#pragma once
|
|
|
|
// What seems to be a bug in ESPHome transitioning: when turning on
|
|
// the device, the brightness is scaled along with the state (which
|
|
// runs from 0 to 1), but when turning off the device, the brightness
|
|
// is kept the same while the state goes down from 1 to 0. As a result
|
|
// when turning off the lamp with a transition time of 1s, the light
|
|
// stays on for 1s and then turn itself off abruptly.
|
|
//
|
|
// Reported the issue + fix at:
|
|
// https://github.com/esphome/esphome/pull/1643
|
|
//
|
|
// A work-around for this issue can be enabled using the following
|
|
// define. Note that the code provides a forward-compatible fix, so
|
|
// having this define active with a fixed ESPHome version should
|
|
// not be a problem.
|
|
#define TRANSITION_TO_OFF_BUGFIX
|
|
|
|
namespace esphome {
|
|
namespace yeelight {
|
|
namespace bs2 {
|
|
|
|
/// This is an interface definition that is used to extend the
|
|
/// YeelightBS2LightOutput class with methods to access properties
|
|
/// of an active LightTranformer from the TransitionHandler class.
|
|
///
|
|
/// The transformer is protected in the light output class, making
|
|
/// it impossible to access these properties directly from the
|
|
/// light output class.
|
|
class LightStateDataExposer {
|
|
public:
|
|
virtual bool has_active_transformer() = 0;
|
|
virtual bool transformer_is_transition() = 0;
|
|
virtual light::LightColorValues get_transformer_values() = 0;
|
|
virtual light::LightColorValues get_transformer_end_values() = 0;
|
|
virtual float get_transformer_progress() = 0;
|
|
};
|
|
|
|
/// This class is used to handle color transition requirements.
|
|
///
|
|
/// When using the default ESPHome logic, transitioning is done by
|
|
/// transitioning all light properties linearly from the original
|
|
/// values to the new values, and letting the light output object
|
|
/// translate these properties into light outputs on every step of the
|
|
/// way. While this does work, it does not work nicely.
|
|
///
|
|
/// For example, when transitioning from warm to cold white light,
|
|
/// the color temperature would be transitioned from the old value to
|
|
/// the new value. While doing so, the transition hits the middle
|
|
/// white light setting, which shows up as a bright flash in the
|
|
/// middle of the transition. The original firmware however, shows a
|
|
/// smooth transition from warm to cold white light, without any flash.
|
|
///
|
|
/// This class handles transitions by not varying the light properties
|
|
/// over time, but by transitioning the LEDC duty cycle output levels
|
|
/// over time. This matches the behavior of the original firmware.
|
|
class TransitionHandler : public GPIOOutputs {
|
|
public:
|
|
TransitionHandler(LightStateDataExposer *exposer) : exposer_(exposer) {}
|
|
|
|
bool set_light_color_values(light::LightColorValues values) {
|
|
if (!has_active_transition_()) {
|
|
start_values = values;
|
|
active_ = false;
|
|
return false;
|
|
}
|
|
|
|
if (is_fresh_transition_()) {
|
|
start_->set_light_color_values(start_values);
|
|
end_->set_light_color_values(exposer_->get_transformer_end_values());
|
|
active_ = true;
|
|
}
|
|
|
|
auto progress = exposer_->get_transformer_progress();
|
|
red = esphome::lerp(progress, start_->red, end_->red);
|
|
green = esphome::lerp(progress, start_->green, end_->green);
|
|
blue = esphome::lerp(progress, start_->blue, end_->blue);
|
|
white = esphome::lerp(progress, start_->white, end_->white);
|
|
|
|
return true;
|
|
}
|
|
|
|
protected:
|
|
bool active_ = false;
|
|
LightStateDataExposer *exposer_;
|
|
light::LightColorValues start_values;
|
|
GPIOOutputs *start_ = new ColorTranslator();
|
|
GPIOOutputs *end_ = new ColorTranslator();
|
|
|
|
/// Checks if this class will handle the light output logic.
|
|
/// This is the case when a transformer is active and this
|
|
/// transformer does implement a transitioning effect.
|
|
bool has_active_transition_() {
|
|
if (!exposer_->has_active_transformer())
|
|
return false;
|
|
if (!exposer_->transformer_is_transition())
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
/// Checks if a fresh transitioning is started.
|
|
/// A transitioning is fresh when either no transition is known to
|
|
/// be in progress or when a new end state is found during an
|
|
/// ongoing transition.
|
|
bool is_fresh_transition_() {
|
|
if (active_ == false) {
|
|
return true;
|
|
}
|
|
auto new_end_values = exposer_->get_transformer_end_values();
|
|
if (new_end_values != end_->values) {
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
};
|
|
|
|
/// An implementation of the LightOutput interface for the Yeelight
|
|
/// Bedside Lamp 2. The function of this class is to translate a
|
|
/// required light state into actual physicial GPIO output signals
|
|
/// to drive the device's LED circuitry.
|
|
class YeelightBS2LightOutput : public Component, public light::LightOutput {
|
|
public:
|
|
/// Set the LEDC output for the red LED circuitry channel.
|
|
void set_red_output(ledc::LEDCOutput *red) {
|
|
red_ = red;
|
|
}
|
|
|
|
/// Set the LEDC output for the green LED circuitry channel.
|
|
void set_green_output(ledc::LEDCOutput *green) {
|
|
green_ = green;
|
|
}
|
|
|
|
/// Set the LEDC output for the blue LED circuitry channel.
|
|
void set_blue_output(ledc::LEDCOutput *blue) {
|
|
blue_ = blue;
|
|
}
|
|
|
|
/// Set the LEDC output for the white LED circuitry channel.
|
|
void set_white_output(ledc::LEDCOutput *white) {
|
|
white_ = white;
|
|
}
|
|
|
|
/// Set the first GPIO binary output, used as internal master
|
|
/// switch for the LED light circuitry.
|
|
void set_master1_output(gpio::GPIOBinaryOutput *master1) {
|
|
master1_ = master1;
|
|
}
|
|
|
|
/// Set the second GPIO binary output, used as internal master
|
|
/// switch for the LED light circuitry.
|
|
void set_master2_output(gpio::GPIOBinaryOutput *master2) {
|
|
master2_ = master2;
|
|
}
|
|
|
|
/// Returns a LightTraits object, which is used to explain to the
|
|
/// outside world (e.g. Home Assistant) what features are supported
|
|
/// by this device.
|
|
light::LightTraits get_traits() override
|
|
{
|
|
auto traits = light::LightTraits();
|
|
traits.set_supports_rgb(true);
|
|
traits.set_supports_color_temperature(true);
|
|
traits.set_supports_brightness(true);
|
|
traits.set_supports_rgb_white_value(false);
|
|
traits.set_supports_color_interlock(true);
|
|
traits.set_min_mireds(MIRED_MIN);
|
|
traits.set_max_mireds(MIRED_MAX);
|
|
return traits;
|
|
}
|
|
|
|
/// Applies a requested light state to the physicial GPIO outputs.
|
|
void write_state(light::LightState *state)
|
|
{
|
|
auto values = state->current_values;
|
|
|
|
// Power down the light when its state is 'off'.
|
|
if (values.get_state() == 0)
|
|
{
|
|
red_->set_level(1.0f);
|
|
green_->set_level(1.0f);
|
|
blue_->set_level(1.0f);
|
|
white_->set_level(0.0f);
|
|
master2_->turn_off();
|
|
master1_->turn_off();
|
|
#ifdef TRANSITION_TO_OFF_BUGFIX
|
|
previous_state_ = -1;
|
|
previous_brightness_ = 0;
|
|
#endif
|
|
return;
|
|
}
|
|
|
|
if (transition_handler_->set_light_color_values(values)) {
|
|
master2_->turn_on();
|
|
master1_->turn_on();
|
|
red_->set_level(transition_handler_->red);
|
|
green_->set_level(transition_handler_->green);
|
|
blue_->set_level(transition_handler_->blue);
|
|
white_->set_level(transition_handler_->white);
|
|
return;
|
|
}
|
|
|
|
#ifdef TRANSITION_TO_OFF_BUGFIX
|
|
// Remember the brightness that is used when the light is fully ON.
|
|
auto brightness = values.get_brightness();
|
|
if (values.get_state() == 1) {
|
|
previous_brightness_ = brightness;
|
|
}
|
|
// When transitioning towards zero brightness ...
|
|
else if (values.get_state() < previous_state_) {
|
|
// ... check if the prevous brightness is the same as the current
|
|
// brightness. If yes, then the brightness isn't being scaled ...
|
|
if (previous_brightness_ == brightness) {
|
|
// ... and we need to do that ourselves.
|
|
brightness = values.get_state() * brightness;
|
|
}
|
|
}
|
|
previous_state_ = values.get_state();
|
|
#endif
|
|
|
|
instant_handler_->set_light_color_values(values);
|
|
master2_->turn_on();
|
|
master1_->turn_on();
|
|
red_->set_level(instant_handler_->red);
|
|
green_->set_level(instant_handler_->green);
|
|
blue_->set_level(instant_handler_->blue);
|
|
white_->set_level(instant_handler_->white);
|
|
}
|
|
|
|
protected:
|
|
ledc::LEDCOutput *red_;
|
|
ledc::LEDCOutput *green_;
|
|
ledc::LEDCOutput *blue_;
|
|
ledc::LEDCOutput *white_;
|
|
esphome::gpio::GPIOBinaryOutput *master1_;
|
|
esphome::gpio::GPIOBinaryOutput *master2_;
|
|
TransitionHandler *transition_handler_;
|
|
ColorTranslator *instant_handler_ = new ColorTranslator();
|
|
#ifdef TRANSITION_TO_OFF_BUGFIX
|
|
float previous_state_ = 1;
|
|
float previous_brightness_ = -1;
|
|
#endif
|
|
|
|
friend class YeelightBS2LightState;
|
|
|
|
/// Called by the YeelightBS2LightState class, to set the object that
|
|
/// can be used to access protected data from the light state object.
|
|
void set_light_state_data_exposer(LightStateDataExposer *exposer) {
|
|
transition_handler_ = new TransitionHandler(exposer);
|
|
}
|
|
};
|
|
|
|
class YeelightBS2LightState : public light::LightState, public LightStateDataExposer
|
|
{
|
|
public:
|
|
YeelightBS2LightState(const std::string &name, YeelightBS2LightOutput *output) : light::LightState(name, output) {
|
|
output->set_light_state_data_exposer(this);
|
|
}
|
|
|
|
bool has_active_transformer() {
|
|
return this->transformer_ != nullptr;
|
|
}
|
|
|
|
bool transformer_is_transition() {
|
|
return this->transformer_->is_transition();
|
|
}
|
|
|
|
light::LightColorValues get_transformer_values() {
|
|
return this->transformer_->get_values();
|
|
}
|
|
|
|
light::LightColorValues get_transformer_end_values() {
|
|
return this->transformer_->get_end_values();
|
|
}
|
|
|
|
float get_transformer_progress() {
|
|
return this->transformer_->get_progress();
|
|
}
|
|
};
|
|
|
|
} // namespace bs2
|
|
} // namespace yeelight
|
|
} // namespace esphome
|