Mirror of espurna firmware for wireless switches and more
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

380 lines
13 KiB

// -----------------------------------------------------------------------------
// PMS Dust Sensor
// Uses SoftwareSerial library
// Contribution by Òscar Rovira López
// Refine to support PMS5003T/PMS5003ST by Yonsm Guo
// -----------------------------------------------------------------------------
#if SENSOR_SUPPORT && PMSX003_SUPPORT
#pragma once
#include "BaseSensor.h"
#include <SoftwareSerial.h>
// Generic data
#define PMS_BAUD_RATE 9600
// Type of sensor
#define PMS_TYPE_X003 0
#define PMS_TYPE_X003_9 1
#define PMS_TYPE_5003T 2
#define PMS_TYPE_5003ST 3
#define PMS_TYPE_5003S 4
// Sensor type specified data
#define PMS_SLOT_MAX 4
#define PMS_DATA_MAX 17
const static struct {
const char *name;
unsigned char data_count;
unsigned char slot_count;
unsigned char slot_types[PMS_SLOT_MAX];
} pms_specs[] = {
{"PMSX003", 13, 3, {MAGNITUDE_PM1DOT0, MAGNITUDE_PM2DOT5, MAGNITUDE_PM10}},
{"PMSX003_9", 9, 3, {MAGNITUDE_PM1DOT0, MAGNITUDE_PM2DOT5, MAGNITUDE_PM10}},
{"PMS5003T", 13, 3, {MAGNITUDE_PM2DOT5, MAGNITUDE_TEMPERATURE, MAGNITUDE_HUMIDITY}},
{"PMS5003ST", 17, 4, {MAGNITUDE_PM2DOT5, MAGNITUDE_TEMPERATURE, MAGNITUDE_HUMIDITY, MAGNITUDE_HCHO}},
{"PMS5003S", 13, 3, {MAGNITUDE_PM2DOT5, MAGNITUDE_PM10, MAGNITUDE_HCHO}},
};
// [MAGIC][LEN][DATA9|13|17][SUM]
#define PMS_PACKET_SIZE(data_count) ((data_count + 3) * 2)
#define PMS_PAYLOAD_SIZE(data_count) ((data_count + 1) * 2)
// PMS sensor utils
// Command functions copied from: https://github.com/fu-hsi/PMS/blob/master/src/PMS.cpp
// Reading function is rewrited to support flexible reading for PMS5003T/PMS5003ST
class PMSX003 {
protected:
Stream *_serial = NULL; // Should initialized by child class
public:
// Standby mode. For low power consumption and prolong the life of the sensor.
inline void sleep() {
uint8_t command[] = { 0x42, 0x4D, 0xE4, 0x00, 0x00, 0x01, 0x73 };
_serial->write(command, sizeof(command));
}
// Operating mode. Stable data should be got at least 30 seconds after the sensor wakeup from the sleep mode because of the fan's performance.
inline void wakeUp() {
uint8_t command[] = { 0x42, 0x4D, 0xE4, 0x00, 0x01, 0x01, 0x74 };
_serial->write(command, sizeof(command));
}
// Active mode. Default mode after power up. In this mode sensor would send serial data to the host automatically.
inline void activeMode() {
uint8_t command[] = { 0x42, 0x4D, 0xE1, 0x00, 0x01, 0x01, 0x71 };
_serial->write(command, sizeof(command));
}
// Passive mode. In this mode, sensor would send serial data to the host only for request.
inline void passiveMode() {
uint8_t command[] = { 0x42, 0x4D, 0xE1, 0x00, 0x00, 0x01, 0x70 };
_serial->write(command, sizeof(command));
}
// Request read, ONLY needed in Passive Mode!!
inline void requestRead() {
uint8_t command[] = { 0x42, 0x4D, 0xE2, 0x00, 0x00, 0x01, 0x71 };
_serial->write(command, sizeof(command));
}
// Read sensor's data
bool readData(uint16_t data[], unsigned char data_count) {
do {
int avail = _serial->available();
#if SENSOR_DEBUG
//DEBUG_MSG("[SENSOR] PMS: Packet available = %d\n", avail);
#endif
if (avail < PMS_PACKET_SIZE(data_count)) {
break;
}
if (_serial->read() == 0x42 && _serial->read() == 0x4D) {
uint16_t sum = 0x42 + 0x4D;
uint16_t size = read16(sum);
if (size != PMS_PAYLOAD_SIZE(data_count)) {
#if SENSOR_DEBUG
DEBUG_MSG(("[SENSOR] PMS: Payload size: %d != %d.\n"), size, PMS_PAYLOAD_SIZE(data_count));
#endif
break;
}
for (int i = 0; i < data_count; i++) {
data[i] = read16(sum);
#if SENSOR_DEBUG
//DEBUG_MSG(("[SENSOR] PMS: data[%d] = %d\n"), i, data[i]);
#endif
}
uint16_t checksum = read16();
if (sum == checksum) {
return true;
} else {
#if SENSOR_DEBUG
DEBUG_MSG(("[SENSOR] PMS checksum: %04X != %04X\n"), sum, checksum);
#endif
}
break;
}
} while (true);
return false;
}
private:
// Read 16-bit
inline uint16_t read16() {
return ((uint16_t) _serial->read()) << 8 | _serial->read();
}
// Read 16-bit and calculate checksum
uint16_t read16(uint16_t &checksum) {
uint8_t high = _serial->read();
uint8_t low = _serial->read();
checksum += high;
checksum += low;
return ((uint16_t) high) << 8 | low;
}
};
class PMSX003Sensor : public BaseSensor, PMSX003 {
public:
// ---------------------------------------------------------------------
// Public
// ---------------------------------------------------------------------
PMSX003Sensor() {
_count = pms_specs[_type].slot_count;
_sensor_id = SENSOR_PMSX003_ID;
}
~PMSX003Sensor() {
removeSerial();
}
void setRX(unsigned char pin_rx) {
if (_pin_rx == pin_rx) return;
_pin_rx = pin_rx;
_dirty = true;
}
void setTX(unsigned char pin_tx) {
if (_pin_tx == pin_tx) return;
_pin_tx = pin_tx;
_dirty = true;
}
void setSerial(HardwareSerial * serial) {
_soft = false;
_serial = serial;
_dirty = true;
}
// Should call setType after constructor immediately to enable corresponding slot count
void setType(unsigned char type) {
_type = type;
_count = pms_specs[_type].slot_count;
}
// ---------------------------------------------------------------------
unsigned char getRX() {
return _pin_rx;
}
unsigned char getTX() {
return _pin_tx;
}
unsigned char getType() {
return _type;
}
// ---------------------------------------------------------------------
// Sensor API
// ---------------------------------------------------------------------
// Initialization method, must be idempotent
void begin() {
if (!_dirty) return;
if (_soft) {
if (_serial) removeSerial();
_serial = new SoftwareSerial(_pin_rx, _pin_tx, false);
static_cast<SoftwareSerial*>(_serial)->enableIntTx(false);
}
if (_soft) {
static_cast<SoftwareSerial*>(_serial)->begin(PMS_BAUD_RATE);
} else {
static_cast<HardwareSerial*>(_serial)->begin(PMS_BAUD_RATE);
}
passiveMode();
_startTime = millis();
_ready = true;
_dirty = false;
}
// Descriptive name of the sensor
String description() {
char buffer[28];
if (_soft) {
snprintf(buffer, sizeof(buffer), "%s @ SwSerial(%u,%u)", pms_specs[_type].name, _pin_rx, _pin_tx);
} else {
snprintf(buffer, sizeof(buffer), "%s @ HwSerial", pms_specs[_type].name);
}
return String(buffer);
}
// Descriptive name of the slot # index
String description(unsigned char index) {
char buffer[36] = {0};
if (_soft) {
snprintf(buffer, sizeof(buffer), "%d @ %s @ SwSerial(%u,%u)", int(index + 1), pms_specs[_type].name, _pin_rx, _pin_tx);
} else {
snprintf(buffer, sizeof(buffer), "%d @ %s @ HwSerial", int(index + 1), pms_specs[_type].name);
}
return String(buffer);
}
// Address of the sensor (it could be the GPIO or I2C address)
String address(unsigned char index) {
char buffer[6];
snprintf(buffer, sizeof(buffer), "%u:%u", _pin_rx, _pin_tx);
return String(buffer);
}
// Type for slot # index
unsigned char type(unsigned char index) {
return pms_specs[_type].slot_types[index];
}
void pre() {
if (millis() - _startTime < 30000) {
_error = SENSOR_ERROR_WARM_UP;
return;
}
#if PMS_SMART_SLEEP
unsigned int readCycle;
if (_readCount++ > 30) {
readCycle = _readCount % 30;
if (readCycle == 0) {
#if SENSOR_DEBUG
DEBUG_MSG("[SENSOR] %s: Wake up: %d\n", pms_specs[_type].name, _readCount);
#endif
wakeUp();
return;
} else if (readCycle == 1) {
requestRead();
} else if (readCycle > 6) {
return;
}
} else {
readCycle = -1;
if (_readCount == 1) {
wakeUp();
}
}
#endif
uint16_t data[PMS_DATA_MAX];
if (readData(data, pms_specs[_type].data_count)) {
if (_type == PMS_TYPE_5003ST) {
if (data[14] > 10 && data[14] < 1000 && data[13] < 1000) {
_slot_values[0] = data[4];
_slot_values[1] = (double)data[13] / 10;
_slot_values[2] = (double)data[14] / 10;
_slot_values[3] = (double)data[12] / 1000;
_error = SENSOR_ERROR_OK;
} else {
_error = SENSOR_ERROR_OUT_OF_RANGE;
#if SENSOR_DEBUG
DEBUG_MSG("[SENSOR] %s: Invalid temperature=%d humidity=%d.\n", pms_specs[_type].name, (int)data[13], (int)data[14]);
#endif
}
} else if (_type == PMS_TYPE_5003S) {
_slot_values[0] = data[4];
_slot_values[1] = data[5];
_slot_values[2] = (double)data[12] / 1000;
_error = SENSOR_ERROR_OK;
} else if (_type == PMS_TYPE_5003T) {
if (data[11] > 10 && data[11] < 1000 && data[10] < 1000) {
_slot_values[0] = data[4];
_slot_values[1] = (double)data[10] / 10;
_slot_values[2] = (double)data[11] / 10;
_error = SENSOR_ERROR_OK;
} else {
_error = SENSOR_ERROR_OUT_OF_RANGE;
#if SENSOR_DEBUG
DEBUG_MSG("[SENSOR] %s: Invalid temperature=%d humidity=%d.\n", pms_specs[_type].name, (int)data[10], (int)data[11]);
#endif
}
} else {
_slot_values[0] = data[3];
_slot_values[1] = data[4];
_slot_values[2] = data[5];
_error = SENSOR_ERROR_OK;
}
}
#if PMS_SMART_SLEEP
if (readCycle == 6) {
sleep();
#if SENSOR_DEBUG
DEBUG_MSG("[SENSOR] %s: Enter sleep mode: %d\n", pms_specs[_type].name, _readCount);
#endif
return;
}
#endif
requestRead();
}
// Current value for slot # index
double value(unsigned char index) {
return _slot_values[index];
}
private:
void removeSerial() {
if (_serial && _soft) {
delete static_cast<SoftwareSerial*>(_serial);
}
}
protected:
bool _soft = true;
unsigned int _pin_rx;
unsigned int _pin_tx;
unsigned long _startTime;
unsigned char _type = PMS_TYPE_X003;
double _slot_values[PMS_SLOT_MAX] = {0};
#if PMS_SMART_SLEEP
unsigned int _readCount = 0;
#endif
};
#endif // SENSOR_SUPPORT && PMSX003_SUPPORT