Mirror of espurna firmware for wireless switches and more
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

2947 lines
77 KiB

/*
RELAY MODULE
Copyright (C) 2016-2019 by Xose Pérez <xose dot perez at gmail dot com>
Copyright (C) 2019-2021 by Maxim Prokhorov <prokhorov dot max at outlook dot com>
*/
#include "espurna.h"
#if RELAY_SUPPORT
#include "api.h"
#include "mqtt.h"
#include "relay.h"
#include "rpc.h"
#include "rtcmem.h"
#include "settings.h"
#include "storage_eeprom.h"
#include "terminal.h"
#include "utils.h"
#include "ws.h"
#include <ArduinoJson.h>
#include <bitset>
#include <cstring>
#include <functional>
#include <vector>
// -----------------------------------------------------------------------------
namespace espurna {
namespace relay {
namespace flood {
using Duration = espurna::duration::Milliseconds;
using Seconds = std::chrono::duration<float>;
namespace build {
namespace {
constexpr Duration window() {
static_assert(Seconds{RELAY_FLOOD_WINDOW}.count() >= 0.0f, "");
return std::chrono::duration_cast<Duration>(Seconds { RELAY_FLOOD_WINDOW });
}
constexpr unsigned long changes() {
return RELAY_FLOOD_CHANGES;
}
} // namespace
} // namespace build
namespace settings {
namespace keys {
namespace {
PROGMEM_STRING(Time, "relayFloodTime");
PROGMEM_STRING(Changes, "relayFloodChanges");
} // namespace
} // namespace keys
namespace {
Duration window() {
return getSetting(keys::Time, build::window());
}
unsigned long changes() {
return getSetting(keys::Changes, build::changes());
}
} // namespace
} // namespace settings
} // namespace flood
namespace build {
namespace {
constexpr espurna::duration::Milliseconds saveDelay() {
return espurna::duration::Milliseconds(RELAY_SAVE_DELAY);
}
constexpr size_t dummyCount() {
return DUMMY_RELAY_COUNT;
}
constexpr RelaySync syncMode() {
return RELAY_SYNC;
}
constexpr espurna::duration::Milliseconds latchingPulse() {
return espurna::duration::Milliseconds(RELAY_LATCHING_PULSE);
}
constexpr espurna::duration::Milliseconds interlockDelay() {
return espurna::duration::Milliseconds(RELAY_DELAY_INTERLOCK);
}
constexpr espurna::duration::Milliseconds delayOn(size_t index) {
return espurna::duration::Milliseconds(
(index == 0) ? RELAY1_DELAY_ON :
(index == 1) ? RELAY2_DELAY_ON :
(index == 2) ? RELAY3_DELAY_ON :
(index == 3) ? RELAY4_DELAY_ON :
(index == 4) ? RELAY5_DELAY_ON :
(index == 5) ? RELAY6_DELAY_ON :
(index == 6) ? RELAY7_DELAY_ON :
(index == 7) ? RELAY8_DELAY_ON : 0ul
);
}
constexpr espurna::duration::Milliseconds delayOff(size_t index) {
return espurna::duration::Milliseconds(
(index == 0) ? RELAY1_DELAY_OFF :
(index == 1) ? RELAY2_DELAY_OFF :
(index == 2) ? RELAY3_DELAY_OFF :
(index == 3) ? RELAY4_DELAY_OFF :
(index == 4) ? RELAY5_DELAY_OFF :
(index == 5) ? RELAY6_DELAY_OFF :
(index == 6) ? RELAY7_DELAY_OFF :
(index == 7) ? RELAY8_DELAY_OFF : 0ul
);
}
constexpr unsigned char pin(size_t index) {
return (
(index == 0) ? RELAY1_PIN :
(index == 1) ? RELAY2_PIN :
(index == 2) ? RELAY3_PIN :
(index == 3) ? RELAY4_PIN :
(index == 4) ? RELAY5_PIN :
(index == 5) ? RELAY6_PIN :
(index == 6) ? RELAY7_PIN :
(index == 7) ? RELAY8_PIN : GPIO_NONE
);
}
constexpr RelayType type(size_t index) {
return (
(index == 0) ? RELAY1_TYPE :
(index == 1) ? RELAY2_TYPE :
(index == 2) ? RELAY3_TYPE :
(index == 3) ? RELAY4_TYPE :
(index == 4) ? RELAY5_TYPE :
(index == 5) ? RELAY6_TYPE :
(index == 6) ? RELAY7_TYPE :
(index == 7) ? RELAY8_TYPE : RELAY_TYPE_NORMAL
);
}
constexpr GpioType pinType(size_t index) {
return (
(index == 0) ? RELAY1_PIN_TYPE :
(index == 1) ? RELAY2_PIN_TYPE :
(index == 2) ? RELAY3_PIN_TYPE :
(index == 3) ? RELAY4_PIN_TYPE :
(index == 4) ? RELAY5_PIN_TYPE :
(index == 5) ? RELAY6_PIN_TYPE :
(index == 6) ? RELAY7_PIN_TYPE :
(index == 7) ? RELAY8_PIN_TYPE : GPIO_TYPE_NONE
);
}
constexpr unsigned char resetPin(size_t index) {
return (
(index == 0) ? RELAY1_RESET_PIN :
(index == 1) ? RELAY2_RESET_PIN :
(index == 2) ? RELAY3_RESET_PIN :
(index == 3) ? RELAY4_RESET_PIN :
(index == 4) ? RELAY5_RESET_PIN :
(index == 5) ? RELAY6_RESET_PIN :
(index == 6) ? RELAY7_RESET_PIN :
(index == 7) ? RELAY8_RESET_PIN : GPIO_NONE
);
}
constexpr RelayBoot bootMode(size_t index) {
return (
(index == 0) ? RELAY1_BOOT_MODE :
(index == 1) ? RELAY2_BOOT_MODE :
(index == 2) ? RELAY3_BOOT_MODE :
(index == 3) ? RELAY4_BOOT_MODE :
(index == 4) ? RELAY5_BOOT_MODE :
(index == 5) ? RELAY6_BOOT_MODE :
(index == 6) ? RELAY7_BOOT_MODE :
(index == 7) ? RELAY8_BOOT_MODE : RELAY_BOOT_OFF
);
}
constexpr RelayProvider provider(size_t index) {
return (
(index == 0) ? (RELAY1_PROVIDER) :
(index == 1) ? (RELAY2_PROVIDER) :
(index == 2) ? (RELAY3_PROVIDER) :
(index == 3) ? (RELAY4_PROVIDER) :
(index == 4) ? (RELAY5_PROVIDER) :
(index == 5) ? (RELAY6_PROVIDER) :
(index == 6) ? (RELAY7_PROVIDER) :
(index == 7) ? (RELAY8_PROVIDER) : RELAY_PROVIDER_NONE
);
}
constexpr RelayMqttTopicMode mqttTopicMode(size_t index) {
return (
(index == 0) ? (RELAY1_MQTT_TOPIC_MODE) :
(index == 1) ? (RELAY2_MQTT_TOPIC_MODE) :
(index == 2) ? (RELAY3_MQTT_TOPIC_MODE) :
(index == 3) ? (RELAY4_MQTT_TOPIC_MODE) :
(index == 4) ? (RELAY5_MQTT_TOPIC_MODE) :
(index == 5) ? (RELAY6_MQTT_TOPIC_MODE) :
(index == 6) ? (RELAY7_MQTT_TOPIC_MODE) :
(index == 7) ? (RELAY8_MQTT_TOPIC_MODE) : RELAY_MQTT_TOPIC_MODE
);
}
PROGMEM_STRING(PayloadOn, RELAY_MQTT_ON);
PROGMEM_STRING(PayloadOff, RELAY_MQTT_OFF);
PROGMEM_STRING(PayloadToggle, RELAY_MQTT_TOGGLE);
const StringView mqttTopicSub(size_t index) {
return (
(index == 0) ? StringView(PSTR(RELAY1_MQTT_TOPIC_SUB)) :
(index == 1) ? StringView(PSTR(RELAY2_MQTT_TOPIC_SUB)) :
(index == 2) ? StringView(PSTR(RELAY3_MQTT_TOPIC_SUB)) :
(index == 3) ? StringView(PSTR(RELAY4_MQTT_TOPIC_SUB)) :
(index == 4) ? StringView(PSTR(RELAY5_MQTT_TOPIC_SUB)) :
(index == 5) ? StringView(PSTR(RELAY6_MQTT_TOPIC_SUB)) :
(index == 6) ? StringView(PSTR(RELAY7_MQTT_TOPIC_SUB)) :
(index == 7) ? StringView(PSTR(RELAY8_MQTT_TOPIC_SUB)) : ""
);
}
const StringView mqttTopicPub(size_t index) {
return (
(index == 0) ? StringView(PSTR(RELAY1_MQTT_TOPIC_PUB)) :
(index == 1) ? StringView(PSTR(RELAY2_MQTT_TOPIC_PUB)) :
(index == 2) ? StringView(PSTR(RELAY3_MQTT_TOPIC_PUB)) :
(index == 3) ? StringView(PSTR(RELAY4_MQTT_TOPIC_PUB)) :
(index == 4) ? StringView(PSTR(RELAY5_MQTT_TOPIC_PUB)) :
(index == 5) ? StringView(PSTR(RELAY6_MQTT_TOPIC_PUB)) :
(index == 6) ? StringView(PSTR(RELAY7_MQTT_TOPIC_PUB)) :
(index == 7) ? StringView(PSTR(RELAY8_MQTT_TOPIC_PUB)) : ""
);
}
constexpr PayloadStatus mqttDisconnectionStatus(size_t index) {
return (
(index == 0) ? (RELAY1_MQTT_DISCONNECT_STATUS) :
(index == 1) ? (RELAY2_MQTT_DISCONNECT_STATUS) :
(index == 2) ? (RELAY3_MQTT_DISCONNECT_STATUS) :
(index == 3) ? (RELAY4_MQTT_DISCONNECT_STATUS) :
(index == 4) ? (RELAY5_MQTT_DISCONNECT_STATUS) :
(index == 5) ? (RELAY6_MQTT_DISCONNECT_STATUS) :
(index == 6) ? (RELAY7_MQTT_DISCONNECT_STATUS) :
(index == 7) ? (RELAY8_MQTT_DISCONNECT_STATUS) : RELAY_MQTT_DISCONNECT_NONE
);
}
} // namespace
} // namespace build
namespace pulse {
using Duration = espurna::duration::Milliseconds;
using Seconds = std::chrono::duration<float>;
enum class Mode {
None,
Off,
On
};
} // namespace pulse
} // namespace relay
} // namespace espurna
#include "relay_pulse.ipp"
namespace espurna {
namespace relay {
namespace pulse {
namespace build {
namespace {
constexpr Seconds time(size_t index) {
return Seconds(
(index == 0) ? RELAY1_PULSE_TIME :
(index == 1) ? RELAY2_PULSE_TIME :
(index == 2) ? RELAY3_PULSE_TIME :
(index == 3) ? RELAY4_PULSE_TIME :
(index == 4) ? RELAY5_PULSE_TIME :
(index == 5) ? RELAY6_PULSE_TIME :
(index == 6) ? RELAY7_PULSE_TIME :
(index == 7) ? RELAY8_PULSE_TIME : RELAY_PULSE_TIME
);
}
static_assert(time(0).count() >= 0.0f, "");
static_assert(time(1).count() >= 0.0f, "");
static_assert(time(2).count() >= 0.0f, "");
static_assert(time(3).count() >= 0.0f, "");
static_assert(time(4).count() >= 0.0f, "");
static_assert(time(5).count() >= 0.0f, "");
static_assert(time(6).count() >= 0.0f, "");
static_assert(time(7).count() >= 0.0f, "");
constexpr Mode mode(size_t index) {
return (
(index == 0) ? RELAY1_PULSE_MODE :
(index == 1) ? RELAY2_PULSE_MODE :
(index == 2) ? RELAY3_PULSE_MODE :
(index == 3) ? RELAY4_PULSE_MODE :
(index == 4) ? RELAY5_PULSE_MODE :
(index == 5) ? RELAY6_PULSE_MODE :
(index == 6) ? RELAY7_PULSE_MODE :
(index == 7) ? RELAY8_PULSE_MODE : RELAY_PULSE_NONE
);
}
} // namespace
} // namespace build
namespace settings {
namespace keys {
namespace {
PROGMEM_STRING(Time, "relayTime");
PROGMEM_STRING(Mode, "relayPulse");
} // namespace
} // namespace keys
namespace {
Result time(size_t index) {
const auto time = espurna::settings::get(espurna::settings::Key{keys::Time, index}.value());
if (!time) {
return Result(std::chrono::duration_cast<Duration>(build::time(index)));
}
return parse(time.ref());
}
Mode mode(size_t index) {
return getSetting({keys::Mode, index}, build::mode(index));
}
} // namespace
} // namespace settings
namespace {
struct Timer {
using Duration = timer::SystemTimer::Duration;
Timer() = delete;
Timer(const Timer&) = delete;
Timer(Timer&&) = delete;
Timer(Duration duration, size_t id, bool status) :
_duration(duration),
_id(id),
_status(status)
{}
~Timer() {
_timer.stop();
}
Timer& operator=(const Timer&) = delete;
Timer& operator=(Timer&&) = delete;
explicit operator bool() const {
return static_cast<bool>(_timer);
}
bool operator==(const Timer& other) const {
return (_duration == other._duration)
&& (_id == other._id)
&& (_status == other._status);
}
Timer& update(Duration duration, bool status) {
stop();
_duration = duration;
_status = status;
return *this;
}
size_t id() const {
return _id;
}
Duration duration() const {
return _duration;
}
bool status() const {
return _status;
}
void stop() {
_timer.stop();
}
void start() {
const auto id = _id;
const auto status = _status;
_timer.once(
(_duration.count() > 0)
? _duration
: timer::SystemTimer::DurationMin,
[id, status]() {
relayStatus(id, status);
});
}
private:
Duration _duration;
size_t _id;
bool _status;
timer::SystemTimer _timer;
};
namespace internal {
std::forward_list<Timer> timers;
} // namespace internal
auto find(size_t id) -> decltype(internal::timers.begin()) {
return std::find_if(
internal::timers.begin(),
internal::timers.end(),
[&](const Timer& timer) {
return id == timer.id();
});
}
void trigger(Duration duration, size_t id, bool target) {
const char* notify { nullptr };
auto it = find(id);
if (it == internal::timers.end()) {
internal::timers.emplace_front(duration, id, target);
it = internal::timers.begin();
notify = "started";
} else {
(*it).update(duration, target);
notify = "rescheduled";
}
(*it).start();
if (notify) {
DEBUG_MSG_P(PSTR("[RELAY] #%u pulse %s %s in %lu (ms)\n"),
id, target ? "ON" : "OFF",
notify,
duration.count());
}
}
// Update the pulse counter when the relay is already in the opposite state (#454)
void poll(size_t id, bool target) {
auto it = find(id);
if ((it != internal::timers.end()) && ((*it).status() != target)) {
(*it).start();
}
}
void expire() {
internal::timers.remove_if([](const Timer& timer) {
return !static_cast<bool>(timer)
|| (relayStatus(timer.id()) == timer.status());
});
}
Seconds findDuration(size_t id) {
Seconds out{};
auto it = find(id);
if (it != internal::timers.end()) {
out = std::chrono::duration_cast<Seconds>((*it).duration());
}
return out;
}
bool isNormalStatus(Mode pulse, bool status) {
switch (pulse) {
case Mode::None:
break;
case Mode::On:
return status;
case Mode::Off:
return !status;
}
return false;
}
bool isActive(Mode pulse) {
return pulse != Mode::None;
}
} // namespace
} // namespace pulse
namespace settings {
namespace options {
namespace {
using espurna::settings::options::Enumeration;
PROGMEM_STRING(TristateNone, "none");
PROGMEM_STRING(TristateOff, "off");
PROGMEM_STRING(TristateOn, "on");
template <typename T>
struct RelayTristateHelper {
static constexpr std::array<Enumeration<T>, 3> Options PROGMEM {
{{T::None, TristateNone},
{T::Off, TristateOff},
{T::On, TristateOn}}
};
static T convert(const String& value) {
return espurna::settings::internal::convert(Options, value, T::None);
}
static String serialize(T value) {
return espurna::settings::internal::serialize(Options, value);
}
};
template <typename T>
constexpr std::array<Enumeration<T>, 3> RelayTristateHelper<T>::Options;
PROGMEM_STRING(PayloadStatusOff, "off");
PROGMEM_STRING(PayloadStatusOn, "on");
PROGMEM_STRING(PayloadStatusToggle, "toggle");
PROGMEM_STRING(PayloadStatusUnknown, "unknown");
static constexpr std::array<Enumeration<PayloadStatus>, 4> PayloadStatusOptions PROGMEM {
{{PayloadStatus::Off, PayloadStatusOff},
{PayloadStatus::On, PayloadStatusOn},
{PayloadStatus::Toggle, PayloadStatusToggle},
{PayloadStatus::Unknown, PayloadStatusUnknown}}
};
PROGMEM_STRING(Normal, "normal");
PROGMEM_STRING(Inverse, "inverse");
static constexpr std::array<Enumeration<RelayMqttTopicMode>, 2> RelayMqttTopicModeOptions PROGMEM {
{{RelayMqttTopicMode::Normal, Normal},
{RelayMqttTopicMode::Inverse, Inverse}}
};
PROGMEM_STRING(RelayBootOff, "off");
PROGMEM_STRING(RelayBootOn, "on");
PROGMEM_STRING(RelayBootSame, "same");
PROGMEM_STRING(RelayBootToggle, "toggle");
PROGMEM_STRING(RelayBootLockedOff, "locked-off");
PROGMEM_STRING(RelayBootLockedOn, "locked-on");
static constexpr std::array<Enumeration<RelayBoot>, 6> RelayBootOptions PROGMEM {
{{RelayBoot::Off, RelayBootOff},
{RelayBoot::On, RelayBootOn},
{RelayBoot::Same, RelayBootSame},
{RelayBoot::Toggle, RelayBootToggle},
{RelayBoot::LockedOff, RelayBootLockedOff},
{RelayBoot::LockedOn, RelayBootLockedOn}}
};
PROGMEM_STRING(RelayProviderNone, "none");
PROGMEM_STRING(RelayProviderDummy, "dummy");
PROGMEM_STRING(RelayProviderGpio, "gpio");
PROGMEM_STRING(RelayProviderDual, "dual");
PROGMEM_STRING(RelayProviderStm, "stm");
static constexpr std::array<Enumeration<RelayProvider>, 5> RelayProviderOptions PROGMEM {
{{RelayProvider::None, RelayProviderNone},
{RelayProvider::Dummy, RelayProviderDummy},
{RelayProvider::Gpio, RelayProviderGpio},
{RelayProvider::Dual, RelayProviderDual},
{RelayProvider::Stm, RelayProviderStm}}
};
PROGMEM_STRING(RelayTypeNormal, "normal");
PROGMEM_STRING(RelayTypeInverse, "inverse");
PROGMEM_STRING(RelayTypeLatched, "latched");
PROGMEM_STRING(RelayTypeLatchedInverse, "latched-inverse");
static constexpr std::array<Enumeration<RelayType>, 4> RelayTypeOptions PROGMEM {
{{RelayType::Normal, RelayTypeNormal},
{RelayType::Inverse, RelayTypeInverse},
{RelayType::Latched, RelayTypeLatched},
{RelayType::LatchedInverse, RelayTypeLatchedInverse}}
};
PROGMEM_STRING(None, "none");
PROGMEM_STRING(ZeroOrOne, "zero-or-one");
PROGMEM_STRING(JustOne, "just-one");
PROGMEM_STRING(All, "all");
PROGMEM_STRING(First, "first");
static constexpr std::array<Enumeration<RelaySync>, 5> RelaySyncOptions PROGMEM {
{{RelaySync::None, None},
{RelaySync::ZeroOrOne, ZeroOrOne},
{RelaySync::JustOne, JustOne},
{RelaySync::All, All},
{RelaySync::First, First}}
};
} // namespace
} // namespace options
} // namespace settings
} // namespace relay
} // namespace espurna
using RelayMask = std::bitset<RelaysMax>;
struct RelayMaskHelper {
using IntegralType = uint32_t;
static_assert(RelaysMax <= (sizeof(IntegralType) * 8), "");
RelayMaskHelper() = default;
RelayMaskHelper(const RelayMaskHelper&) = default;
RelayMaskHelper(RelayMaskHelper&&) = default;
explicit RelayMaskHelper(RelayMask mask) noexcept :
_mask(mask)
{}
explicit RelayMaskHelper(IntegralType mask) noexcept :
_mask(mask)
{}
IntegralType toUnsigned() const {
return _mask.to_ulong();
}
String toString() const {
return formatUnsigned(toUnsigned(), 2);
}
const RelayMask& mask() const {
return _mask;
}
void reset() {
_mask.reset();
}
void set(size_t id, bool status) {
_mask.set(id, status);
}
bool operator[](size_t id) const {
return _mask[id];
}
private:
RelayMask _mask {};
};
namespace espurna {
namespace settings {
namespace internal {
namespace {
using relay::settings::options::RelayTristateHelper;
using relay::settings::options::PayloadStatusOptions;
using relay::settings::options::RelayMqttTopicModeOptions;
using relay::settings::options::RelayBootOptions;
using relay::settings::options::RelayProviderOptions;
using relay::settings::options::RelayTypeOptions;
using relay::settings::options::RelaySyncOptions;
} // namespace
template <>
PayloadStatus convert(const String& value) {
return convert(PayloadStatusOptions, value, PayloadStatus::Unknown);
}
String serialize(PayloadStatus value) {
return serialize(PayloadStatusOptions, value);
}
template <>
RelayMqttTopicMode convert(const String& value) {
return convert(RelayMqttTopicModeOptions, value, RelayMqttTopicMode::Normal);
}
String serialize(RelayMqttTopicMode value) {
return serialize(RelayMqttTopicModeOptions, value);
}
template <>
espurna::relay::pulse::Mode convert(const String& value) {
return RelayTristateHelper<espurna::relay::pulse::Mode>::convert(value);
}
String serialize(espurna::relay::pulse::Mode value) {
return RelayTristateHelper<espurna::relay::pulse::Mode>::serialize(value);
}
template <>
RelayBoot convert(const String& value) {
return convert(RelayBootOptions, value, RelayBoot::Off);
}
String serialize(RelayBoot value) {
return serialize(RelayBootOptions, value);
}
template <>
RelayLock convert(const String& value) {
return RelayTristateHelper<RelayLock>::convert(value);
}
template <>
RelayProvider convert(const String& value) {
return convert(RelayProviderOptions, value, RelayProvider::None);
}
String serialize(RelayProvider value) {
return serialize(RelayProviderOptions, value);
}
template <>
RelayType convert(const String& value) {
return convert(RelayTypeOptions, value, RelayType::Normal);
}
String serialize(RelayType value) {
return serialize(RelayTypeOptions, value);
}
template<>
RelayMaskHelper convert(const String& value) {
return RelayMaskHelper { convert<RelayMaskHelper::IntegralType>(value) };
}
String serialize(RelayMaskHelper mask) {
return mask.toString();
}
template <>
RelaySync convert(const String& value) {
return convert(RelaySyncOptions, value, RelaySync::None);
}
String serialize(RelaySync value) {
return serialize(RelaySyncOptions, value);
}
} // namespace internal
} // namespace settings
namespace relay {
namespace settings {
namespace keys {
namespace {
PROGMEM_STRING(Name, "relayName");
PROGMEM_STRING(Provider, "relayProv");
PROGMEM_STRING(Type, "relayType");
PROGMEM_STRING(GpioType, "relayGpioType");
PROGMEM_STRING(Gpio, "relayGpio");
PROGMEM_STRING(ResetGpio, "relayResetGpio");
PROGMEM_STRING(Boot, "relayBoot");
PROGMEM_STRING(DelayOn, "relayDelayOn");
PROGMEM_STRING(DelayOff, "relayDelayOff");
#if MQTT_SUPPORT
PROGMEM_STRING(TopicPub, "relayTopicPub");
PROGMEM_STRING(TopicSub, "relayTopicSub");
PROGMEM_STRING(TopicMode, "relayTopicMode");
PROGMEM_STRING(MqttDisconnection, "relayMqttDisc");
#endif
PROGMEM_STRING(Dummy, "relayDummy");
PROGMEM_STRING(BootMask, "relayBootMask");
PROGMEM_STRING(Interlock, "relayIlkDelay");
PROGMEM_STRING(Sync, "relaySync");
PROGMEM_STRING(PayloadOn, "relayPayloadOn");
PROGMEM_STRING(PayloadOff, "relayPayloadOff");
PROGMEM_STRING(PayloadToggle, "relayPayloadOff");
} // namespace
} // namespace keys
namespace {
size_t dummyCount() {
return getSetting(keys::Dummy, build::dummyCount());
}
[[gnu::unused]]
String name(size_t index) {
return getSetting({keys::Name, index});
}
RelayProvider provider(size_t index) {
return getSetting({keys::Provider, index}, build::provider(index));
}
RelayType type(size_t index) {
return getSetting({keys::Type, index}, build::type(index));
}
GpioType pinType(size_t index) {
return getSetting({keys::GpioType, index}, build::pinType(index));
}
unsigned char pin(size_t index) {
return getSetting({keys::Gpio, index}, build::pin(index));
}
unsigned char resetPin(size_t index) {
return getSetting({keys::ResetGpio, index}, build::resetPin(index));
}
RelayBoot bootMode(size_t index) {
return getSetting({keys::Boot, index}, build::bootMode(index));
}
RelayMaskHelper bootMask() {
static const RelayMaskHelper defaultMask;
return getSetting(keys::BootMask, defaultMask);
}
void bootMask(const String& mask) {
setSetting(keys::BootMask, mask);
}
void bootMask(const RelayMaskHelper& mask) {
bootMask(mask.toString());
}
espurna::duration::Milliseconds delayOn(size_t index) {
return getSetting({keys::DelayOn, index}, build::delayOn(index));
}
espurna::duration::Milliseconds delayOff(size_t index) {
return getSetting({keys::DelayOff, index}, build::delayOff(index));
}
espurna::duration::Milliseconds interlockDelay() {
return getSetting(keys::Interlock, build::interlockDelay());
}
RelaySync syncMode() {
return getSetting(keys::Sync, build::syncMode());
}
[[gnu::unused]]
String payloadOn() {
return getSetting(keys::PayloadOn, StringView(build::PayloadOn));
}
[[gnu::unused]]
String payloadOff() {
return getSetting(keys::PayloadOff, StringView(build::PayloadOff));
}
[[gnu::unused]]
String payloadToggle() {
return getSetting(keys::PayloadToggle, StringView(build::PayloadToggle));
}
#if MQTT_SUPPORT
String mqttTopicSub(size_t index) {
return getSetting({keys::TopicSub, index}, build::mqttTopicSub(index));
}
String mqttTopicPub(size_t index) {
return getSetting({keys::TopicPub, index}, build::mqttTopicPub(index));
}
RelayMqttTopicMode mqttTopicMode(size_t index) {
return getSetting({keys::TopicMode, index}, build::mqttTopicMode(index));
}
PayloadStatus mqttDisconnectionStatus(size_t index) {
return getSetting({keys::MqttDisconnection, index}, build::mqttDisconnectionStatus(index));
}
#endif
} // namespace
namespace query {
namespace {
#define EXACT_VALUE(NAME, FUNC)\
String NAME () {\
return espurna::settings::internal::serialize(FUNC());\
}
#define ID_VALUE(NAME, FUNC)\
String NAME (size_t id) {\
return espurna::settings::internal::serialize(FUNC(id));\
}
namespace internal {
EXACT_VALUE(dummyCount, settings::dummyCount)
EXACT_VALUE(bootMask, settings::bootMask)
EXACT_VALUE(interlockDelay, settings::interlockDelay)
EXACT_VALUE(syncMode, settings::syncMode)
ID_VALUE(provider, settings::provider)
ID_VALUE(type, settings::type)
ID_VALUE(pinType, settings::pinType)
ID_VALUE(pin, settings::pin)
ID_VALUE(resetPin, settings::resetPin)
ID_VALUE(bootMode, settings::bootMode)
ID_VALUE(delayOn, settings::delayOn)
ID_VALUE(delayOff, settings::delayOff)
ID_VALUE(pulseMode, pulse::settings::mode)
String pulseTime(size_t index) {
const auto result = pulse::settings::time(index);
const auto as_seconds = std::chrono::duration_cast<pulse::Seconds>(result.duration());
return espurna::settings::internal::serialize(as_seconds.count());
}
#if MQTT_SUPPORT
ID_VALUE(mqttDisconnectionStatus, settings::mqttDisconnectionStatus)
ID_VALUE(mqttTopicMode, settings::mqttTopicMode)
#endif
#undef ID_VALUE
#undef EXACT_VALUE
} // namespace internal
static constexpr espurna::settings::query::Setting Settings[] PROGMEM {
{keys::Dummy, internal::dummyCount},
{keys::BootMask, internal::bootMask},
{keys::Interlock, internal::interlockDelay},
{keys::Sync, internal::syncMode}
};
static constexpr espurna::settings::query::IndexedSetting IndexedSettings[] PROGMEM {
{keys::Name, settings::name},
{keys::Provider, internal::provider},
{keys::Type, internal::type},
{keys::GpioType, internal::pinType},
{keys::Gpio, internal::pin},
{keys::ResetGpio, internal::resetPin},
{keys::Boot, internal::bootMode},
{keys::DelayOn, internal::delayOn},
{keys::DelayOff, internal::delayOff},
{pulse::settings::keys::Time, internal::pulseTime},
{pulse::settings::keys::Mode, internal::pulseMode},
#if MQTT_SUPPORT
{keys::TopicPub, settings::mqttTopicPub},
{keys::TopicSub, settings::mqttTopicSub},
{keys::TopicMode, internal::mqttTopicMode},
{keys::MqttDisconnection, internal::mqttDisconnectionStatus},
#endif
};
} // namespace
} // namespace query
} // namespace settings
} // namespace relay
} // namespace espurna
// -----------------------------------------------------------------------------
// RELAY CONTROL
// -----------------------------------------------------------------------------
// No-op provider, available for purely virtual relays that are controlled only via API
struct DummyProvider : public RelayProviderBase {
const char* id() const override {
return "dummy";
}
void change(bool) override {
}
static RelayProviderBase* sharedInstance() {
static DummyProvider provider;
return &provider;
}
};
class Relay {
public:
using TimeSource = espurna::time::CoreClock;
using Delay = espurna::duration::Milliseconds;
using TimePoint = TimeSource::time_point;
using PulseMode = espurna::relay::pulse::Mode;
using PulseTime = espurna::relay::pulse::Duration;
// Struct defaults to empty relay configuration, as we allow switches to exist without real GPIOs
Relay() = default;
explicit Relay(RelayProviderBasePtr&& ptr) :
provider(ptr.release())
{}
explicit Relay(RelayProviderBase* ptr) :
provider(ptr)
{}
// ON / OFF actions implementation
RelayProviderBase* provider { DummyProvider::sharedInstance() };
// Timers
Delay delay_on { 0ul }; // Delay to turn relay ON
Delay delay_off { 0ul }; // Delay to turn relay OFF
PulseMode pulse { PulseMode::None }; // Sets up a timer for the opposite mode
PulseTime pulse_time { 0ul }; // Pulse length in millis
TimePoint fw_start{}; // Flood window start time
unsigned char fw_count { 0u }; // Number of changes within the current flood window
TimePoint change_start{}; // Time when relay was scheduled to change
Delay change_delay { 0ul }; // Delay until the next change
// Status
bool current_status { false }; // Holds the current (physical) status of the relay
bool target_status { false }; // Holds the target status
RelayLock lock { RelayLock::None }; // Holds the value of target status that persists and cannot be changed from.
// MQTT
bool report { false }; // Whether to report to own topic
bool group_report { false }; // Whether to report to group topic
};
namespace {
struct RelaySaveTimer {
using Timer = espurna::timer::SystemTimer;
using Duration = Timer::Duration;
RelaySaveTimer() = default;
RelaySaveTimer(const RelaySaveTimer&) = delete;
RelaySaveTimer& operator=(const RelaySaveTimer&) = delete;
RelaySaveTimer(RelaySaveTimer&&) = delete;
RelaySaveTimer& operator=(RelaySaveTimer&&) = delete;
~RelaySaveTimer() {
_timer.stop();
}
void schedule(Duration duration) {
_timer.once(
duration,
[&]() {
_ready = true;
});
}
void stop() {
_timer.stop();
_persist = false;
}
template <typename T>
void process(T&& callback) {
if (_ready) {
callback(_persist);
_persist = false;
_ready = false;
}
}
void persist() {
if (!_persist) {
_persist = true;
}
}
private:
bool _persist { false };
bool _ready { false };
Timer _timer;
};
struct RelaySyncTimer {
using Timer = espurna::timer::SystemTimer;
using Duration = Timer::Duration;
using Callback = void(*)();
RelaySyncTimer() = default;
RelaySyncTimer(const RelaySyncTimer&) = delete;
RelaySyncTimer& operator=(const RelaySyncTimer&) = delete;
RelaySyncTimer(RelaySyncTimer&&) = delete;
RelaySyncTimer& operator=(RelaySyncTimer&&) = delete;
~RelaySyncTimer() {
stop();
}
void schedule(Duration duration, Callback callback) {
_timer.once(
duration,
[&]() {
_ready = true;
});
_callback = callback;
}
void stop() {
_timer.stop();
_ready = false;
}
void process() {
if (_ready) {
_callback();
_ready = false;
}
}
private:
Callback _callback { nullptr };
bool _ready { false };
Timer _timer;
};
using Relays = std::vector<Relay>;
Relays _relays;
size_t _relayDummy { 0ul };
espurna::duration::Milliseconds _relay_flood_window { espurna::relay::flood::build::window() };
unsigned long _relay_flood_changes { espurna::relay::flood::build::changes() };
espurna::duration::Milliseconds _relay_delay_interlock;
RelaySync _relay_sync_mode { RelaySync::None };
bool _relay_sync_reent { false };
bool _relay_sync_locked { false };
RelaySaveTimer _relay_save_timer;
RelaySyncTimer _relay_sync_timer;
std::forward_list<RelayStatusCallback> _relay_status_notify;
std::forward_list<RelayStatusCallback> _relay_status_change;
#if WEB_SUPPORT
bool _relay_report_ws { false };
void _relayScheduleWsReport() {
_relay_report_ws = true;
}
#endif // WEB_SUPPORT
#if MQTT_SUPPORT || API_SUPPORT
String _relay_payload_on;
String _relay_payload_off;
String _relay_payload_toggle;
#endif // MQTT_SUPPORT || API_SUPPORT
} // namespace
// -----------------------------------------------------------------------------
// RELAY PROVIDERS
// -----------------------------------------------------------------------------
// 'anchor' default virtual implementations to the relay.cpp.o
RelayProviderBase::~RelayProviderBase() = default;
bool RelayProviderBase::setup() {
return true;
}
void RelayProviderBase::boot(bool) {
}
void RelayProviderBase::notify(bool) {
}
// Direct status notifications
void relayOnStatusNotify(RelayStatusCallback callback) {
_relay_status_notify.push_front(callback);
}
void relayOnStatusChange(RelayStatusCallback callback) {
_relay_status_change.push_front(callback);
}
namespace {
// Real GPIO provider, using BasePin interface to implement writers
struct GpioProvider : public RelayProviderBase {
GpioProvider(RelayType type, std::unique_ptr<BasePin>&& pin, std::unique_ptr<BasePin>&& reset_pin) :
_type(type),
_pin(std::move(pin)),
_reset_pin(std::move(reset_pin))
{}
const char* id() const override {
return "gpio";
}
bool setup() override {
if (!_pin) {
return false;
}
_pin->pinMode(OUTPUT);
if (_reset_pin) {
_reset_pin->pinMode(OUTPUT);
}
return true;
}
void change(bool status) override {
switch (_type) {
case RelayType::Normal:
_pin->digitalWrite(status);
break;
case RelayType::Inverse:
_pin->digitalWrite(!status);
break;
case RelayType::Latched:
case RelayType::LatchedInverse: {
bool pulse = (_type == RelayType::Latched) ? HIGH : LOW;
_pin->digitalWrite(!pulse);
if (_reset_pin) {
_reset_pin->digitalWrite(!pulse);
}
if (status || (!_reset_pin)) {
_pin->digitalWrite(pulse);
} else {
_reset_pin->digitalWrite(pulse);
}
// notice that this stalls loop() execution, since
// we need to ensure only relay task is active
espurna::time::blockingDelay(espurna::relay::build::latchingPulse());
_pin->digitalWrite(!pulse);
if (_reset_pin) {
_reset_pin->digitalWrite(!pulse);
}
}
}
}
private:
RelayType _type { RelayType::Normal };
std::unique_ptr<BasePin> _pin;
std::unique_ptr<BasePin> _reset_pin;
};
#if RELAY_PROVIDER_DUAL_SUPPORT
// Special provider for Sonoff Dual, using serial protocol
class DualProvider : public RelayProviderBase {
public:
DualProvider() = delete;
explicit DualProvider(size_t id) : _id(id) {
_instances.push_back(this);
}
~DualProvider() {
_instances.erase(
std::remove(_instances.begin(), _instances.end(), this),
_instances.end());
}
const char* id() const override {
return "dual";
}
bool setup() override {
static bool once = ([]() {
const auto port = uartPort(RELAY_PROVIDER_DUAL_PORT - 1);
if (port) {
DualProvider::_port = port->stream;
espurnaRegisterLoop(loop);
return true;
}
return false;
})();
return once;
}
void change(bool) override {
espurnaRegisterOnceUnique(flush);
}
size_t relayId() const {
return _id;
}
static std::vector<DualProvider*>& instances() {
return _instances;
}
// Porting the old masking code from buttons
// (no guarantee that this actually works, based on hearsay and some 3rd-party code)
// | first | second | mask |
// | OFF | OFF | 0x0 |
// | ON | OFF | 0x1 |
// | OFF | ON | 0x2 |
// | ON | ON | 0x3 |
// i.e. set status bit mask[INSTANCE] for each relay
// unless everything is ON, then *only* send mask[SIZE] bit and erase the rest
static void flush() {
bool sync { true };
RelayMaskHelper mask;
for (size_t index = 0; index < _instances.size(); ++index) {
bool status { relayStatus(_instances[index]->relayId()) };
sync = sync && status;
mask.set(index, status);
}
if (sync) {
mask.reset();
mask.set(_instances.size(), true);
}
DEBUG_MSG_P(PSTR("[RELAY] Sending DUAL mask: %s\n"), mask.toString().c_str());
uint8_t buffer[4] { 0xa0, 0x04, static_cast<unsigned char>(mask.toUnsigned()), 0xa1 };
_port->write(buffer, sizeof(buffer));
_port->flush();
}
static void loop() {
if (_port->available() < 4) {
return;
}
unsigned char bytes[4] = {0};
_port->readBytes(bytes, 4);
if ((bytes[0] != 0xA0) && (bytes[1] != 0x04) && (bytes[3] != 0xA1)) {
return;
}
// RELAYs and BUTTONs are synchonized in the SIL F330
// Make sure we handle SYNC action first
RelayMaskHelper mask(bytes[2]);
if (mask[_instances.size()]) {
for (auto& instance : _instances) {
relayStatus(instance->relayId(), true);
}
return;
}
// Then, manage relays individually
for (size_t index = 0; index < _instances.size(); ++index) {
relayStatus(_instances[index]->relayId(), mask[index]);
}
}
private:
size_t _id;
static std::vector<DualProvider*> _instances;
static Stream* _port;
};
std::vector<DualProvider*> DualProvider::_instances;
Stream* DualProvider::_port = nullptr;
#endif // RELAY_PROVIDER_DUAL_SUPPORT
#if RELAY_PROVIDER_STM_SUPPORT
// Special provider for ESP01-relays with STM co-MCU driving the relays
class StmProvider : public RelayProviderBase {
public:
StmProvider() = delete;
explicit StmProvider(size_t id) :
_id(id)
{}
const char* id() const override {
return "stm";
}
bool setup() override {
static bool once = ([]() {
const auto port = uartPort(RELAY_PROVIDER_STM_PORT - 1);
if (port) {
StmProvider::_port = port->stream;
espurnaRegisterLoop(loop);
return true;
}
return false;
})();
return once;
}
void boot(bool) override {
// XXX: does this actually help with anything? remains as part of the
// original implementation, quoting "because of broken stm relay firmware"
_relays[_id].change_delay = espurna::duration::Seconds(3) + espurna::duration::Seconds(1) * _id;
}
void change(bool status) override {
if (_port) {
_port->flush();
_port->write(0xA0);
_port->write(_id + 1);
_port->write(status);
_port->write(0xA1 + status + _id);
// TODO: is this really solved via interlock delay, so we don't have to switch contexts here?
//delay(100);
_port->flush();
}
}
private:
size_t _id;
static Stream* _port;
};
Stream* StmProvider::_port = nullptr;
#endif // RELAY_PROVIDER_STM_SUPPORT
// -----------------------------------------------------------------------------
// UTILITY
// -----------------------------------------------------------------------------
bool _relayTryParseId(espurna::StringView value, size_t& id) {
return tryParseId(value, relayCount(), id);
}
[[gnu::unused]]
bool _relayTryParseIdFromPath(espurna::StringView value, size_t& id) {
return tryParseIdPath(value, relayCount(), id);
}
void _relayHandleStatus(size_t id, PayloadStatus status) {
switch (status) {
case PayloadStatus::Off:
relayStatus(id, false);
break;
case PayloadStatus::On:
relayStatus(id, true);
break;
case PayloadStatus::Toggle:
relayToggle(id);
break;
case PayloadStatus::Unknown:
break;
}
}
bool _relayHandlePayload(size_t id, espurna::StringView payload) {
const auto status = relayParsePayload(payload);
if (status != PayloadStatus::Unknown) {
_relayHandleStatus(id, status);
return true;
}
return false;
}
// Initialize pulse timers after ON or OFF event
// TODO: integrate with scheduled ON or OFF?
bool _relayPulseActive(size_t id, bool status) {
using namespace espurna::relay::pulse;
if (isActive(_relays[id].pulse)) {
return isNormalStatus(_relays[id].pulse, status);
}
return false;
}
void _relayProcessActivePulse(const Relay& relay, size_t id, bool status) {
using namespace espurna::relay::pulse;
if (isActive(relay.pulse) && !isNormalStatus(relay.pulse, status)) {
trigger(relay.pulse_time, id, !status);
}
}
// start pulse for the current status as 'target'
// TODO: special suffixes for minutes, hours and days
[[gnu::unused]]
bool _relayHandlePulsePayload(size_t id, espurna::StringView payload) {
const auto status = relayStatus(id);
if (_relayPulseActive(id, status)) {
return false;
}
using namespace espurna::relay::pulse;
const auto pulse = parse(payload);
if (pulse) {
trigger(pulse.duration(), id, status);
relayToggle(id, true, false);
return true;
}
return false;
}
[[gnu::unused]]
PayloadStatus _relayInvertStatus(PayloadStatus status) {
switch (status) {
case PayloadStatus::On:
return PayloadStatus::Off;
case PayloadStatus::Off:
return PayloadStatus::On;
case PayloadStatus::Toggle:
case PayloadStatus::Unknown:
break;
}
return PayloadStatus::Unknown;
}
[[gnu::unused]]
PayloadStatus _relayPayloadStatus(size_t id) {
if (id < _relays.size()) {
return _relays[id].current_status
? PayloadStatus::On
: PayloadStatus::Off;
}
return PayloadStatus::Unknown;
}
void _relayLockAll() {
for (auto& relay : _relays) {
relay.lock = relay.target_status ? RelayLock::On : RelayLock::Off;
}
_relay_sync_locked = true;
}
void _relayUnlockAll() {
for (auto& relay : _relays) {
relay.lock = RelayLock::None;
}
_relay_sync_locked = false;
}
bool _relayStatusLock(Relay& relay, bool status) {
if (relay.lock != RelayLock::None) {
bool lock = relay.lock == RelayLock::On;
if ((lock != status) || (lock != relay.target_status)) {
relay.target_status = lock;
relay.change_delay = Relay::Delay::zero();
return false;
}
}
return true;
}
// https://github.com/xoseperez/espurna/issues/1510#issuecomment-461894516
// completely reset timing on the other relay to sync with this one
// to ensure that they change state sequentially
void _relaySyncRelaysDelay(size_t first, size_t second) {
_relays[second].fw_start = _relays[first].change_start;
_relays[second].fw_count = 1;
_relays[second].change_delay = std::max({
_relay_delay_interlock,
_relays[first].change_delay,
_relays[second].change_delay
});
}
void _relaySyncUnlock() {
bool unlock = true;
bool all_off = true;
for (const auto& relay : _relays) {
unlock = unlock && (relay.current_status == relay.target_status);
if (!unlock) break;
all_off = all_off && !relay.current_status;
}
if (unlock) {
static const auto action = []() {
_relayUnlockAll();
#if WEB_SUPPORT
_relayScheduleWsReport();
#endif
};
if (all_off) {
_relay_sync_timer.schedule(_relay_delay_interlock, action);
} else {
action();
}
}
}
void _relaySync() {
_relay_sync_timer.process();
}
void _relaySyncTryUnlock() {
switch (_relay_sync_mode) {
case RelaySync::JustOne:
case RelaySync::ZeroOrOne:
if (_relay_sync_locked) {
_relaySyncUnlock();
}
break;
case RelaySync::None:
case RelaySync::All:
case RelaySync::First:
break;
}
}
} // namespace
// -----------------------------------------------------------------------------
// RELAY
// -----------------------------------------------------------------------------
namespace {
inline RelayMaskHelper _relayMaskRtcmem() {
return RelayMaskHelper(Rtcmem->relay);
}
inline void _relayMaskRtcmem(uint32_t mask) {
Rtcmem->relay = mask;
}
inline void _relayMaskRtcmem(const RelayMaskHelper& mask) {
_relayMaskRtcmem(mask.toUnsigned());
}
} // namespace
void relayPulse(size_t id, espurna::duration::Milliseconds duration, bool normal) {
if (id < _relays.size()) {
relayStatus(id, normal);
espurna::relay::pulse::trigger(duration, id, !relayStatus(id));
}
}
void relayPulse(size_t id, espurna::duration::Milliseconds duration) {
relayPulse(id, duration, !relayStatus(id));
}
void relayPulse(size_t id) {
if (id < _relays.size()) {
espurna::relay::pulse::trigger(_relays[id].pulse_time, id, _relays[id].current_status);
}
}
// General relay status control
static bool _relayStatus(size_t id, bool status, bool report, bool group_report) {
auto& relay = _relays[id];
if (!_relayStatusLock(relay, status)) {
DEBUG_MSG_P(PSTR("[RELAY] #%u is locked to %s\n"), id, relay.current_status ? "ON" : "OFF");
relay.report = true;
relay.group_report = true;
return false;
}
bool changed { false };
if (relay.current_status == status) {
if (relay.target_status != status) {
DEBUG_MSG_P(PSTR("[RELAY] #%u scheduled change cancelled\n"), id);
relay.target_status = status;
relay.report = false;
relay.group_report = false;
relay.change_delay = Relay::Delay::zero();
changed = true;
}
relay.provider->notify(status);
for (auto& notify : _relay_status_notify) {
notify(id, status);
}
espurna::relay::pulse::poll(id, status);
} else {
auto current_time = Relay::TimeSource::now();
auto change_delay = status
? relay.delay_on
: relay.delay_off;
relay.fw_count++;
relay.change_start = current_time;
relay.change_delay = std::max(relay.change_delay, change_delay);
// If current_time is off-limits the floodWindow...
const auto fw_diff = current_time - relay.fw_start;
if (fw_diff > _relay_flood_window) {
// We reset the floodWindow
relay.fw_start = current_time;
relay.fw_count = 1;
// If current_time is in the floodWindow and there have been too many requests...
} else if (relay.fw_count >= _relay_flood_changes) {
// We schedule the changes to the end of the floodWindow
// unless it's already delayed beyond that point
relay.change_delay = std::max(change_delay, _relay_flood_window - fw_diff);
// Another option is to always move it forward, starting from current time
// relay.fw_start = current_time;
}
relay.target_status = status;
relay.report = report;
relay.group_report = group_report;
relaySync(id);
changed = true;
if (relay.change_delay.count()) {
DEBUG_MSG_P(PSTR("[RELAY] #%u scheduled %s in %u (ms)\n"),
id, status ? "ON" : "OFF", relay.change_delay.count());
}
}
return changed;
}
bool relayStatus(size_t id, bool status, bool report, bool group_report) {
if (id < _relays.size()) {
return _relayStatus(id, status, report, group_report);
}
return false;
}
bool relayStatus(size_t id, bool status) {
#if MQTT_SUPPORT
return relayStatus(id, status, mqttForward(), true);
#else
return relayStatus(id, status, false, true);
#endif
}
bool relayStatus(size_t id) {
if (id < _relays.size()) {
return _relays[id].current_status;
}
return false;
}
bool relayStatusTarget(size_t id) {
if (id >= _relays.size()) return false;
return _relays[id].target_status;
}
void relaySync(size_t target) {
// No sync if none or only one relay
auto relays = _relays.size();
if (relays < 2) {
return;
}
// Only call once when coming from the relayStatus(id, status)
if (_relay_sync_reent) {
return;
}
_relay_sync_reent = true;
bool status = _relays[target].target_status;
switch (_relay_sync_mode) {
case RelaySync::None:
break;
// aka all relays should have the same state
case RelaySync::All:
for (decltype(relays) id = 0; id < relays; ++id) {
if (id != target) {
relayStatus(id, status);
}
}
break;
// all relays should have the same state as first if first changes
case RelaySync::First:
if (target == 0) {
for (decltype(relays) id = 1; id < relays; ++id) {
relayStatus(id, status);
}
}
break;
// If any of the 'One' modes and setting ON we should set OFF all the others
case RelaySync::ZeroOrOne:
case RelaySync::JustOne:
if (status) {
for (decltype(relays) id = 0; id < relays; ++id) {
if (id != target) {
relayStatus(id, false);
if (relayStatus(id)) {
_relaySyncRelaysDelay(id, target);
}
}
}
// If we only need a single one and setting OFF we should set ON the other one
} else if (_relay_sync_mode == RelaySync::JustOne) {
auto id = (target + 1) % relays;
_relaySyncRelaysDelay(target, id);
relayStatus(id, true);
}
_relayLockAll();
break;
}
_relay_sync_reent = false;
}
namespace {
RelayMaskHelper _relayMaskCurrent() {
RelayMaskHelper mask;
for (size_t id = 0; id < _relays.size(); ++id) {
mask.set(id, _relays[id].current_status);
}
return mask;
}
void _relaySave(bool persist) {
// Persist only to rtcmem, unless requested to save to settings
auto mask = _relayMaskCurrent();
DEBUG_MSG_P(PSTR("[RELAY] Relay mask: %s\n"), mask.toString().c_str());
_relayMaskRtcmem(mask);
// The 'persist' flag controls whether we are commiting this change or not.
// It is useful to set it to 'false' if the relay change triggering the
// save involves a relay whose boot mode is independent from current mode,
// thus storing the last relay value is not absolutely necessary.
// Nevertheless, we store the value in the EEPROM buffer so it will be written
// on the next commit.
if (persist) {
espurna::relay::settings::bootMask(mask);
eepromCommit(); // TODO: should this respect settings auto-save?
}
}
void _relaySave() {
_relay_save_timer.process([](bool persist) {
_relaySave(persist);
});
}
void _relayScheduleSave(size_t id) {
switch (espurna::relay::settings::bootMode(id)) {
case RelayBoot::Same:
case RelayBoot::Toggle:
_relay_save_timer.persist();
break;
case RelayBoot::Off:
case RelayBoot::On:
case RelayBoot::LockedOff:
case RelayBoot::LockedOn:
break;
}
_relay_save_timer.schedule(espurna::relay::build::saveDelay());
}
} // namespace
void relaySave(bool persist) {
_relaySave(persist);
}
void relaySave() {
_relaySave(false);
}
void relayToggle(size_t id, bool report, bool group_report) {
if (id < _relays.size()) {
relayStatus(id, !relayStatus(id), report, group_report);
}
}
void relayToggle(size_t id) {
#if MQTT_SUPPORT
relayToggle(id, mqttForward(), true);
#else
relayToggle(id, false, true);
#endif
}
size_t relayCount() {
return _relays.size();
}
PayloadStatus relayParsePayload(espurna::StringView payload) {
#if MQTT_SUPPORT || API_SUPPORT
return rpcParsePayload(
payload,
[](espurna::StringView payload) {
if (payload.equals(_relay_payload_off)) {
return PayloadStatus::Off;
} else if (payload.equals(_relay_payload_on)) {
return PayloadStatus::On;
} else if (payload.equals(_relay_payload_toggle)) {
return PayloadStatus::Toggle;
}
return PayloadStatus::Unknown;
});
#else
return rpcParsePayload(payload);
#endif
}
namespace {
void _relaySettingsMigrate(int version) {
if (version < 5) {
using namespace espurna::relay::settings;
// just a rename
moveSetting("relayDelayInterlock", keys::Interlock);
// groups use a new set of keys
#if MQTT_SUPPORT
for (size_t index = 0; index < RelaysMax; ++index) {
auto group = getSetting({"mqttGroup", index});
if (!group.length()) {
break;
}
auto syncKey = espurna::settings::Key(F("mqttGroupSync"), index);
auto sync = getSetting(syncKey);
setSetting({keys::TopicSub, index}, group);
if (sync.length()) {
if (sync != "2") { // aka RECEIVE_ONLY
setSetting(keys::TopicMode, sync);
setSetting(keys::TopicPub, group);
}
}
}
#endif
delSettingPrefix({
STRING_VIEW("mqttGroup"), // migrated to relayTopic
STRING_VIEW("mqttGroupSync"), // migrated to relayTopic
STRING_VIEW("relayOnDisc"), // replaced with relayMqttDisc
STRING_VIEW("relayGPIO"), // avoid depending on migrate module
STRING_VIEW("relayGpio"), // avoid depending on migrate module
STRING_VIEW("relayProvider"), // different type
STRING_VIEW("relayType"), // different type
});
delSetting("relays"); // does not do anything
}
}
void _relayBoot(size_t index, const RelayMaskHelper& mask) {
auto status = false;
auto lock = RelayLock::None;
switch (espurna::relay::settings::bootMode(index)) {
case RelayBoot::Same:
status = mask[index];
break;
case RelayBoot::Toggle:
status = !mask[index];
break;
case RelayBoot::On:
status = true;
break;
case RelayBoot::LockedOn:
status = true;
lock = RelayLock::On;
break;
case RelayBoot::Off:
status = false;
break;
case RelayBoot::LockedOff:
status = false;
lock = RelayLock::Off;
break;
}
auto& relay = _relays[index];
relay.current_status = !status;
relay.target_status = status;
relay.lock = lock;
relay.change_start = Relay::TimeSource::now();
relay.change_delay = status
? relay.delay_on
: relay.delay_off;
relay.provider->boot(status);
}
void _relayBootAll() {
auto mask = rtcmemStatus()
? _relayMaskRtcmem()
: espurna::relay::settings::bootMask();
bool log { false };
static RelayMask done;
const auto relays = _relays.size();
for (size_t id = 0; id < relays; ++id) {
if (!done[id]) {
done.set(id, true);
_relayBoot(id, mask);
log = true;
}
}
if (log) {
DEBUG_MSG_P(PSTR("[RELAY] Number of relays: %u, boot mask: %s\n"),
relays, mask.toString().c_str());
}
}
void _relayConfigure() {
for (size_t id = 0; id < _relays.size(); ++id) {
auto& relay = _relays[id];
relay.pulse = espurna::relay::pulse::settings::mode(id);
relay.pulse_time = (relay.pulse != espurna::relay::pulse::Mode::None)
? espurna::relay::pulse::settings::time(id).duration()
: espurna::duration::Milliseconds { 0 };
relay.delay_on = espurna::relay::settings::delayOn(id);
relay.delay_off = espurna::relay::settings::delayOff(id);
}
_relay_flood_window = espurna::relay::flood::settings::window();
_relay_flood_changes = espurna::relay::flood::settings::changes();
_relay_delay_interlock = espurna::relay::settings::interlockDelay();
_relay_sync_mode = espurna::relay::settings::syncMode();
#if MQTT_SUPPORT || API_SUPPORT
_relay_payload_on = espurna::relay::settings::payloadOn();
_relay_payload_off = espurna::relay::settings::payloadOff();
_relay_payload_toggle = espurna::relay::settings::payloadToggle();
#endif // MQTT_SUPPORT
}
} // namespace
//------------------------------------------------------------------------------
// WEBSOCKETS
//------------------------------------------------------------------------------
#if WEB_SUPPORT
namespace {
bool _relayWebSocketOnKeyCheck(espurna::StringView key, const JsonVariant&) {
return espurna::settings::query::samePrefix(key, STRING_VIEW("relay"));
}
void _relayWebSocketUpdate(JsonObject& root) {
espurna::web::ws::EnumerablePayload payload{root, STRING_VIEW("relayState")};
payload(STRING_VIEW("states"), _relays.size(), {
{STRING_VIEW("status"), [](JsonArray& out, size_t index) {
out.add(_relays[index].target_status ? 1 : 0);
}},
{STRING_VIEW("lock"), [](JsonArray& out, size_t index) {
out.add(static_cast<uint8_t>(_relays[index].lock));
}},
});
}
void _relayWebSocketSendRelays(JsonObject& root) {
if (!_relays.size()) {
return;
}
espurna::web::ws::EnumerableConfig config{root, STRING_VIEW("relayConfig")};
auto& container = config.root();
container[F("size")] = _relays.size();
container[F("start")] = 0;
config(STRING_VIEW("relays"), _relays.size(),
espurna::relay::settings::query::IndexedSettings);
}
void _relayWebSocketOnVisible(JsonObject& root) {
const auto relays = _relays.size();
if (!relays) {
return;
}
if (relays > 1) {
wsPayloadModule(root, PSTR("multirelay"));
root[FPSTR(espurna::relay::settings::keys::Sync)] =
espurna::settings::internal::serialize(espurna::relay::settings::syncMode());
root[FPSTR(espurna::relay::settings::keys::Interlock)] =
espurna::relay::settings::interlockDelay().count();
}
wsPayloadModule(root, PSTR("relay"));
}
void _relayWebSocketOnConnected(JsonObject& root) {
_relayWebSocketSendRelays(root);
}
void _relayWebSocketOnAction(uint32_t, const char* action, JsonObject& data) {
if (strncmp_P(action, PSTR("relay"), 5) == 0) {
if (!data.is<size_t>(F("id")) || !data.is<String>(F("status"))) {
return;
}
const auto id = data[F("id")].as<size_t>();
const auto status = data[F("status")].as<String>();
_relayHandlePayload(id, status);
}
}
void _relayWsReport() {
if (_relay_report_ws) {
wsPost(_relayWebSocketUpdate);
_relay_report_ws = false;
}
}
} // namespace
void relaySetupWS() {
wsRegister()
.onVisible(_relayWebSocketOnVisible)
.onConnected(_relayWebSocketOnConnected)
.onData(_relayWebSocketUpdate)
.onAction(_relayWebSocketOnAction)
.onKeyCheck(_relayWebSocketOnKeyCheck);
}
#endif // WEB_SUPPORT
//------------------------------------------------------------------------------
// REST API
//------------------------------------------------------------------------------
#if API_SUPPORT
namespace {
template <typename T>
bool _relayApiTryHandle(ApiRequest& request, T&& callback) {
const auto param = request.wildcard(0);
size_t id;
if (!_relayTryParseId(param, id)) {
return false;
}
return callback(id);
}
} // namespace
void relaySetupAPI() {
if (!_relays.size()) {
return;
}
apiRegister(F(MQTT_TOPIC_RELAY),
[](ApiRequest&, JsonObject& root) {
JsonArray& out = root.createNestedArray("relayStatus");
for (auto& relay : _relays) {
out.add(relay.target_status ? 1 : 0);
}
return true;
},
nullptr
);
apiRegister(F(MQTT_TOPIC_RELAY "/+"),
[](ApiRequest& request) {
return _relayApiTryHandle(request, [&](size_t id) {
request.send(String(_relays[id].target_status ? 1 : 0));
return true;
});
},
[](ApiRequest& request) {
return _relayApiTryHandle(request, [&](size_t id) {
return _relayHandlePayload(id, request.param(F("value")));
});
}
);
apiRegister(F(MQTT_TOPIC_PULSE "/+"),
[](ApiRequest& request) {
return _relayApiTryHandle(request, [&](size_t id) {
using namespace espurna::relay::pulse;
const auto duration = findDuration(id);
const auto seconds = std::chrono::duration_cast<Seconds>(duration);
request.send(String(seconds.count(), 10));
return true;
});
},
[](ApiRequest& request) {
return _relayApiTryHandle(request, [&](size_t id) {
return _relayHandlePulsePayload(id, request.param(F("value")));
});
}
);
}
#endif // API_SUPPORT
//------------------------------------------------------------------------------
// MQTT
//------------------------------------------------------------------------------
#if MQTT_SUPPORT || API_SUPPORT
espurna::StringView relayPayloadOn() {
return _relay_payload_on;
}
espurna::StringView relayPayloadOff() {
return _relay_payload_off;
}
espurna::StringView relayPayloadToggle() {
return _relay_payload_toggle;
}
espurna::StringView relayPayload(PayloadStatus status) {
switch (status) {
case PayloadStatus::Off:
return _relay_payload_off;
case PayloadStatus::On:
return _relay_payload_on;
case PayloadStatus::Toggle:
return _relay_payload_toggle;
case PayloadStatus::Unknown:
break;
}
return "";
}
#endif // MQTT_SUPPORT || API_SUPPORT
#if MQTT_SUPPORT
namespace {
// TODO: it *will* handle the duplicates, but we waste memory storing them
// TODO: mqttSubscribe(...) also happens multiple times
//
// this is not really an intended use-case though, but it is techically possible...
struct RelayCustomTopic {
using Mode = RelayMqttTopicMode;
RelayCustomTopic() = delete;
RelayCustomTopic(const RelayCustomTopic&) = delete;
RelayCustomTopic(RelayCustomTopic&& other) noexcept :
_id(other._id),
_topic(std::move(other._topic)),
_parts(_topic, std::move(other._parts)),
_mode(other._mode)
{}
RelayCustomTopic(size_t id, String topic, Mode mode) :
_id(id),
_topic(std::move(topic)),
_parts(_topic),
_mode(mode)
{}
size_t id() const {
return _id;
}
const char* c_str() const {
return _topic.c_str();
}
const String& topic() const {
return _topic;
}
const PathParts& parts() const {
return _parts;
}
Mode mode() const {
return _mode;
}
bool match(const String& other) const {
PathParts parts(other);
return _parts.match(parts);
}
bool match(const PathParts& parts) const {
return _parts.match(parts);
}
private:
size_t _id;
String _topic;
PathParts _parts;
RelayMqttTopicMode _mode;
};
std::forward_list<RelayCustomTopic> _relay_custom_topics;
void _relayMqttSubscribeCustomTopics() {
const size_t relays { _relays.size() };
if (!relays) {
return;
}
// TODO: previous version attempted to optimize the settings loop by creating a temporary
// mapping of {id, topic, mode} from build values and then do settings::foreach with
// matcher for topic & mode key prefixes. but, that also required parsing of the id,
// which could be either avoided by creating something like {{key, topic}, {key, mode}} instead,
// but the tradeoff would be searching that array for each key match. this one is *much* shorter
_relay_custom_topics.clear();
for (size_t id = 0; id < relays; ++id) {
auto subscription = espurna::relay::settings::mqttTopicSub(id);
if (!subscription.length()) {
continue;
}
auto topic = RelayCustomTopic{
id, std::move(subscription),
espurna::relay::settings::mqttTopicMode(id)};
if (!topic.parts()) {
continue;
}
mqttSubscribeRaw(topic.topic().c_str());
_relay_custom_topics.emplace_front(std::move(topic));
}
}
void _relayMqttPublishCustomTopic(size_t id) {
const auto topic = espurna::relay::settings::mqttTopicPub(id);
if (!topic.length()) {
return;
}
auto status = _relayPayloadStatus(id);
auto mode = espurna::relay::settings::mqttTopicMode(id);
if (mode == RelayMqttTopicMode::Inverse) {
status = _relayInvertStatus(status);
}
mqttSendRaw(topic.c_str(), relayPayload(status).begin());
}
void _relayMqttReport(size_t id) {
if (_relays[id].report) {
_relays[id].report = false;
mqttSend(MQTT_TOPIC_RELAY, id, relayPayload(_relayPayloadStatus(id)).c_str()); // TODO FIXED LENGTH
}
if (_relays[id].group_report) {
_relays[id].group_report = false;
_relayMqttPublishCustomTopic(id);
}
}
void _relayMqttReportAll() {
for (unsigned int id=0; id < _relays.size(); id++) {
mqttSend(MQTT_TOPIC_RELAY, id, relayPayload(_relayPayloadStatus(id)).c_str()); // TODO FIXED LENGTH
}
}
} // namespace
void relayStatusWrap(size_t id, PayloadStatus value, bool is_group_topic) {
#if MQTT_SUPPORT
const auto forward = mqttForward();
#else
const auto forward = false;
#endif
switch (value) {
case PayloadStatus::Off:
relayStatus(id, false, forward, !is_group_topic);
break;
case PayloadStatus::On:
relayStatus(id, true, forward, !is_group_topic);
break;
case PayloadStatus::Toggle:
relayToggle(id, true, true);
break;
case PayloadStatus::Unknown:
default:
_relays[id].report = true;
_relayMqttReport(id);
break;
}
}
namespace {
bool _relayMqttHeartbeat(espurna::heartbeat::Mask mask) {
if (mask & espurna::heartbeat::Report::Relay)
_relayMqttReportAll();
return mqttConnected();
}
void _relayMqttHandleCustomTopic(espurna::StringView topic, espurna::StringView payload) {
PathParts received(topic);
for (auto& topic : _relay_custom_topics) {
if (topic.match(received)) {
auto status = relayParsePayload(payload);
if (topic.mode() == RelayMqttTopicMode::Inverse) {
status = _relayInvertStatus(status);
}
const auto id = topic.id();
_relayHandleStatus(id, status);
_relays[id].group_report = false;
}
}
}
void _relayMqttHandleDisconnect() {
using namespace espurna::relay::settings;
for (size_t id = 0; id < _relays.size(); ++id) {
_relayHandleStatus(id, mqttDisconnectionStatus(id));
}
}
} // namespace
void relayMQTTCallback(unsigned int type, espurna::StringView topic, espurna::StringView payload) {
static bool connected { false };
if (!_relays.size()) {
return;
}
if (type == MQTT_CONNECT_EVENT) {
mqttSubscribe(MQTT_TOPIC_RELAY "/+");
mqttSubscribe(MQTT_TOPIC_PULSE "/+");
_relayMqttSubscribeCustomTopics();
connected = true;
return;
}
if (type == MQTT_MESSAGE_EVENT) {
const auto t = mqttMagnitude(topic);
auto is_relay = t.startsWith(MQTT_TOPIC_RELAY);
auto is_pulse = t.startsWith(MQTT_TOPIC_PULSE);
if (is_relay || is_pulse) {
size_t id;
if (!_relayTryParseIdFromPath(t, id)) {
return;
}
if (is_relay) {
_relayHandlePayload(id, payload);
_relays[id].report = mqttForward();
return;
}
if (is_pulse) {
_relayHandlePulsePayload(id, payload);
_relays[id].report = mqttForward();
return;
}
}
_relayMqttHandleCustomTopic(topic, payload);
return;
}
if (type == MQTT_DISCONNECT_EVENT) {
if (connected) {
connected = false;
_relayMqttHandleDisconnect();
}
return;
}
}
void relaySetupMQTT() {
mqttHeartbeat(_relayMqttHeartbeat);
mqttRegister(relayMQTTCallback);
}
#endif
//------------------------------------------------------------------------------
// Settings
//------------------------------------------------------------------------------
#if TERMINAL_SUPPORT
namespace {
using TerminalRelayPrintExtra = void(*)(const Relay&, char* out, size_t size);
template <typename T>
String _relayTristateToPayload(T value) {
return espurna::settings::internal::RelayTristateHelper<T>::serialize(value);
}
void _relayPrint(Print& out, const Relay& relay, size_t index) {
out.printf_P(PSTR("relay%u {Prov=%s TargetStatus=%s CurrentStatus=%s Lock=%s}\n"),
index, relay.provider->id(),
relay.target_status ? "on" : "off",
relay.current_status ? "on" : "off",
_relayTristateToPayload(relay.lock).c_str());
}
void _relayPrint(Print& out, size_t start, size_t stop) {
for (size_t index = start; index < stop; ++index) {
_relayPrint(out, _relays[index], index);
}
}
PROGMEM_STRING(RelayCommand, "RELAY");
static void _relayCommand(::terminal::CommandContext&& ctx) {
if (ctx.argv.size() == 1) {
_relayPrint(ctx.output, 0, _relays.size());
terminalOK(ctx);
return;
}
size_t id;
if (!_relayTryParseId(ctx.argv[1], id)) {
terminalError(ctx, F("Invalid relayID"));
return;
}
ctx.output.println(id);
if (ctx.argv.size() > 2) {
auto status = relayParsePayload(ctx.argv[2]);
if (PayloadStatus::Unknown == status) {
terminalError(ctx, F("Invalid status"));
return;
}
_relayHandleStatus(id, status);
_relayPrint(ctx.output, _relays[id], id);
terminalOK(ctx);
return;
}
settingsDump(ctx, espurna::relay::settings::query::IndexedSettings, id);
terminalOK(ctx);
}
PROGMEM_STRING(PulseCommand, "PULSE");
static void _relayCommandPulse(::terminal::CommandContext&& ctx) {
if (ctx.argv.size() < 3) {
terminalError(ctx, F("PULSE <ID> <TIME> [<NORMAL STATUS>]"));
return;
}
size_t id;
if (!_relayTryParseId(ctx.argv[1], id)) {
terminalError(ctx, F("Invalid relayID"));
return;
}
if ((ctx.argv.size() == 4) && !_relayHandlePayload(id, ctx.argv[3])) {
terminalError(ctx, F("Invalid relay status"));
return;
}
if (!_relayHandlePulsePayload(id, ctx.argv[2])) {
terminalError(ctx, F("Normal state conflict"));
return;
}
terminalOK(ctx);
}
static constexpr ::terminal::Command RelayCommands[] PROGMEM {
{RelayCommand, _relayCommand},
{PulseCommand, _relayCommandPulse},
};
void _relayCommandsSetup() {
espurna::terminal::add(RelayCommands);
}
} // namespace
#endif // TERMINAL_SUPPORT
//------------------------------------------------------------------------------
namespace {
void _relayReport(size_t id [[gnu::unused]], bool status [[gnu::unused]]) {
for (auto& change : _relay_status_change) {
change(id, status);
}
#if MQTT_SUPPORT
_relayMqttReport(id);
#endif
#if WEB_SUPPORT
_relayScheduleWsReport();
#endif
}
void _relayReport() {
#if WEB_SUPPORT
_relayWsReport();
#endif
}
/**
* Walks the relay vector processing only those relays
* that have to change to the requested mode
* @bool mode Requested mode
*/
void _relayProcess(bool mode) {
const auto relays = _relays.size();
bool changed { false };
for (size_t id = 0; id < relays; ++id) {
// Only process the relays:
// - target mode in the one requested by the arg
// - target status is different from the current one
// - change delay has expired
const bool target { _relays[id].target_status };
if ((target != _relays[id].current_status)
&& (target == mode)
&& ((!_relays[id].change_delay.count())
|| (Relay::TimeSource::now() - _relays[id].change_start > _relays[id].change_delay)))
{
// delay will be reset back to the correct value via relayStatus
_relays[id].change_delay = Relay::Delay::zero();
_relays[id].current_status = target;
_relays[id].provider->change(target);
_relayReport(id, target);
// try to immediately schedule 'normal' state
_relayProcessActivePulse(_relays[id], id, target);
// and make sure relay values are persisted in RAM and flash
_relayScheduleSave(id);
changed = true;
DEBUG_MSG_P(PSTR("[RELAY] #%u set to %s\n"), id, target ? "ON" : "OFF");
}
}
// Make sure expired pulse timers are removed, so any API calls don't try to re-use those
// Also, whenever we are using sync modes and any relay had changed the state, check if we can unlock
if (changed) {
espurna::relay::pulse::expire();
_relaySyncTryUnlock();
}
}
} // namespace
//------------------------------------------------------------------------------
// Setup
//------------------------------------------------------------------------------
namespace {
void _relayLoop() {
_relayProcess(false);
_relayProcess(true);
_relayReport();
_relaySync();
_relaySave();
}
} // namespace
// Dummy relays for virtual light switches (hardware-less), Sonoff Dual, Sonoff RF Bridge and Tuya
void relaySetupDummy(size_t size, bool reconfigure) {
if (size == _relayDummy) {
return;
}
const size_t new_size = ((_relays.size() - _relayDummy) + size);
if (new_size > RelaysMax) {
return;
}
_relayDummy = size;
_relays.resize(new_size);
if (reconfigure) {
_relayConfigure();
}
}
namespace {
constexpr size_t _relayAdhocPins() {
return 0
#if RELAY1_PIN != GPIO_NONE
+ 1
#endif
#if RELAY2_PIN != GPIO_NONE
+ 1
#endif
#if RELAY3_PIN != GPIO_NONE
+ 1
#endif
#if RELAY4_PIN != GPIO_NONE
+ 1
#endif
#if RELAY5_PIN != GPIO_NONE
+ 1
#endif
#if RELAY6_PIN != GPIO_NONE
+ 1
#endif
#if RELAY7_PIN != GPIO_NONE
+ 1
#endif
#if RELAY8_PIN != GPIO_NONE
+ 1
#endif
;
}
struct RelayGpioProviderCfg {
GpioType type;
uint8_t main;
uint8_t reset;
};
RelayGpioProviderCfg _relayGpioProviderCfg(size_t index) {
return RelayGpioProviderCfg{
.type = espurna::relay::settings::pinType(index),
.main = espurna::relay::settings::pin(index),
.reset = espurna::relay::settings::resetPin(index),
};
}
std::unique_ptr<GpioProvider> _relayGpioProvider(size_t index, RelayType type) {
const auto cfg = _relayGpioProviderCfg(index);
auto* base = gpioBase(cfg.type);
if (!base) {
return nullptr;
}
auto main = gpioRegister(*base, cfg.main);
if (!main) {
return nullptr;
}
auto reset = gpioRegister(*base, cfg.reset);
if (GpioType::Hardware == cfg.type) {
hardwareGpioIgnore(cfg.main);
if (GPIO_NONE != cfg.reset) {
hardwareGpioIgnore(cfg.reset);
}
}
return std::make_unique<GpioProvider>(
type, std::move(main), std::move(reset));
}
RelayProviderBasePtr _relaySetupProvider(size_t index) {
auto provider = espurna::relay::settings::provider(index);
auto type = espurna::relay::settings::type(index);
RelayProviderBasePtr result;
switch (provider) {
case RelayProvider::Dummy:
result = std::make_unique<DummyProvider>();
break;
case RelayProvider::Gpio:
result = _relayGpioProvider(index, type);
break;
case RelayProvider::Stm:
#if RELAY_PROVIDER_STM_SUPPORT
result = std::make_unique<StmProvider>(index);
#endif
break;
case RelayProvider::Dual:
#if RELAY_PROVIDER_DUAL_SUPPORT
result = std::make_unique<DualProvider>(index);
#endif
break;
case RelayProvider::None:
break;
}
return result;
}
void _relaySetup() {
auto relays = _relays.size();
_relays.reserve(relays + _relayAdhocPins());
for (size_t id = relays; id < RelaysMax; ++id) {
auto impl = _relaySetupProvider(id);
if (!impl) {
break;
}
if (!impl->setup()) {
break;
}
_relays.emplace_back(std::move(impl));
}
relaySetupDummy(espurna::relay::settings::dummyCount());
}
} // namespace
namespace espurna {
namespace relay {
namespace settings {
namespace query {
namespace {
bool checkSamePrefix(StringView key) {
PROGMEM_STRING(Prefix, "relay");
return espurna::settings::query::samePrefix(key, Prefix);
}
String findIndexedValueFrom(StringView key) {
return espurna::settings::query::IndexedSetting::findValueFrom(_relays.size(), IndexedSettings, key);
}
bool checkExact(StringView key) {
for (const auto& setting : Settings) {
if (key == setting.key()) {
return true;
}
}
return false;
}
String findValueFrom(StringView key) {
return espurna::settings::query::Setting::findValueFrom(Settings, key);
}
void setup() {
::settingsRegisterQueryHandler({
.check = checkSamePrefix,
.get = findIndexedValueFrom
});
::settingsRegisterQueryHandler({
.check = checkExact,
.get = findValueFrom
});
}
} // namespace
} // namespace query
} // namespace settings
} // namespace relay
} // namespace espurna
void relaySetup() {
migrateVersion(_relaySettingsMigrate);
_relaySetup();
espurna::relay::settings::query::setup();
_relayConfigure();
_relayBootAll();
_relayLoop();
#if WEB_SUPPORT
relaySetupWS();
#endif
#if API_SUPPORT
relaySetupAPI();
#endif
#if MQTT_SUPPORT
relaySetupMQTT();
#endif
#if TERMINAL_SUPPORT
_relayCommandsSetup();
#endif
// Main callbacks
espurnaRegisterLoop(_relayLoop);
espurnaRegisterReload(_relayConfigure);
}
bool relayAdd(RelayProviderBasePtr&& provider) {
if (provider && provider->setup()) {
_relays.emplace_back(std::move(provider));
espurnaRegisterOnceUnique([]() {
_relayConfigure();
_relayBootAll();
});
return true;
}
return false;
}
#endif // RELAY_SUPPORT == 1