAG = "yeelight_bs2.light";
// Same range as supported by the original Yeelight firmware.
static const int HOME_ASSISTANT_MIRED_MIN = 153;
static const int HOME_ASSISTANT_MIRED_MAX = 588;
// The PWM frequencies as used by the original device
// for driving the LED circuitry.
const float RGB_PWM_FREQUENCY = 3000.0f;
const float WHITE_PWM_FREQUENCY = 10000.0f;
class YeelightBS2LightOutput : public Component, public light::LightOutput
{
public:
light::LightTraits get_traits() override
{
auto traits = light::LightTraits();
traits.set_supports_rgb(true);
traits.set_supports_color_temperature(true);
traits.set_supports_brightness(true);
traits.set_supports_rgb_white_value(false);
traits.set_supports_color_interlock(true);
traits.set_min_mireds(HOME_ASSISTANT_MIRED_MIN);
traits.set_max_mireds(HOME_ASSISTANT_MIRED_MAX);
return traits;
}
void set_red_output(ledc::LEDCOutput *red) {
red_ = red;
red_->set_frequency(RGB_PWM_FREQUENCY);
}
void set_green_output(ledc::LEDCOutput *green) {
green_ = green;
green_->set_frequency(RGB_PWM_FREQUENCY);
}
void set_blue_output(ledc::LEDCOutput *blue) {
blue_ = blue;
blue_->set_frequency(RGB_PWM_FREQUENCY);
}
void set_white_output(ledc::LEDCOutput *white) {
white_ = white;
white_->set_frequency(WHITE_PWM_FREQUENCY);
}
void set_master1_output(gpio::GPIOBinaryOutput *master1) {
master1_ = master1;
}
void set_master2_output(gpio::GPIOBinaryOutput *master2) {
master2_ = master2;
}
void write_state(light::LightState *state) override
{
auto values = state->current_values;
ESP_LOGD(TAG, "B = State %f, RGB %f %f %f, BRI %f, TEMP %f",
values.get_state(),
values.get_red(), values.get_green(), values.get_blue(),
values.get_brightness(), values.get_color_temperature());
// Power down the light when its state is 'off'.
if (values.get_state() == 0)
{
this->turn_off_();
#ifdef TRANSITION_TO_OFF_BUGFIX
previous_state_ = -1;
previous_brightness_ = 0;
#endif
return;
}
auto brightness = values.get_brightness();
#ifdef TRANSITION_TO_OFF_BUGFIX
// Remember the brightness that is used when the light is fully ON.
if (values.get_state() == 1) {
previous_brightness_ = brightness;
}
// When transitioning towards zero brightness ...
else if (values.get_state() < previous_state_) {
// ... check if the prevous brightness is the same as the current
// brightness. If yes, then the brightness isn't being scaled ...
if (previous_brightness_ == brightness) {
// ... and we need to do that ourselves.
brightness = values.get_state() * brightness;
}
}
previous_state_ = values.get_state();
#endif
// Leave it to the default tooling to figure out the basics.
// Because of the color interlocking, there are two possible outcomes:
// - red, green, blue zero -> the light is in color temperature mode
// - cwhite, wwhite zero -> the light is in RGB mode
float red, green, blue, cwhite, wwhite;
state->current_values_as_rgbww(&red, &green, &blue, &cwhite, &wwhite, true, false);
if (cwhite > 0 || wwhite > 0)
{
turn_on_in_white_mode_(values.get_color_temperature(), brightness);
}
else
{
// The RGB mode does not use the RGB values as determined by
// current_values_as_rgbww(). The device has LED driving circuitry
// that takes care of the required brightness curve while ramping up
// the brightness. Therefore, the actual RGB values are passed here.
turn_on_in_rgb_mode_(
values.get_red(), values.get_green(), values.get_blue(),
brightness, values.get_state());
}
}
protected:
ledc::LEDCOutput *red_;
ledc::LEDCOutput *green_;
ledc::LEDCOutput *blue_;
ledc::LEDCOutput *white_;
esphome::gpio::GPIOBinaryOutput *master1_;
esphome::gpio::GPIOBinaryOutput *master2_;
esphome::rgbww::yeelight_bs2::WhiteLight white_light_;
#ifdef TRANSITION_TO_OFF_BUGFIX
float previous_state_ = 1;
float previous_brightness_ = -1;
#endif
void turn_off_()
{
red_->set_level(1);
green_->set_level(1);
blue_->set_level(1);
white_->turn_off();
master2_->turn_off();
master1_->turn_off();
}
void turn_on_in_rgb_mode_(float red, float green, float blue, float brightness, float state)
{
ESP_LOGD(TAG, "Activate RGB %f, %f, %f, BRIGHTNESS %f", red, green, blue, brightness);
// The brightness must be at least 3/100 to light up the LEDs.
// During transitions (where state is a fraction between 0 and 1,
// indicating the transition progress) we don't apply this to
// get smoother transitioning when turning on the light.
if (state == 1 && brightness < 0.03f)
brightness = 0.03f;
// Apply proper color mixing around the RGB white point.
// Overall, the RGB colors are very usable when simply scaling the
// RGB channels with the brightness, but around the white point,
// the color is a bit on the red side of the spectrum. The following
// scaling was created to fix that.
// RGBW 0.432451, 0.013149, 0.556678
// R 0.57 g 1 b 0.45
auto red_w = (0.07f + brightness*(0.57f - 0.07f)) * red;
auto green_w = (0.13f + brightness*(1.00f - 0.13f)) * green;
auto blue_w = (0.06f + brightness*(0.45f - 0.06f)) * blue;
// For other colors, we can simply scale the RGB channels with the
// requested brightness, resulting in a very usable color. Not 100%
// the same as the original firmware, but sometimes even better IMO.
auto red_c = red * brightness;
auto green_c = green * brightness;
auto blue_c = blue * brightness;
// The actual RGB values are a weighed mix of the above two.
// The closer to the white point, the more the white point
// value applies.
auto level_red = (red_w * ((green+blue)/2)) + (red_c * (1-(green+blue)/2));
auto level_green = (green_w * ((red+blue)/2)) + (green_c * (1-(red+blue)/2));
auto level_blue = (blue_w * ((red+green)/2)) + (blue_c * (1-(red+green)/2));
// Invert the signal. The LEDs in the lamp's circuit are brighter
// when the pwm levels on the GPIO pins are lower.
level_red = 1.0f - level_red;
level_green = 1.0f - level_green;
level_blue = 1.0f - level_blue;
ESP_LOGD(TAG, "New LED state : RGBW %f, %f, %f, off", level_red, level_green, level_blue);
// Drive the LEDs.
master2_->turn_on();
master1_->turn_on();
red_->set_level(level_red);
green_->set_level(level_green);
blue_->set_level(level_blue);
white_->turn_off();
}
void turn_on_in_white_mode_(float temperature, float brightness)
{
ESP_LOGD(TAG, "Activate TEMPERATURE %f, BRIGHTNESS %f",
temperature, brightness);
white_light_.set_color(temperature, brightness);
ESP_LOGD(TAG, "New LED state : RGBW %f, %f, %f, %f",
white_light_.red, white_light_.green, white_light_.blue,
white_light_.white);
master2_->turn_on();
master1_->turn_on();
red_->set_level(white_light_.red);
green_->set_level(white_light_.green);
blue_->set_level(white_light_.blue);
white_->turn_on();
white_->set_level(white_light_.white);
}
};
} // namespace rgbww
} // namespace esphome