Mirror of espurna firmware for wireless switches and more
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

605 lines
15 KiB

/*
I2C MODULE
Copyright (C) 2017-2019 by Xose Pérez <xose dot perez at gmail dot com>
*/
#include "espurna.h"
#if I2C_SUPPORT
#if I2C_USE_BRZO
#include <brzo_i2c.h>
#else
#include <Wire.h>
#endif
#include "i2c.h"
#include <cstring>
#include <bitset>
// -----------------------------------------------------------------------------
// Private
// -----------------------------------------------------------------------------
namespace espurna {
namespace i2c {
namespace {
struct Bus {
unsigned char sda { GPIO_NONE };
unsigned char scl { GPIO_NONE };
#if I2C_USE_BRZO
unsigned long frequency { 0 };
#endif
};
namespace internal {
Bus bus;
} // namespace internal
namespace lock {
std::bitset<128> storage{};
void reset(uint8_t address) {
storage.reset(address);
}
bool get(uint8_t address) {
return storage.test(address);
}
bool set(uint8_t address) {
if (!get(address)) {
storage.set(address);
return true;
}
return false;
}
} // namespace lock
#if I2C_USE_BRZO
void brzo_i2c_start_transaction(uint8_t address) {
::brzo_i2c_start_transaction(address, internal::bus.frequency);
}
#endif
namespace build {
constexpr unsigned char sda() {
return I2C_SDA_PIN;
}
constexpr unsigned char scl() {
return I2C_SCL_PIN;
}
constexpr bool performScanOnBoot() {
return I2C_PERFORM_SCAN == 1;
}
#if I2C_USE_BRZO
constexpr unsigned long cst() {
return I2C_CLOCK_STRETCH_TIME;
}
constexpr unsigned long sclFrequency() {
return I2C_SCL_FREQUENCY;
}
#endif
} // namespace build
namespace settings {
unsigned char sda() {
return getSetting("i2cSDA", build::sda());
}
unsigned char scl() {
return getSetting("i2cSCL", build::scl());
}
#if I2C_USE_BRZO
unsigned long cst() {
return getSetting("i2cCST", build::cst());
}
unsigned long sclFrequency() {
return getSetting("i2cFreq", build::sclFrequency());
}
#endif
} // namespace settings
// make note that both APIs return integer status codes
// success is 0, everything else depends on the implementation
// for example, for our Wire it is:
// - 4 if line is busy
// - 2 if NACK happened when writing address
// - 3 if NACK happened when writing data
bool find(uint8_t address) {
#if I2C_USE_BRZO
i2c::start_brzo_transaction(address);
brzo_i2c_ACK_polling(1000);
return 0 == brzo_i2c_end_transaction();
#else
Wire.beginTransmission(address);
return 0 == Wire.endTransmission();
#endif
}
template <typename T>
uint8_t find(const uint8_t* begin, const uint8_t* end, T&& filter) {
for (const auto* it = begin; it != end; ++it) {
if (filter(*it) && find(*it)) {
return *it;
}
}
return 0;
}
uint8_t find(const uint8_t* begin, const uint8_t* end) {
return find(begin, end, [](uint8_t) {
return true;
});
}
uint8_t findAndLock(const uint8_t* begin, const uint8_t* end) {
const auto address = find(begin, end, [](uint8_t address) {
return !lock::get(address);
});
if (address != 0) {
lock::set(address);
}
return address;
}
template <typename T>
void scan(T&& callback) {
static constexpr uint8_t Min { 0x8 };
static constexpr uint8_t Max { 0x78 };
for (auto address = Min; address < Max; ++address) {
if (find(address)) {
callback(address);
}
}
}
void bootScan() {
String addresses;
scan([&](uint8_t address) {
if (addresses.length()) {
addresses += F(", ");
}
addresses += F("0x");
addresses += hexEncode(address);
});
if (addresses.length()) {
DEBUG_MSG_P(PSTR("[I2C] Found device(s): %s\n"), addresses.c_str());
} else {
DEBUG_MSG_P(PSTR("[I2C] No devices found\n"));
}
}
int clear(unsigned char sda, unsigned char scl) {
#if defined(TWCR) && defined(TWEN)
// Disable the Atmel 2-Wire interface so we can control the SDA and SCL pins directly
TWCR &= ~(_BV(TWEN));
#endif
// Make SDA (data) and SCL (clock) pins inputs with pullup
pinMode(sda, INPUT_PULLUP);
pinMode(scl, INPUT_PULLUP);
// Wait 2.5 secs. This is strictly only necessary on the first power
// up of the DS3231 module to allow it to initialize properly,
// but is also assists in reliable programming of FioV3 boards as it gives the
// IDE a chance to start uploaded the program
// before existing sketch confuses the IDE by sending Serial data.
espurna::time::blockingDelay(
espurna::duration::Milliseconds(2500));
// If it is held low the device cannot become the I2C master
// I2C bus error. Could not clear SCL clock line held low
bool scl_low = (digitalRead(scl) == LOW);
if (scl_low) {
return 1;
}
bool sda_low = (digitalRead(sda) == LOW);
int clockCount = 20; // > 2x9 clock
// While SDA is low for at most 20 cycles
while (sda_low && (clockCount > 0)) {
clockCount--;
// Note: I2C bus is open collector so do NOT drive SCL or SDA high
pinMode(scl, INPUT); // release SCL pullup so that when made output it will be LOW
pinMode(scl, OUTPUT); // then clock SCL Low
delayMicroseconds(10); // for >5uS
pinMode(scl, INPUT); // release SCL LOW
pinMode(scl, INPUT_PULLUP); // turn on pullup resistors again
// do not force high as slave may be holding it low for clock stretching
delayMicroseconds(10); // The >5uS is so that even the slowest I2C devices are handled
// loop waiting for SCL to become high only wait 2sec
scl_low = (digitalRead(scl) == LOW);
int counter = 20;
while (scl_low && (counter > 0)) {
counter--;
espurna::time::blockingDelay(
espurna::duration::Milliseconds(100));
scl_low = (digitalRead(scl) == LOW);
}
// If still low after 2 sec error
// I2C bus error. Could not clear. SCL clock line held low by slave clock stretch for >2sec
if (scl_low) {
return 2;
}
sda_low = (digitalRead(sda) == LOW); // and check SDA input again and loop
}
// If still low
// I2C bus error. Could not clear. SDA data line held low
if (sda_low) {
return 3;
}
// Pull SDA line low for "start" or "repeated start"
pinMode(sda, INPUT); // remove pullup
pinMode(sda, OUTPUT); // and then make it LOW i.e. send an I2C Start or Repeated start control
// When there is only one I2C master a "start" or "repeat start" has the same function as a "stop" and clears the bus
// A Repeat Start is a Start occurring after a Start with no intervening Stop.
delayMicroseconds(10); // wait >5uS
pinMode(sda, INPUT); // remove output low
pinMode(sda, INPUT_PULLUP); // and make SDA high i.e. send I2C STOP control.
delayMicroseconds(10); // wait >5uS
pinMode(sda, INPUT); // and reset pins as tri-state inputs which is the default state on reset
pinMode(scl, INPUT);
// Everything OK
return 0;
}
int clear(const Bus& bus) {
return clear(bus.sda, bus.scl);
}
int clear() {
return clear(internal::bus);
}
void init() {
internal::bus.sda = settings::sda();
internal::bus.scl = settings::scl();
#if I2C_USE_BRZO
internal::bus.frequency = settings::sclFrequency();
brzo_i2c_setup(internal::bus.sda, internal::bus.scl, settings::cst());
#else
Wire.begin(internal::bus.sda, internal::bus.scl);
#endif
DEBUG_MSG_P(PSTR("[I2C] Initialized SDA @ GPIO%hhu and SCL @ GPIO%hhu\n"),
internal::bus.sda, internal::bus.scl);
#if I2C_CLEAR_BUS
clear(internal::bus);
#endif
}
#if TERMINAL_SUPPORT
namespace terminal {
PROGMEM_STRING(Locked, "I2C.LOCKED");
void locked(::terminal::CommandContext&& ctx) {
for (size_t address = 0; address < lock::storage.size(); ++address) {
if (lock::storage.test(address)) {
ctx.output.printf_P(PSTR("0x%02X\n"), address);
}
}
terminalOK(ctx);
}
PROGMEM_STRING(Scan, "I2C.SCAN");
void scan(::terminal::CommandContext&& ctx) {
size_t devices { 0 };
i2c::scan([&](uint8_t address) {
++devices;
ctx.output.printf_P(PSTR("0x%02X\n"), address);
});
if (devices) {
ctx.output.printf_P(PSTR("found %zu device(s)\n"), devices);
terminalOK(ctx);
return;
}
terminalError(ctx, F("no devices found"));
}
PROGMEM_STRING(Clear, "I2C.CLEAR");
void clear(::terminal::CommandContext&& ctx) {
ctx.output.printf_P(PSTR("result %d\n"), i2c::clear());
terminalOK(ctx);
}
static constexpr ::terminal::Command Commands[] PROGMEM {
{Locked, locked},
{Scan, scan},
{Clear, clear},
};
void setup() {
espurna::terminal::add(Commands);
}
} // namespace terminal
#endif // TERMINAL_SUPPORT
} // namespace
} // namespace i2c
} // namespace espurna
// ---------------------------------------------------------------------
// I2C API
// ---------------------------------------------------------------------
#if I2C_USE_BRZO
void i2c_wakeup(uint8_t address) {
i2c::brzo_i2c_start_transaction(address);
brzo_i2c_end_transaction();
}
uint8_t i2c_write_buffer(uint8_t address, uint8_t * buffer, size_t len) {
i2c::brzo_i2c_start_transaction(address);
brzo_i2c_write(buffer, len, false);
return brzo_i2c_end_transaction();
}
uint8_t i2c_write_uint8(uint8_t address, uint8_t value) {
uint8_t buffer[1] = {value};
return i2c_write_buffer(address, buffer, sizeof(buffer));
}
uint8_t i2c_read_uint8(uint8_t address) {
uint8_t buffer[1] = {0};
i2c::brzo_i2c_start_transaction(address);
brzo_i2c_read(buffer, 1, false);
brzo_i2c_end_transaction();
return buffer[0];
}
uint8_t i2c_read_uint8(uint8_t address, uint8_t reg) {
uint8_t buffer[1] = {reg};
i2c::brzo_i2c_start_transaction(address);
brzo_i2c_write(buffer, 1, true);
brzo_i2c_read(buffer, 1, false);
brzo_i2c_end_transaction();
return buffer[0];
}
uint16_t i2c_read_uint16(uint8_t address) {
uint8_t buffer[2] = {0, 0};
i2c::brzo_i2c_start_transaction(address);
brzo_i2c_read(buffer, 2, false);
brzo_i2c_end_transaction();
return (buffer[0] * 256) | buffer[1];
}
uint16_t i2c_read_uint16(uint8_t address, uint8_t reg) {
uint8_t buffer[2] = {reg, 0};
i2c::brzo_i2c_start_transaction(address);
brzo_i2c_write(buffer, 1, true);
brzo_i2c_read(buffer, 2, false);
brzo_i2c_end_transaction();
return (buffer[0] * 256) | buffer[1];
}
void i2c_read_buffer(uint8_t address, uint8_t * buffer, size_t len) {
i2c::start_brzo_transaction(address);
brzo_i2c_read(buffer, len, false);
brzo_i2c_end_transaction();
}
#else // not I2C_USE_BRZO
void i2c_wakeup(uint8_t address) {
Wire.beginTransmission((uint8_t) address);
Wire.endTransmission();
}
uint8_t i2c_write_uint8(uint8_t address, uint8_t value) {
Wire.beginTransmission((uint8_t) address);
Wire.write((uint8_t) value);
return Wire.endTransmission();
}
uint8_t i2c_write_buffer(uint8_t address, uint8_t * buffer, size_t len) {
Wire.beginTransmission((uint8_t) address);
Wire.write(buffer, len);
return Wire.endTransmission();
}
uint8_t i2c_read_uint8(uint8_t address) {
uint8_t value;
Wire.requestFrom((uint8_t) address, (uint8_t) 1);
value = Wire.read();
return value;
}
uint8_t i2c_read_uint8(uint8_t address, uint8_t reg) {
uint8_t value;
Wire.beginTransmission((uint8_t) address);
Wire.write((uint8_t) reg);
Wire.endTransmission();
Wire.requestFrom((uint8_t) address, (uint8_t) 1);
value = Wire.read();
return value;
}
uint16_t i2c_read_uint16(uint8_t address) {
uint16_t value;
Wire.requestFrom((uint8_t) address, (uint8_t) 2);
value = (Wire.read() * 256) | Wire.read();
return value;
}
uint16_t i2c_read_uint16(uint8_t address, uint8_t reg) {
uint16_t value;
Wire.beginTransmission((uint8_t) address);
Wire.write((uint8_t) reg);
Wire.endTransmission();
Wire.requestFrom((uint8_t) address, (uint8_t) 2);
value = (Wire.read() * 256) | Wire.read();
return value;
}
void i2c_read_buffer(uint8_t address, uint8_t* buffer, size_t len) {
Wire.requestFrom(address, (uint8_t) len);
for (size_t i=0; i<len; ++i) {
buffer[i] = Wire.read();
}
}
void i2c_write_uint(uint8_t address, uint16_t reg, uint32_t input, size_t size) {
if (size && (size <= sizeof(input))) {
Wire.beginTransmission(address);
Wire.write((reg >> 8) & 0xff);
Wire.write(reg & 0xff);
uint8_t buf[sizeof(input)];
std::memcpy(&buf[0], &input, sizeof(buf));
Wire.write(&buf[sizeof(buf) - size], size);
Wire.endTransmission();
}
}
uint32_t i2c_read_uint(uint8_t address, uint16_t reg, size_t size, bool stop) {
uint32_t out { 0 };
if (size <= sizeof(out)) {
Wire.beginTransmission(address);
Wire.write((reg >> 8) & 0xff);
Wire.write(reg & 0xff);
Wire.endTransmission(stop);
if (size == Wire.requestFrom(address, size)) {
for (size_t byte = 0; byte < size; --byte) {
out = (out << 8ul) | static_cast<uint8_t>(Wire.read());
}
}
}
return out;
}
#endif // I2C_USE_BRZO
uint8_t i2c_write_uint8(uint8_t address, uint8_t reg, uint8_t value) {
uint8_t buffer[2] = {reg, value};
return i2c_write_buffer(address, buffer, 2);
}
uint8_t i2c_write_uint8(uint8_t address, uint8_t reg, uint8_t value1, uint8_t value2) {
uint8_t buffer[3] = {reg, value1, value2};
return i2c_write_buffer(address, buffer, 3);
}
uint8_t i2c_write_uint16(uint8_t address, uint8_t reg, uint16_t value) {
uint8_t buffer[3];
buffer[0] = reg;
buffer[1] = (value >> 8) & 0xFF;
buffer[2] = (value >> 0) & 0xFF;
return i2c_write_buffer(address, buffer, 3);
}
uint8_t i2c_write_uint16(uint8_t address, uint16_t value) {
uint8_t buffer[2];
buffer[0] = (value >> 8) & 0xFF;
buffer[1] = (value >> 0) & 0xFF;
return i2c_write_buffer(address, buffer, 2);
}
uint16_t i2c_read_uint16_le(uint8_t address, uint8_t reg) {
uint16_t temp = i2c_read_uint16(address, reg);
return (temp / 256) | (temp * 256);
}
int16_t i2c_read_int16(uint8_t address, uint8_t reg) {
return (int16_t) i2c_read_uint16(address, reg);
}
int16_t i2c_read_int16_le(uint8_t address, uint8_t reg) {
return (int16_t) i2c_read_uint16_le(address, reg);
}
// -----------------------------------------------------------------------------
// Utils
// -----------------------------------------------------------------------------
int i2cClearBus() {
return espurna::i2c::clear();
}
bool i2cLock(uint8_t address) {
return espurna::i2c::lock::set(address);
}
void i2cUnlock(uint8_t address) {
espurna::i2c::lock::reset(address);
}
uint8_t i2cFind(uint8_t address) {
return espurna::i2c::find(address);
}
uint8_t i2cFind(const uint8_t* begin, const uint8_t* end) {
return espurna::i2c::find(begin, end);
}
uint8_t i2cFindAndLock(const uint8_t* begin, const uint8_t* end) {
return espurna::i2c::findAndLock(begin, end);
}
void i2cSetup() {
espurna::i2c::init();
#if TERMINAL_SUPPORT
espurna::i2c::terminal::setup();
#endif
if (espurna::i2c::build::performScanOnBoot()) {
espurna::i2c::bootScan();
}
}
#endif