Mirror of espurna firmware for wireless switches and more
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

2616 lines
70 KiB

/*
LIGHT MODULE
Copyright (C) 2016-2019 by Xose Pérez <xose dot perez at gmail dot com>
Copyright (C) 2019-2021 by Maxim Prokhorov <prokhorov dot max at outlook dot com>
*/
#include "light.h"
#if LIGHT_PROVIDER != LIGHT_PROVIDER_NONE
#include "api.h"
#include "mqtt.h"
#include "relay.h"
#include "rpc.h"
#include "rtcmem.h"
#include "ws.h"
#include "libs/OnceFlag.h"
#include <Ticker.h>
#include <Schedule.h>
#include <ArduinoJson.h>
#include <array>
#include <cstring>
#include <vector>
#if LIGHT_PROVIDER == LIGHT_PROVIDER_MY92XX
#include <my92xx.h>
#endif
extern "C" {
#include "libs/fs_math.h"
}
#if LIGHT_PROVIDER == LIGHT_PROVIDER_DIMMER
// default is 8, we only need up to 5
#define PWM_CHANNEL_NUM_MAX Light::ChannelsMax
extern "C" {
#include "libs/pwm.h"
}
#endif
#include "light_config.h"
// -----------------------------------------------------------------------------
namespace Light {
constexpr long Rgb::Min;
constexpr long Rgb::Max;
constexpr long Hsv::HueMin;
constexpr long Hsv::HueMax;
constexpr long Hsv::SaturationMin;
constexpr long Hsv::SaturationMax;
constexpr long Hsv::ValueMin;
constexpr long Hsv::ValueMax;
static_assert(MiredsCold < MiredsWarm, "");
constexpr long MiredsDefault { (MiredsCold + MiredsWarm) / 2L };
unsigned long Rgb::asUlong() const {
return (_red << 16) | (_green << 8) | _blue;
}
} // namespace Light
// -----------------------------------------------------------------------------
#if RELAY_SUPPORT
// Setup virtual relays contolling the light's state
// TODO: only do per-channel setup optionally
class LightChannelProvider : public RelayProviderBase {
public:
LightChannelProvider() = delete;
explicit LightChannelProvider(size_t id) :
_id(id)
{}
const char* id() const {
return "light_channel";
}
void change(bool status) override {
lightState(_id, status);
lightState(true);
lightUpdate();
}
private:
size_t _id { RelaysMax };
};
class LightGlobalProvider : public RelayProviderBase {
public:
const char* id() const {
return "light_global";
}
void change(bool status) override {
lightState(status);
lightUpdate();
}
};
#endif
struct channel_t {
channel_t() = default;
// TODO: set & store pin in the provider
explicit channel_t(unsigned char pin_, bool inverse_, bool gamma_) :
pin(pin_),
inverse(inverse_),
gamma(gamma_)
{
pinMode(pin, OUTPUT);
}
explicit channel_t(unsigned char pin_) :
pin(pin_)
{
pinMode(pin, OUTPUT);
}
unsigned char pin { GPIO_NONE }; // real GPIO pin
bool inverse { false }; // re-map the value from [ValueMin:ValueMax] to [ValueMax:ValueMin]
bool gamma { false }; // apply gamma correction to the target value
bool state { true }; // is the channel ON
unsigned char inputValue { Light::ValueMin }; // raw, without the brightness
unsigned char value { Light::ValueMin }; // normalized, including brightness
unsigned char target { Light::ValueMin }; // resulting value that will be given to the provider
float current { Light::ValueMin }; // interim between input and target, used by the transition handler
};
std::vector<channel_t> _light_channels;
namespace Light {
struct Mapping {
struct Pointers {
Pointers() = default;
Pointers(const Pointers&) = default;
Pointers(Pointers&&) = default;
Pointers& operator=(const Pointers&) = default;
Pointers& operator=(Pointers&&) = default;
Pointers(channel_t* red, channel_t* green, channel_t* blue, channel_t* cold, channel_t* warm) :
_red(red),
_green(green),
_blue(blue),
_cold(cold),
_warm(warm)
{}
channel_t* red() {
return _red;
}
channel_t* green() {
return _green;
}
channel_t* blue() {
return _blue;
}
channel_t* cold() {
return _cold;
}
channel_t* warm() {
return _warm;
}
private:
channel_t* _red { nullptr };
channel_t* _green { nullptr };
channel_t* _blue { nullptr };
channel_t* _cold { nullptr };
channel_t* _warm { nullptr };
};
void reset() {
_pointers = Pointers();
}
template <typename ...Args>
void update(Args... args) {
_pointers = Pointers(std::forward<Args>(args)...);
}
long get(channel_t* ptr) {
if (ptr) {
return ptr->target;
}
return 0l;
}
void set(channel_t* ptr, long value) {
if (ptr) {
ptr->inputValue = std::clamp(value, Light::ValueMin, Light::ValueMax);
}
}
long red() {
return get(_pointers.red());
}
void red(long value) {
set(_pointers.red(), value);
}
long green() {
return get(_pointers.green());
}
void green(long value) {
set(_pointers.green(), value);
}
long blue() {
return get(_pointers.blue());
}
void blue(long value) {
set(_pointers.blue(), value);
}
long cold() {
return get(_pointers.cold());
}
void cold(long value) {
set(_pointers.cold(), value);
}
long warm() {
return get(_pointers.warm());
}
void warm(long value) {
set(_pointers.warm(), value);
}
private:
Pointers _pointers;
};
} // namespace Light
namespace {
Light::Mapping _light_mapping;
template <typename T>
void _lightUpdateMapping(T& channels) {
switch (channels.size()) {
case 0:
break;
case 1:
_light_mapping.update(nullptr, nullptr, nullptr, &channels[0], nullptr);
break;
case 2:
_light_mapping.update(nullptr, nullptr, nullptr, &channels[0], &channels[1]);
break;
case 3:
_light_mapping.update(&_light_channels[0], &channels[1], &channels[2], nullptr, nullptr);
break;
case 4:
_light_mapping.update(&channels[0], &channels[1], &channels[2], &channels[3], nullptr);
break;
case 5:
_light_mapping.update(&channels[0], &channels[1], &channels[2], &channels[3], &channels[4]);
break;
}
}
bool _light_save = LIGHT_SAVE_ENABLED;
unsigned long _light_save_delay = LIGHT_SAVE_DELAY;
Ticker _light_save_ticker;
unsigned long _light_report_delay = LIGHT_REPORT_DELAY;
Ticker _light_report_ticker;
std::forward_list<LightReportListener> _light_report;
bool _light_has_controls = false;
bool _light_has_color = false;
bool _light_use_rgb = false;
bool _light_use_white = false;
bool _light_use_cct = false;
bool _light_use_gamma = false;
bool _light_state = false;
long _light_brightness = Light::BrightnessMax;
// Default to the Philips Hue value that HA also use.
// https://developers.meethue.com/documentation/core-concepts
// TODO: We only accept this as input, thus setting 'related' channels directly
// will cause the cached mireds value to be used:
// - by brightness function in R G B CW and R G B CW WW as a factor for CW and WW channels
// - by setter in CW and CW WW modes
long _light_cold_mireds = Light::MiredsCold;
long _light_warm_mireds = Light::MiredsWarm;
long _light_cold_kelvin = (1000000L / _light_cold_mireds);
long _light_warm_kelvin = (1000000L / _light_warm_mireds);
long _light_mireds { Light::MiredsDefault };
// In case we somehow forgot to initialize the brightness func, make sure to trigger an exception.
// Just using an `nullptr` may not always trigger an error
// (also, so we also don't have to check whether the pointer is not `nullptr`)
bool _lightApplyBrightnessStub() {
panic();
return false;
}
using LightBrightnessFunc = bool(*)();
LightBrightnessFunc _light_brightness_func = _lightApplyBrightnessStub;
bool _light_state_changed = false;
LightStateListener _light_state_listener = nullptr;
#if LIGHT_PROVIDER == LIGHT_PROVIDER_MY92XX
my92xx* _my92xx { nullptr };
#endif
#if LIGHT_PROVIDER == LIGHT_PROVIDER_CUSTOM
std::unique_ptr<LightProvider> _light_provider;
#endif
} // namespace
// -----------------------------------------------------------------------------
// UTILS
// -----------------------------------------------------------------------------
#if LIGHT_PROVIDER == LIGHT_PROVIDER_MY92XX
namespace settings {
namespace internal {
template <>
my92xx_model_t convert(const String& value) {
if (value.length() == 1) {
switch (*value.c_str()) {
case 0x01:
return MY92XX_MODEL_MY9291;
case 0x02:
return MY92XX_MODEL_MY9231;
}
} else {
if (value == "9291") {
return MY92XX_MODEL_MY9291;
} else if (value == "9231") {
return MY92XX_MODEL_MY9231;
}
}
return Light::build::my92xxModel();
}
} // namespace internal
} // namespace settings
#endif
namespace {
bool _setValue(size_t, unsigned int) __attribute__((warn_unused_result));
bool _setValue(size_t id, unsigned int value) {
if (_light_channels[id].value != value) {
_light_channels[id].value = value;
return true;
}
return false;
}
void _setInputValue(size_t id, long value) {
_light_channels[id].inputValue = std::clamp(value, Light::ValueMin, Light::ValueMax);
}
void _setRGBInputValue(long red, long green, long blue) {
_setInputValue(0, red);
_setInputValue(1, green);
_setInputValue(2, blue);
}
bool _lightApplyBrightnessChannels(size_t channels) {
auto scale = static_cast<float>(_light_brightness) / static_cast<float>(Light::BrightnessMax);
channels = std::min(channels, lightChannels());
OnceFlag changed;
for (size_t channel = 0; channel < lightChannels(); ++channel) {
if (channel >= channels) {
scale = 1.0f;
}
changed = _setValue(channel, _light_channels[channel].inputValue * scale);
}
return changed.get();
}
bool _lightApplyBrightnessAll() {
return _lightApplyBrightnessChannels(lightChannels());
}
bool _lightApplyBrightnessRgb() {
return _lightApplyBrightnessChannels(3);
}
// Map from normal 153...500 to 0...347, so we get a value 0...1
double _lightMiredFactor() {
auto cold = static_cast<double>(_light_cold_mireds);
auto warm = static_cast<double>(_light_warm_mireds);
auto mireds = static_cast<double>(_light_mireds);
if (cold < warm) {
return (mireds - cold) / (warm - cold);
}
return 0.0;
}
bool _lightApplyBrightnessColor() {
OnceFlag changed;
double brightness = static_cast<double>(_light_brightness) / static_cast<double>(Light::BrightnessMax);
// Substract the common part from RGB channels and add it to white channel. So [250,150,50] -> [200,100,0,50]
unsigned char white = std::min({_light_channels[0].inputValue, _light_channels[1].inputValue, _light_channels[2].inputValue});
for (unsigned int i=0; i < 3; i++) {
changed = _setValue(i, _light_channels[i].inputValue - white);
}
// Split the White Value across 2 White LED Strips.
if (_light_use_cct) {
const double factor = _lightMiredFactor();
_light_channels[3].inputValue = 0;
changed = _setValue(3, lround((1.0 - factor) * white));
_light_channels[4].inputValue = 0;
changed = _setValue(4, lround(factor * white));
} else {
_light_channels[3].inputValue = 0;
changed = _setValue(3, white);
}
// Scale up to equal input values. So [250,150,50] -> [200,100,0,50] -> [250, 125, 0, 63]
unsigned char max_in = std::max({_light_channels[0].inputValue, _light_channels[1].inputValue, _light_channels[2].inputValue});
unsigned char max_out = std::max({_light_channels[0].value, _light_channels[1].value, _light_channels[2].value, _light_channels[3].value});
size_t channelSize = _light_use_cct ? 5 : 4;
if (_light_use_cct) {
max_out = std::max(max_out, _light_channels[4].value);
}
double factor = (max_out > 0) ? (double) (max_in / max_out) : 0;
for (size_t i = 0; i < channelSize; ++i) {
changed = _setValue(i, lround((double) _light_channels[i].value * factor * brightness));
}
// Scale white channel to match brightness
for (size_t i = 3; i < channelSize; ++i) {
changed = _setValue(i, constrain(static_cast<unsigned int>(_light_channels[i].value * LIGHT_WHITE_FACTOR), Light::BrightnessMin, Light::BrightnessMax));
}
// For the rest of channels, don't apply brightness, it is already in the inputValue
// i should be 4 when RGBW and 5 when RGBWW
for (size_t i = channelSize; i < _light_channels.size(); ++i) {
changed = _setValue(i, _light_channels[i].inputValue);
}
return changed.get();
}
char _lightTag(size_t channels, size_t index) {
constexpr size_t Columns { 5ul };
constexpr size_t Rows { 5ul };
auto row = channels - 1ul;
if (row < Rows) {
constexpr char tags[Rows][Columns] = {
{'W', 0, 0, 0, 0},
{'W', 'C', 0, 0, 0},
{'R', 'G', 'B', 0, 0},
{'R', 'G', 'B', 'W', 0},
{'R', 'G', 'B', 'W', 'C'},
};
return tags[row][index];
}
return 0;
}
// UI hint about channel distribution
const char* _lightDesc(size_t channels, size_t index) {
const __FlashStringHelper* ptr { F("UNKNOWN") };
switch (_lightTag(channels, index)) {
case 'W':
ptr = F("WARM WHITE");
break;
case 'C':
ptr = F("COLD WHITE");
break;
case 'R':
ptr = F("RED");
break;
case 'G':
ptr = F("GREEN");
break;
case 'B':
ptr = F("BLUE");
break;
}
return reinterpret_cast<const char*>(ptr);
}
} // namespace
// -----------------------------------------------------------------------------
// Input Values
// -----------------------------------------------------------------------------
namespace {
void _lightFromInteger(unsigned long value, bool brightness) {
if (brightness) {
_setRGBInputValue((value >> 24) & 0xFF, (value >> 16) & 0xFF, (value >> 8) & 0xFF);
lightBrightness((value & 0xFF) * Light::BrightnessMax / 255);
} else {
_setRGBInputValue((value >> 16) & 0xFF, (value >> 8) & 0xFF, (value) & 0xFF);
}
}
void _lightFromRgbPayload(const char * rgb) {
// 9 char #........ , 11 char ...,...,...
if (!_light_has_color) return;
if (!rgb || (strlen(rgb) == 0)) return;
// HEX value is always prefixed, like CSS
// values are interpreted like RGB + optional brightness
if (rgb[0] == '#') {
_lightFromInteger(strtoul(rgb + 1, nullptr, 16), strlen(rgb + 1) > 7);
// With comma separated string, assume decimal values
} else {
const auto channels = _light_channels.size();
unsigned char count = 0;
char buf[16] = {0};
strncpy(buf, rgb, sizeof(buf) - 1);
char *tok = strtok(buf, ",");
while (tok != NULL) {
_setInputValue(count, atoi(tok));
if (++count == channels) break;
tok = strtok(NULL, ",");
}
// If less than 3 values received, set the rest to 0
if (count < 2) _setInputValue(1, 0);
if (count < 3) _setInputValue(2, 0);
return;
}
}
// HSV string is expected to be "H,S,V", where:
// 0 <= H <= 360
// 0 <= S <= 100
// 0 <= V <= 100
void _lightFromHsvPayload(const char* hsv) {
if (!_light_has_color) return;
if (strlen(hsv) == 0) return;
char buf[16] = {0};
strncpy(buf, hsv, sizeof(buf) - 1);
unsigned char count = 0;
long values[3] = {0};
char * tok = strtok(buf, ",");
while ((count < 3) && (tok != nullptr)) {
values[count++] = atol(tok);
tok = strtok(nullptr, ",");
}
if (count != 3) {
return;
}
lightHsv({values[0], values[1], values[2]});
}
// Thanks to Sacha Telgenhof for sharing this code in his AiLight library
// https://github.com/stelgenhof/AiLight
// Color temperature is measured in mireds (kelvin = 1e6/mired)
long _toKelvin(long mireds) {
return constrain(static_cast<long>(1000000L / mireds), _light_warm_kelvin, _light_cold_kelvin);
}
long _toMireds(long kelvin) {
return constrain(static_cast<long>(lround(1000000L / kelvin)), _light_cold_mireds, _light_warm_mireds);
}
void _lightMireds(long kelvin) {
_light_mireds = _toMireds(kelvin);
}
void _lightMiredsCCT(long kelvin) {
_lightMireds(kelvin);
const auto factor = _lightMiredFactor();
auto cold = std::lround(factor * Light::ValueMax);
auto warm = std::lround((1.0 - factor) * Light::ValueMax);
_setInputValue(0, cold);
_setInputValue(1, warm);
}
// TODO: is there a sane way to deduce this back from RGB variant?
// TODO: should mireds require CCT mode, so we only deal with white value?
#if 0
long _lightCCTMireds() {
auto cold = static_cast<double>(_light_cold_mireds);
auto warm = static_cast<double>(_light_warm_mireds);
auto factor = (static_cast<double>(lightColdWhite()) / Light::ValueMax);
return cold + (factor * (warm - cold));
}
#endif
void _fromKelvin(long kelvin) {
if (!_light_has_color) {
if (_light_use_cct) {
_lightMiredsCCT(kelvin);
}
return;
}
_lightMireds(kelvin);
// adjusted by the brightness function
if (_light_use_cct) {
_setRGBInputValue(Light::ValueMax, Light::ValueMax, Light::ValueMax);
return;
}
// Calculate color values for the temperature
kelvin /= 100;
const unsigned int red = (kelvin <= 66)
? Light::ValueMax
: 329.698727446 * fs_pow((double) (kelvin - 60), -0.1332047592);
const unsigned int green = (kelvin <= 66)
? 99.4708025861 * fs_log(kelvin) - 161.1195681661
: 288.1221695283 * fs_pow((double) kelvin, -0.0755148492);
const unsigned int blue = (kelvin >= 66)
? Light::ValueMax
: ((kelvin <= 19)
? 0
: 138.5177312231 * fs_log(kelvin - 10) - 305.0447927307);
_setRGBInputValue(red, green, blue);
}
void _fromMireds(long mireds) {
_fromKelvin(_toKelvin(mireds));
}
} // namespace
// -----------------------------------------------------------------------------
// Output Values
// -----------------------------------------------------------------------------
namespace {
Light::Rgb _lightToRgb(bool target) {
return {
(target ? _light_channels[0].target : _light_channels[0].inputValue),
(target ? _light_channels[1].target : _light_channels[1].inputValue),
(target ? _light_channels[2].target : _light_channels[2].inputValue)};
}
void _lightRgbHexPayload(Light::Rgb rgb, char* out, size_t size) {
snprintf_P(out, size, PSTR("#%06X"), rgb.asUlong());
}
void _lightRgbHexPayload(char* out, size_t size, bool target = false) {
_lightRgbHexPayload(_lightToRgb(target), out, size);
}
String _lightRgbHexPayload(bool target) {
char out[64] { 0 };
_lightRgbHexPayload(out, sizeof(out), target);
return out;
}
void _lightHsvPayload(Light::Hsv hsv, char* out, size_t len) {
snprintf(out, len, "%ld,%ld,%ld", hsv.hue(), hsv.saturation(), hsv.value());
}
void _lightHsvPayload(char* out, size_t len) {
_lightHsvPayload(lightHsv(), out, len);
}
String _lightHsvPayload() {
char out[64] { 0 };
_lightHsvPayload(out, sizeof(out));
return out;
}
void _lightRgbPayload(Light::Rgb rgb, char* out, size_t size) {
if (!_light_has_color) {
static char zeroes[] PROGMEM = "0,0,0";
if (!size || (size > sizeof(zeroes))) {
return;
}
memcpy_P(out, zeroes, sizeof(zeroes));
return;
}
snprintf_P(out, size, PSTR("%hhu,%hhu,%hhu"), rgb.red(), rgb.green(), rgb.blue());
}
void _lightRgbPayload(char* out, size_t size, bool target) {
_lightRgbPayload(_lightToRgb(target), out, size);
}
void _lightRgbPayload(char* out, size_t size) {
_lightRgbPayload(out, size, false);
}
String _lightRgbPayload(bool target = false) {
char out[32] { 0 };
_lightRgbPayload(out, sizeof(out), target);
return out;
}
void _lightFromGroupPayload(const char* payload) {
char buffer[16] = {0};
std::strncpy(buffer, payload, sizeof(buffer) - 1);
auto channels = lightChannels();
decltype(channels) channel = 0;
char* tok = std::strtok(buffer, ",");
while ((channel < channels) && (tok != nullptr)) {
char* endp { nullptr };
auto value = strtol(tok, &endp, 10);
if ((endp == tok) || (*endp != '\0') || (value >= Light::ValueMax)) {
return;
}
lightChannel(channel++, value);
tok = std::strtok(nullptr, ",");
}
}
String _lightGroupPayload(bool target) {
const auto channels = lightChannels();
String result;
result.reserve(4 * channels);
for (auto& channel : _light_channels) {
if (result.length()) result += ',';
result += String(target ? channel.target : channel.inputValue);
}
return result;
}
int _lightAdjustValue(const int& value, const String& operation) {
if (!operation.length()) return value;
// if prefixed with a sign, treat expression as numerical operation
// otherwise, use as the new value
int updated = operation.toInt();
if (operation[0] == '+' || operation[0] == '-') {
updated = value + updated;
}
return updated;
}
void _lightAdjustBrightness(const char* payload) {
lightBrightness(_lightAdjustValue(lightBrightness(), payload));
}
void _lightAdjustBrightness(const String& payload) {
_lightAdjustBrightness(payload.c_str());
}
void _lightAdjustChannel(size_t id, const char* payload) {
lightChannel(id, _lightAdjustValue(lightChannel(id), payload));
}
void _lightAdjustChannel(size_t id, const String& payload) {
_lightAdjustChannel(id, payload.c_str());
}
void _lightAdjustKelvin(const char* payload) {
_fromKelvin(_lightAdjustValue(_toKelvin(_light_mireds), payload));
}
void _lightAdjustKelvin(const String& payload) {
_lightAdjustKelvin(payload.c_str());
}
void _lightAdjustMireds(const char* payload) {
_fromMireds(_lightAdjustValue(_light_mireds, payload));
}
void _lightAdjustMireds(const String& payload) {
_lightAdjustMireds(payload.c_str());
}
} // namespace
// -----------------------------------------------------------------------------
// PROVIDER
// -----------------------------------------------------------------------------
namespace {
// Gamma Correction lookup table (8 bit, ~2.2)
// (TODO: could be constexpr, but the gamma table is still loaded into the RAM when marked as if it is a non-constexpr array)
uint8_t _lightGammaMap(uint8_t value) {
static uint8_t gamma[256] PROGMEM {
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2,
3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 6, 6,
6, 7, 7, 7, 7, 8, 8, 8, 9, 9, 9, 10, 10, 11, 11, 11,
12, 12, 13, 13, 14, 14, 14, 15, 15, 16, 16, 17, 17, 18, 18, 19,
19, 20, 20, 21, 22, 22, 23, 23, 24, 25, 25, 26, 26, 27, 28, 28,
29, 30, 30, 31, 32, 33, 33, 34, 35, 35, 36, 37, 38, 39, 39, 40,
41, 42, 43, 43, 44, 45, 46, 47, 48, 49, 50, 50, 51, 52, 53, 54,
55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 71,
72, 73, 74, 75, 76, 77, 78, 80, 81, 82, 83, 84, 86, 87, 88, 89,
91, 92, 93, 94, 96, 97, 98, 100, 101, 102, 104, 105, 106, 108, 109, 110,
112, 113, 115, 116, 118, 119, 121, 122, 123, 125, 126, 128, 130, 131, 133, 134,
136, 137, 139, 140, 142, 144, 145, 147, 149, 150, 152, 154, 155, 157, 159, 160,
162, 164, 166, 167, 169, 171, 173, 175, 176, 178, 180, 182, 184, 186, 187, 189,
191, 193, 195, 197, 199, 201, 203, 205, 207, 209, 211, 213, 215, 217, 219, 221,
223, 225, 227, 229, 231, 233, 235, 238, 240, 242, 244, 246, 248, 251, 253, 255
};
static_assert(Light::ValueMax < (sizeof(gamma) / sizeof(gamma[0])), "Out-of-bounds array access");
static_assert(Light::ValueMin >= 0, "Minimal value can't be negative");
static_assert(Light::ValueMin < Light::ValueMax, "");
return pgm_read_byte(&gamma[value]);
}
class LightTransitionHandler {
public:
using Channels = std::vector<channel_t>;
struct Transition {
float& value;
long target;
float step;
size_t count;
};
explicit LightTransitionHandler(Channels& channels, bool state, LightTransition transition) :
_state(state),
_time(transition.time),
_step(transition.step)
{
OnceFlag delayed;
for (auto& channel : channels) {
delayed = prepare(channel, state);
}
// if nothing to do, ignore transition step & time and just schedule as soon as possible
if (!delayed) {
reset();
return;
}
}
bool prepare(channel_t& channel, bool state) {
bool target_state = state && channel.state;
long target = target_state ? channel.value : Light::ValueMin;
channel.target = target;
if (channel.gamma) {
target = _lightGammaMap(static_cast<uint8_t>(target));
}
if (channel.inverse) {
target = Light::ValueMax - target;
}
float diff = static_cast<float>(target) - channel.current;
if (!isImmediate(target_state, diff)) {
float step = (diff > 0.0) ? 1.0f : -1.0f;
float every = static_cast<double>(_time) / std::abs(diff);
if (every < _step) {
auto step_ref = static_cast<float>(_step);
step *= (step_ref / every);
every = step_ref;
}
size_t count = _time / every;
Transition transition { channel.current, target, step, count };
_transitions.push_back(std::move(transition));
return true;
}
Transition transition { channel.current, target, diff, 1};
_transitions.push_back(std::move(transition));
return false;
}
void reset() {
_step = 10;
_time = 10;
}
template <typename StateFunc, typename ValueFunc, typename UpdateFunc>
bool run(StateFunc&& state, ValueFunc&& value, UpdateFunc&& update) {
bool next { false };
if (!_state_notified && _state) {
_state_notified = true;
state(_state);
}
for (size_t index = 0; index < _transitions.size(); ++index) {
auto& transition = _transitions[index];
if (!transition.count) {
continue;
}
if (--transition.count) {
transition.value += transition.step;
next = true;
} else {
transition.value = transition.target;
}
value(index, transition.value);
}
if (!_state_notified && !next && !_state) {
_state_notified = true;
state(_state);
}
update();
return next;
}
const std::vector<Transition> transitions() const {
return _transitions;
}
bool state() const {
return _state;
}
unsigned long time() const {
return _time;
}
unsigned long step() const {
return _step;
}
private:
bool isImmediate(bool state, float diff) {
return (!_time || (_step >= _time) || (std::abs(diff) <= std::numeric_limits<float>::epsilon()));
}
std::vector<Transition> _transitions;
bool _state_notified { false };
bool _state;
unsigned long _time;
unsigned long _step;
};
struct LightUpdate {
bool save { false };
LightTransition transition { 0, 0 };
int report { 0 };
};
struct LightUpdateHandler {
LightUpdateHandler() = default;
LightUpdateHandler(const LightUpdateHandler&) = delete;
LightUpdateHandler(LightUpdateHandler&&) = delete;
LightUpdateHandler& operator=(const LightUpdateHandler&) = delete;
LightUpdateHandler& operator=(LightUpdateHandler&&) = delete;
// TODO: (esp8266) there is only a single thread, and explicit context switch via yield()
// callback() below is allowed to yield() and possibly reset the values, but we already have a copy
// TODO: (esp32?) set() and run() need locking, in case there are multiple threads *and* set() may be called outside of the main one
explicit operator bool() const {
return _run;
}
void set(bool save, LightTransition transition, int report) {
_update.save = save;
_update.transition = transition;
_update.report = report;
_run = true;
}
void cancel() {
_run = false;
}
template <typename T>
void run(T&& callback) {
if (_run) {
LightUpdate update{_update};
callback(update.save, update.transition, update.report);
}
}
private:
LightUpdate _update;
bool _run { false };
};
LightUpdateHandler _light_update;
bool _light_provider_update = false;
std::unique_ptr<LightTransitionHandler> _light_transition;
Ticker _light_transition_ticker;
bool _light_use_transitions = false;
unsigned long _light_transition_time = LIGHT_TRANSITION_TIME;
unsigned long _light_transition_step = LIGHT_TRANSITION_STEP;
void _lightProviderSchedule(unsigned long ms);
#if (LIGHT_PROVIDER == LIGHT_PROVIDER_DIMMER) || (LIGHT_PROVIDER == LIGHT_PROVIDER_MY92XX)
#if LIGHT_PROVIDER == LIGHT_PROVIDER_MY92XX
unsigned char _light_my92xx_channel_map[Light::ChannelsMax] = {};
#endif
// there is no PWM stop, but my92xx has some internal state control that will send 0 as values when OFF
void _lightProviderHandleState(bool state [[gnu::unused]]) {
#if LIGHT_PROVIDER == LIGHT_PROVIDER_MY92XX
_my92xx->setState(state);
#endif
}
// See cores/esp8266/WMath.cpp::map
inline bool _lightPwmMap(long value, long& result) {
constexpr auto Divisor = (Light::ValueMax - Light::ValueMin);
if (Divisor != 0l){
result = (value - Light::ValueMin) * (Light::PwmLimit - Light::PwmMin) / Divisor + Light::PwmMin;
return true;
}
return false;
}
// both require original values to be scaled into a PWM frequency
void _lightProviderHandleValue(size_t channel, float value) {
long pwm;
if (!_lightPwmMap(std::lround(value), pwm)) {
return;
}
#if LIGHT_PROVIDER == LIGHT_PROVIDER_DIMMER
pwm_set_duty(pwm, channel);
#elif LIGHT_PROVIDER == LIGHT_PROVIDER_MY92XX
_my92xx->setChannel(_light_my92xx_channel_map[channel], pwm);
#endif
}
void _lightProviderHandleUpdate() {
#if LIGHT_PROVIDER == LIGHT_PROVIDER_DIMMER
pwm_start();
#elif LIGHT_PROVIDER == LIGHT_PROVIDER_MY92XX
_my92xx->update();
#endif
}
#elif LIGHT_PROVIDER == LIGHT_PROVIDER_CUSTOM
void _lightProviderHandleState(bool state) {
_light_provider->state(state);
}
void _lightProviderHandleValue(size_t channel, float value) {
_light_provider->channel(channel, value);
}
void _lightProviderHandleUpdate() {
_light_provider->update();
}
#endif
void _lightProviderUpdate() {
if (!_light_provider_update) {
return;
}
if (!_light_transition) {
_light_provider_update = false;
return;
}
auto next = _light_transition->run(
_lightProviderHandleState,
_lightProviderHandleValue,
_lightProviderHandleUpdate);
if (next) {
_lightProviderSchedule(_light_transition->step());
} else {
_light_transition.reset(nullptr);
}
_light_provider_update = false;
}
void _lightProviderSchedule(unsigned long ms) {
_light_transition_ticker.once_ms(ms, []() {
_light_provider_update = true;
});
}
} // namespace
// -----------------------------------------------------------------------------
// PERSISTANCE
// -----------------------------------------------------------------------------
// Layout should match the old union:
//
// union light_rtcmem_t {
// struct {
// uint8_t channels[Light::ChannelsMax];
// uint8_t brightness;
// uint16_t mired;
// } __attribute__((packed)) packed;
// uint64_t value;
// };
struct LightRtcmem {
// 1 2 3 4 5 6 7 8
// [ m m b c c c c c ]
// ^ ^ ^ ^ ^ channels
// ^ ~ ~ ~ ~ ~ brightness
// ^ ^ ~ ~ ~ ~ ~ ~ mireds
//
// As seen in the rtcmem dump:
// `ddccbbaa 112233ee`
// Where:
// - 1122 are mireds
// - 33 is brightness
// - aabbccddee are channels (from 0 to 5 respectively)
explicit LightRtcmem(uint64_t value) {
_mireds = (value >> (8ull * 6ull)) & 0xffffull;
_brightness = (value >> (8ull * 5ull)) & 0xffull;
_channels[4] = static_cast<uint8_t>((value >> (8ull * 4ull)));
_channels[3] = static_cast<uint8_t>((value >> (8ull * 3ull)));
_channels[2] = static_cast<uint8_t>((value >> (8ull * 2ull)));
_channels[1] = static_cast<uint8_t>((value >> (8ull * 1ull)));
_channels[0] = static_cast<uint8_t>((value & 0xffull));
}
using Channels = std::array<uint8_t, Light::ChannelsMax>;
static_assert(Light::ChannelsMax == 5, "");
LightRtcmem() {
_channels.fill(Light::ValueMin);
}
LightRtcmem(const Channels& channels, long brightness, long mireds) :
_channels(channels),
_brightness(brightness),
_mireds(mireds)
{}
uint64_t serialize() const {
return ((static_cast<uint64_t>(_mireds) & 0xffffull) << (8ull * 6ull))
| ((static_cast<uint64_t>(_brightness) & 0xffull) << (8ull * 5ull))
| (static_cast<uint64_t>(_channels[4]) << (8ull * 4ull))
| (static_cast<uint64_t>(_channels[3]) << (8ull * 3ull))
| (static_cast<uint64_t>(_channels[2]) << (8ull * 2ull))
| (static_cast<uint64_t>(_channels[1]) << (8ull * 1ull))
| (static_cast<uint64_t>(_channels[0]));
}
static Channels defaultChannels() {
Channels out;
out.fill(Light::ValueMin);
return out;
}
const Channels& channels() const {
return _channels;
}
long brightness() const {
return _brightness;
}
long mireds() const {
return _mireds;
}
private:
Channels _channels;
long _brightness { Light::BrightnessMax };
long _mireds { Light::MiredsDefault };
};
bool lightSave() {
return _light_save;
}
void lightSave(bool save) {
_light_save = save;
}
namespace {
void _lightSaveRtcmem() {
auto channels = LightRtcmem::defaultChannels();
for (size_t channel = 0; channel < lightChannels(); ++channel) {
channels[channel] = _light_channels[channel].inputValue;
}
LightRtcmem light(channels, _light_brightness, _light_mireds);
Rtcmem->light = light.serialize();
}
void _lightRestoreRtcmem() {
uint64_t value = Rtcmem->light;
LightRtcmem light(value);
auto& channels = light.channels();
for (size_t channel = 0; channel < lightChannels(); ++channel) {
_light_channels[channel].inputValue = channels[channel];
}
_light_mireds = light.mireds(); // channels are already set
lightBrightness(light.brightness());
}
void _lightSaveSettings() {
if (!_light_save) {
return;
}
for (size_t channel = 0; channel < lightChannels(); ++channel) {
setSetting({"ch", channel}, _light_channels[channel].inputValue);
}
setSetting("brightness", _light_brightness);
setSetting("mireds", _light_mireds);
saveSettings();
}
void _lightRestoreSettings() {
for (size_t channel = 0; channel < lightChannels(); ++channel) {
auto value = getSetting({"ch", channel}, (channel == 0) ? Light::ValueMax : Light::ValueMin);
_light_channels[channel].inputValue = value;
}
_light_mireds = getSetting("mireds", _light_mireds);
lightBrightness(getSetting("brightness", Light::BrightnessMax));
}
bool _lightParsePayload(const char* payload) {
switch (rpcParsePayload(payload)) {
case PayloadStatus::On:
lightState(true);
break;
case PayloadStatus::Off:
lightState(false);
break;
case PayloadStatus::Toggle:
lightState(!_light_state);
break;
case PayloadStatus::Unknown:
return false;
}
return true;
}
bool _lightParsePayload(const String& payload) {
return _lightParsePayload(payload.c_str());
}
bool _lightTryParseChannel(const char* p, size_t& id) {
return tryParseId(p, lightChannels, id);
}
} // namespace
// -----------------------------------------------------------------------------
// MQTT
// -----------------------------------------------------------------------------
namespace {
int _lightMqttReportMask() {
return Light::DefaultReport & ~(static_cast<int>(mqttForward() ? Light::Report::None : Light::Report::Mqtt));
}
int _lightMqttReportGroupMask() {
return _lightMqttReportMask() & ~static_cast<int>(Light::Report::MqttGroup);
}
void _lightUpdateFromMqtt(LightTransition transition) {
lightUpdate(_light_save, transition, _lightMqttReportMask());
}
void _lightUpdateFromMqtt() {
_lightUpdateFromMqtt(lightTransition());
}
void _lightUpdateFromMqttGroup() {
lightUpdate(_light_save, lightTransition(), _lightMqttReportGroupMask());
}
#if MQTT_SUPPORT
// TODO: implement per-module heartbeat mask? e.g. to exclude unwanted topics based on preference, not settings
bool _lightMqttHeartbeat(heartbeat::Mask mask) {
if (mask & heartbeat::Report::Light)
lightMQTT();
return mqttConnected();
}
void _lightMqttCallback(unsigned int type, const char * topic, const char * payload) {
String mqtt_group_color = getSetting("mqttGroupColor");
if (type == MQTT_CONNECT_EVENT) {
mqttSubscribe(MQTT_TOPIC_BRIGHTNESS);
if (_light_has_color) {
mqttSubscribe(MQTT_TOPIC_COLOR_RGB);
mqttSubscribe(MQTT_TOPIC_COLOR_HEX);
mqttSubscribe(MQTT_TOPIC_COLOR_HSV);
}
if (_light_has_color || _light_use_cct) {
mqttSubscribe(MQTT_TOPIC_MIRED);
mqttSubscribe(MQTT_TOPIC_KELVIN);
}
// Transition config (everything sent after this will use this new value)
mqttSubscribe(MQTT_TOPIC_TRANSITION);
// Group color
if (mqtt_group_color.length() > 0) mqttSubscribeRaw(mqtt_group_color.c_str());
// Channels
char buffer[strlen(MQTT_TOPIC_CHANNEL) + 3];
snprintf_P(buffer, sizeof(buffer), PSTR("%s/+"), MQTT_TOPIC_CHANNEL);
mqttSubscribe(buffer);
// Global lights control
if (!_light_has_controls) {
mqttSubscribe(MQTT_TOPIC_LIGHT);
}
}
if (type == MQTT_MESSAGE_EVENT) {
// Group color
if ((mqtt_group_color.length() > 0) && (mqtt_group_color.equals(topic))) {
_lightFromGroupPayload(payload);
_lightUpdateFromMqttGroup();
return;
}
// Match topic
String t = mqttMagnitude((char *) topic);
// Color temperature in mireds
if (t.equals(MQTT_TOPIC_MIRED)) {
_lightAdjustMireds(payload);
_lightUpdateFromMqtt();
return;
}
// Color temperature in kelvins
if (t.equals(MQTT_TOPIC_KELVIN)) {
_lightAdjustKelvin(payload);
_lightUpdateFromMqtt();
return;
}
// Color
if (t.equals(MQTT_TOPIC_COLOR_RGB) || t.equals(MQTT_TOPIC_COLOR_HEX)) {
_lightFromRgbPayload(payload);
_lightUpdateFromMqtt();
return;
}
if (t.equals(MQTT_TOPIC_COLOR_HSV)) {
_lightFromHsvPayload(payload);
_lightUpdateFromMqtt();
return;
}
// Transition setting
if (t.equals(MQTT_TOPIC_TRANSITION)) {
lightTransition(strtoul(payload, nullptr, 10), _light_transition_step);
return;
}
// Brightness
if (t.equals(MQTT_TOPIC_BRIGHTNESS)) {
_lightAdjustBrightness(payload);
_lightUpdateFromMqtt();
return;
}
// Channel
if (t.startsWith(MQTT_TOPIC_CHANNEL)) {
size_t id;
if (!_lightTryParseChannel(t.c_str() + strlen(MQTT_TOPIC_CHANNEL) + 1, id)) {
return;
}
_lightAdjustChannel(id, payload);
_lightUpdateFromMqtt();
return;
}
// Global
if (t.equals(MQTT_TOPIC_LIGHT)) {
_lightParsePayload(payload);
_lightUpdateFromMqtt();
}
}
}
void _lightMqttSetup() {
mqttHeartbeat(_lightMqttHeartbeat);
mqttRegister(_lightMqttCallback);
}
} // namespace
void lightMQTT() {
char buffer[20];
if (_light_has_color) {
_lightRgbHexPayload(buffer, sizeof(buffer), true);
mqttSend(MQTT_TOPIC_COLOR_HEX, buffer);
_lightRgbPayload(buffer, sizeof(buffer), true);
mqttSend(MQTT_TOPIC_COLOR_RGB, buffer);
_lightHsvPayload(buffer, sizeof(buffer));
mqttSend(MQTT_TOPIC_COLOR_HSV, buffer);
}
if (_light_has_color || _light_use_cct) {
snprintf_P(buffer, sizeof(buffer), PSTR("%d"), _light_mireds);
mqttSend(MQTT_TOPIC_MIRED, buffer);
}
for (unsigned int i=0; i < _light_channels.size(); i++) {
itoa(_light_channels[i].target, buffer, 10);
mqttSend(MQTT_TOPIC_CHANNEL, i, buffer);
}
snprintf_P(buffer, sizeof(buffer), PSTR("%d"), _light_brightness);
mqttSend(MQTT_TOPIC_BRIGHTNESS, buffer);
if (!_light_has_controls) {
snprintf_P(buffer, sizeof(buffer), "%c", _light_state ? '1' : '0');
mqttSend(MQTT_TOPIC_LIGHT, buffer);
}
}
void lightMQTTGroup() {
const String mqtt_group_color = getSetting("mqttGroupColor");
if (mqtt_group_color.length()) {
mqttSendRaw(mqtt_group_color.c_str(), _lightGroupPayload(false).c_str());
}
}
#endif
// -----------------------------------------------------------------------------
// API
// -----------------------------------------------------------------------------
#if API_SUPPORT
namespace {
template <typename T>
bool _lightApiTryHandle(ApiRequest& request, T&& callback) {
auto id_param = request.wildcard(0);
size_t id;
if (!_lightTryParseChannel(id_param.c_str(), id)) {
return false;
}
return callback(id);
}
bool _lightApiRgbSetter(ApiRequest& request) {
lightColor(request.param(F("value")), true);
lightUpdate();
return true;
}
void _lightApiSetup() {
if (_light_has_color) {
apiRegister(F(MQTT_TOPIC_COLOR_RGB),
[](ApiRequest& request) {
request.send(_lightRgbPayload(true));
return true;
},
_lightApiRgbSetter
);
apiRegister(F(MQTT_TOPIC_COLOR_HEX),
[](ApiRequest& request) {
request.send(_lightRgbHexPayload(true));
return true;
},
_lightApiRgbSetter
);
apiRegister(F(MQTT_TOPIC_COLOR_HSV),
[](ApiRequest& request) {
request.send(_lightHsvPayload());
return true;
},
[](ApiRequest& request) {
lightColor(request.param(F("value")), false);
lightUpdate();
return true;
}
);
apiRegister(F(MQTT_TOPIC_MIRED),
[](ApiRequest& request) {
request.send(String(_light_mireds));
return true;
},
[](ApiRequest& request) {
_lightAdjustMireds(request.param(F("value")));
lightUpdate();
return true;
}
);
apiRegister(F(MQTT_TOPIC_KELVIN),
[](ApiRequest& request) {
request.send(String(_toKelvin(_light_mireds)));
return true;
},
[](ApiRequest& request) {
_lightAdjustKelvin(request.param(F("value")));
lightUpdate();
return true;
}
);
}
apiRegister(F(MQTT_TOPIC_TRANSITION),
[](ApiRequest& request) {
request.send(String(lightTransitionTime()));
return true;
},
[](ApiRequest& request) {
auto value = request.param(F("value"));
lightTransition(strtoul(value.c_str(), nullptr, 10), _light_transition_step);
return true;
}
);
apiRegister(F(MQTT_TOPIC_BRIGHTNESS),
[](ApiRequest& request) {
request.send(String(static_cast<int>(_light_brightness)));
return true;
},
[](ApiRequest& request) {
_lightAdjustBrightness(request.param(F("value")));
lightUpdate();
return true;
}
);
apiRegister(F(MQTT_TOPIC_CHANNEL "/+"),
[](ApiRequest& request) {
return _lightApiTryHandle(request, [&](size_t id) {
request.send(String(static_cast<int>(_light_channels[id].target)));
return true;
});
},
[](ApiRequest& request) {
return _lightApiTryHandle(request, [&](size_t id) {
_lightAdjustChannel(id, request.param(F("value")));
lightUpdate();
return true;
});
}
);
if (!_light_has_controls) {
apiRegister(F(MQTT_TOPIC_LIGHT),
[](ApiRequest& request) {
request.send(lightState() ? "1" : "0");
return true;
},
[](ApiRequest& request) {
_lightParsePayload(request.param(F("value")));
lightUpdate();
return true;
}
);
}
}
} // namespace
#endif // API_SUPPORT
#if WEB_SUPPORT
namespace {
bool _lightWebSocketOnKeyCheck(const char * key, JsonVariant& value) {
if (strncmp(key, "light", 5) == 0) return true;
if (strncmp(key, "use", 3) == 0) return true;
if (strncmp(key, "lt", 2) == 0) return true;
return false;
}
void _lightWebSocketStatus(JsonObject& root) {
if (_light_has_color) {
if (_light_use_rgb) {
root["rgb"] = _lightRgbHexPayload(false);
} else {
root["hsv"] = lightHsvPayload();
}
}
if (_light_use_cct) {
JsonObject& mireds = root.createNestedObject("mireds");
mireds["value"] = _light_mireds;
mireds["cold"] = _light_cold_mireds;
mireds["warm"] = _light_warm_mireds;
root["useCCT"] = _light_use_cct;
}
JsonArray& channels = root.createNestedArray("channels");
for (size_t id = 0; id < _light_channels.size(); ++id) {
channels.add(lightChannel(id));
}
root["brightness"] = lightBrightness();
root["lightstate"] = lightState();
}
void _lightWebSocketOnVisible(JsonObject& root) {
root["colorVisible"] = 1;
}
void _lightWebSocketOnConnected(JsonObject& root) {
root["mqttGroupColor"] = getSetting("mqttGroupColor");
root["useColor"] = _light_has_color;
root["useWhite"] = _light_use_white;
root["useGamma"] = _light_use_gamma;
root["useTransitions"] = _light_use_transitions;
root["useRGB"] = _light_use_rgb;
root["ltSave"] = _light_save;
root["ltSaveDelay"] = _light_save_delay;
root["ltTime"] = _light_transition_time;
root["ltStep"] = _light_transition_step;
#if RELAY_SUPPORT
root["ltRelay"] = getSetting("ltRelay", 1 == LIGHT_RELAY_ENABLED);
#endif
}
void _lightWebSocketOnAction(uint32_t client_id, const char* action, JsonObject& data) {
if (_light_has_color) {
if (strcmp(action, "color") == 0) {
if (data.containsKey("rgb")) {
_lightFromRgbPayload(data["rgb"].as<const char*>());
lightUpdate();
} else if (data.containsKey("hsv")) {
_lightFromHsvPayload(data["hsv"].as<const char*>());
lightUpdate();
}
}
}
if (strcmp(action, "mireds") == 0) {
if (data.containsKey("mireds")) {
_fromMireds(data["mireds"].as<long>());
lightUpdate();
}
} else if (strcmp(action, "channel") == 0) {
if (data.containsKey("id") && data.containsKey("value")) {
lightChannel(data["id"].as<size_t>(), data["value"].as<long>());
lightUpdate();
}
} else if (strcmp(action, "brightness") == 0) {
if (data.containsKey("value")) {
lightBrightness(data["value"].as<long>());
lightUpdate();
}
}
}
} // namespace
#endif
#if TERMINAL_SUPPORT
namespace {
void _lightInitCommands() {
terminalRegisterCommand(F("LIGHT"), [](const terminal::CommandContext& ctx) {
if (ctx.argc > 1) {
if (!_lightParsePayload(ctx.argv[1].c_str())) {
terminalError(ctx, F("Invalid payload"));
return;
}
lightUpdate();
}
ctx.output.printf("%s\n", _light_state ? "ON" : "OFF");
terminalOK(ctx);
});
terminalRegisterCommand(F("BRIGHTNESS"), [](const terminal::CommandContext& ctx) {
if (ctx.argc > 1) {
_lightAdjustBrightness(ctx.argv[1].c_str());
lightUpdate();
}
ctx.output.printf("%ld\n", lightBrightness());
terminalOK(ctx);
});
terminalRegisterCommand(F("CHANNEL"), [](const terminal::CommandContext& ctx) {
auto channels = lightChannels();
if (!channels) {
terminalError(ctx, F("No channels configured"));
return;
}
auto description = [&](size_t channel) {
ctx.output.printf("#%u (%s): %hhu\n", channel, _lightDesc(channels, channel), _light_channels[channel].inputValue);
};
if (ctx.argc > 2) {
size_t id;
if (!_lightTryParseChannel(ctx.argv[1].c_str(), id)) {
terminalError(ctx, F("Invalid channel ID"));
return;
}
_lightAdjustChannel(id, ctx.argv[2].c_str());
lightUpdate();
description(id);
} else {
for (size_t index = 0; index < channels; ++index) {
description(index);
}
}
terminalOK(ctx);
});
terminalRegisterCommand(F("RGB"), [](const terminal::CommandContext& ctx) {
if (ctx.argc > 1) {
_lightFromRgbPayload(ctx.argv[1].c_str());
lightUpdate();
}
ctx.output.printf_P(PSTR("rgb %s\n"), lightRgbPayload().c_str());
terminalOK(ctx);
});
terminalRegisterCommand(F("HSV"), [](const terminal::CommandContext& ctx) {
if (ctx.argc > 1) {
_lightFromHsvPayload(ctx.argv[1].c_str());
lightUpdate();
}
ctx.output.printf_P(PSTR("hsv %s\n"), lightHsvPayload().c_str());
terminalOK(ctx);
});
terminalRegisterCommand(F("KELVIN"), [](const terminal::CommandContext& ctx) {
if (ctx.argc > 1) {
_lightAdjustKelvin(ctx.argv[1].c_str());
lightUpdate();
}
ctx.output.printf_P(PSTR("kelvin %ld\n"), _toKelvin(_light_mireds));
terminalOK(ctx);
});
terminalRegisterCommand(F("MIRED"), [](const terminal::CommandContext& ctx) {
if (ctx.argc > 1) {
_lightAdjustMireds(ctx.argv[1]);
lightUpdate();
}
ctx.output.printf_P(PSTR("mireds %ld\n"), _light_mireds);
terminalOK(ctx);
});
}
} // namespace
#endif // TERMINAL_SUPPORT
size_t lightChannels() {
return _light_channels.size();
}
bool lightHasColor() {
return _light_has_color;
}
bool lightUseCCT() {
return _light_use_cct;
}
bool lightUseRGB() {
return _light_use_rgb;
}
// -----------------------------------------------------------------------------
Light::Rgb lightRgb() {
return {_light_mapping.red(), _light_mapping.green(), _light_mapping.blue()};
}
void lightRgb(Light::Rgb rgb) {
_setRGBInputValue(rgb.red(), rgb.green(), rgb.blue());
}
namespace {
Light::Hsv _lightHsv(Light::Rgb rgb) {
auto r = static_cast<double>(rgb.red()) / Light::ValueMax;
auto g = static_cast<double>(rgb.green()) / Light::ValueMax;
auto b = static_cast<double>(rgb.blue()) / Light::ValueMax;
auto max = std::max({r, g, b});
auto min = std::min({r, g, b});
auto v = max;
if (min != max) {
auto s = (max - min) / max;
auto delta = max - min;
auto rc = (max - r) / delta;
auto gc = (max - g) / delta;
auto bc = (max - b) / delta;
double h { 0.0 };
if (r == max) {
h = bc - gc;
} else if (g == max) {
h = 2.0 + rc - bc;
} else {
h = 4.0 + gc - rc;
}
h = fs_fmod((h / 6.0), 1.0);
if (h < 0.0) {
h = 1.0 + h;
}
return Light::Hsv(
std::lround(h * 360.0),
std::lround(s * 100.0),
std::lround(v * 100.0));
}
return Light::Hsv(Light::Hsv::HueMin, Light::Hsv::SaturationMin, v);
}
} // namespace
Light::Hsv lightHsv() {
return _lightHsv(lightRgb());
}
// HSV to RGB transformation -----------------------------------------------
//
// INPUT: [0,100,57]
// IS: [145,0,0]
// SHOULD: [255,0,0]
void lightHsv(Light::Hsv hsv) {
double r { 0.0 };
double g { 0.0 };
double b { 0.0 };
auto v = static_cast<double>(hsv.value()) / 100.0;
long brightness { std::lround(v * static_cast<double>(Light::BrightnessMax)) };
if (hsv.saturation()) {
auto h = hsv.hue();
if (h < 0) {
h = 0;
} else if (h >= 360) {
h = 359;
}
auto s = static_cast<double>(hsv.saturation()) / 100.0;
auto c = v * s;
auto hmod2 = fs_fmod(static_cast<double>(h) / 60.0, 2.0);
auto x = c * (1.0 - std::abs(hmod2 - 1.0));
auto m = v - c;
if ((0 <= h) && (h < 60)) {
r = c;
g = x;
} else if ((60 <= h) && (h < 120)) {
r = x;
g = c;
} else if ((120 <= h) && (h < 180)) {
g = c;
b = x;
} else if ((180 <= h) && (h < 240)) {
g = x;
b = c;
} else if ((240 <= h) && (h < 300)) {
r = x;
b = c;
} else if ((300 <= h) && (h < 360)) {
r = c;
b = x;
}
r = (r + m) * 255.0;
g = (g + m) * 255.0;
b = (b + m) * 255.0;
} else {
r = brightness;
g = brightness;
b = brightness;
}
lightBrightness(brightness);
_setRGBInputValue(r, g, b);
}
void lightHs(long hue, long saturation) {
lightHsv({hue, saturation, Light::Hsv::ValueMax});
}
// -----------------------------------------------------------------------------
void lightSetReportListener(LightReportListener func) {
_light_report.push_front(func);
}
namespace {
void _lightReport(int report) {
#if MQTT_SUPPORT
if (report & Light::Report::Mqtt) {
lightMQTT();
}
if (report & Light::Report::MqttGroup) {
lightMQTTGroup();
}
#endif
#if WEB_SUPPORT
if (report & Light::Report::Web) {
wsPost(_lightWebSocketStatus);
}
#endif
for (auto& report : _light_report) {
report();
}
}
// Called in the loop() when we received lightUpdate(...) values
void _lightUpdateDebug(const LightTransitionHandler& handler) {
DEBUG_MSG_P(PSTR("[LIGHT] Scheduled transition for %u (ms) every %u (ms)\n"), handler.time(), handler.step());
for (auto& transition : handler.transitions()) {
if (transition.count > 1) {
DEBUG_MSG_P(PSTR("[LIGHT] Transition from %s to %ld (step %s, %u times)\n"),
String(transition.value, 2).c_str(), transition.target,
String(transition.step, 2).c_str(), transition.count);
}
}
}
void _lightUpdate() {
if (!_light_update) {
return;
}
auto changed = _light_brightness_func();
if (!_light_state_changed && !changed) {
_light_update.cancel();
return;
}
_light_state_changed = false;
_light_update.run([](bool save, LightTransition transition, int report) {
// Channel output values will be set by the handler class and the specified provider
// We either set the values immediately or schedule an ongoing transition
_light_transition = std::make_unique<LightTransitionHandler>(_light_channels, _light_state, transition);
_lightProviderSchedule(_light_transition->step());
_lightUpdateDebug(*_light_transition);
// Send current state to all available 'report' targets
// (make sure to delay the report, in case lightUpdate is called repeatedly)
_light_report_ticker.once_ms(_light_report_delay, [report]() {
_lightReport(report);
});
// Always save to RTCMEM, optionally preserve the state in the settings storage
_lightSaveRtcmem();
if (save) {
_light_save_ticker.once_ms(_light_save_delay, _lightSaveSettings);
}
});
}
} // namespace
void lightUpdate(bool save, LightTransition transition, int report) {
#if LIGHT_PROVIDER == LIGHT_PROVIDER_CUSTOM
if (!_light_provider) {
return;
}
#endif
if (!lightChannels()) {
return;
}
_light_update.set(save, transition, report);
}
void lightUpdate(bool save, LightTransition transition, Light::Report report) {
lightUpdate(save, transition, static_cast<int>(report));
}
void lightUpdate(LightTransition transition) {
lightUpdate(_light_save, transition, Light::DefaultReport);
}
void lightUpdate(bool save) {
lightUpdate(save, lightTransition(), Light::DefaultReport);
}
void lightUpdate() {
lightUpdate(lightTransition());
}
void lightState(size_t id, bool state) {
if ((id < _light_channels.size()) && _light_channels[id].state != state) {
_light_channels[id].state = state;
_light_state_changed = true;
}
}
bool lightState(size_t id) {
if (id < _light_channels.size()) {
return _light_channels[id].state;
}
return false;
}
void lightState(bool state) {
if (_light_state != state) {
_light_state = state;
if (_light_state_listener) {
_light_state_listener(state);
}
_light_state_changed = true;
}
}
bool lightState() {
return _light_state;
}
void lightColor(const char* color, bool rgb) {
DEBUG_MSG_P(PSTR("[LIGHT] %s: %s\n"), rgb ? "RGB" : "HSV", color);
if (rgb) {
_lightFromRgbPayload(color);
} else {
_lightFromHsvPayload(color);
}
}
void lightColor(const String& color, bool rgb) {
lightColor(color.c_str(), rgb);
}
void lightColor(const char* color) {
lightColor(color, true);
}
void lightColor(const String& color) {
lightColor(color.c_str());
}
void lightColor(unsigned long color) {
_lightFromInteger(color, false);
}
String lightRgbPayload() {
char str[12];
_lightRgbPayload(str, sizeof(str));
return str;
}
String lightHsvPayload() {
char str[12];
_lightHsvPayload(str, sizeof(str));
return str;
}
String lightColor() {
return _light_use_rgb ? lightRgbPayload() : lightHsvPayload();
}
long lightRed() {
return _light_mapping.red();
}
void lightRed(long value) {
_light_mapping.red(value);
}
long lightGreen() {
return _light_mapping.green();
}
void lightGreen(long value) {
_light_mapping.green(value);
}
long lightBlue() {
return _light_mapping.blue();
}
void lightBlue(long value) {
_light_mapping.blue(value);
}
long lightWarmWhite() {
return _light_mapping.warm();
}
void lightWarmWhite(long value) {
_light_mapping.warm(value);
}
long lightColdWhite() {
return _light_mapping.cold();
}
void lightColdWhite(long value) {
_light_mapping.cold(value);
}
void lightMireds(long mireds) {
_fromMireds(mireds);
}
Light::MiredsRange lightMiredsRange() {
return { _light_cold_mireds, _light_warm_mireds };
}
long lightChannel(size_t id) {
if (id < _light_channels.size()) {
return _light_channels[id].inputValue;
}
return 0l;
}
void lightChannel(size_t id, long value) {
if (id < _light_channels.size()) {
_setInputValue(id, value);
}
}
void lightChannelStep(size_t id, long steps, long multiplier) {
lightChannel(id, lightChannel(id) + (steps * multiplier));
}
long lightBrightness() {
return _light_brightness;
}
void lightBrightness(long brightness) {
_light_brightness = constrain(brightness, Light::BrightnessMin, Light::BrightnessMax);
}
void lightBrightnessStep(long steps, long multiplier) {
lightBrightness(static_cast<int>(_light_brightness) + (steps * multiplier));
}
unsigned long lightTransitionTime() {
return _light_use_transitions ? _light_transition_time : 0;
}
unsigned long lightTransitionStep() {
return _light_use_transitions ? _light_transition_step : 0;
}
LightTransition lightTransition() {
return {lightTransitionTime(), lightTransitionStep()};
}
void lightTransition(unsigned long time, unsigned long step) {
bool save { false };
_light_use_transitions = (time && step);
if (_light_use_transitions) {
save = true;
_light_transition_time = time;
_light_transition_step = step;
}
setSetting("useTransitions", _light_use_transitions);
if (save) {
setSetting("ltTime", _light_transition_time);
setSetting("ltStep", _light_transition_step);
}
saveSettings();
}
void lightTransition(LightTransition transition) {
lightTransition(transition.time, transition.step);
}
// -----------------------------------------------------------------------------
// SETUP
// -----------------------------------------------------------------------------
namespace {
#if LIGHT_PROVIDER == LIGHT_PROVIDER_DIMMER
const unsigned long _light_iomux[16] PROGMEM = {
PERIPHS_IO_MUX_GPIO0_U, PERIPHS_IO_MUX_U0TXD_U, PERIPHS_IO_MUX_GPIO2_U, PERIPHS_IO_MUX_U0RXD_U,
PERIPHS_IO_MUX_GPIO4_U, PERIPHS_IO_MUX_GPIO5_U, PERIPHS_IO_MUX_SD_CLK_U, PERIPHS_IO_MUX_SD_DATA0_U,
PERIPHS_IO_MUX_SD_DATA1_U, PERIPHS_IO_MUX_SD_DATA2_U, PERIPHS_IO_MUX_SD_DATA3_U, PERIPHS_IO_MUX_SD_CMD_U,
PERIPHS_IO_MUX_MTDI_U, PERIPHS_IO_MUX_MTCK_U, PERIPHS_IO_MUX_MTMS_U, PERIPHS_IO_MUX_MTDO_U
};
const unsigned long _light_iofunc[16] PROGMEM = {
FUNC_GPIO0, FUNC_GPIO1, FUNC_GPIO2, FUNC_GPIO3,
FUNC_GPIO4, FUNC_GPIO5, FUNC_GPIO6, FUNC_GPIO7,
FUNC_GPIO8, FUNC_GPIO9, FUNC_GPIO10, FUNC_GPIO11,
FUNC_GPIO12, FUNC_GPIO13, FUNC_GPIO14, FUNC_GPIO15
};
#endif
inline bool _lightUseGamma(size_t channels, size_t index) {
switch (_lightTag(channels, index)) {
case 'R':
case 'G':
case 'B':
return true;
}
return false;
}
inline bool _lightUseGamma(size_t index) {
return _lightUseGamma(_light_channels.size(), index);
}
void _lightConfigure() {
auto channels = _light_channels.size();
_light_has_color = getSetting("useColor", 1 == LIGHT_USE_COLOR);
if (_light_has_color && (channels < 3)) {
_light_has_color = false;
setSetting("useColor", _light_has_color);
}
_light_use_white = getSetting("useWhite", 1 == LIGHT_USE_WHITE);
if (_light_use_white && (channels < 4) && (channels != 2)) {
_light_use_white = false;
setSetting("useWhite", _light_use_white);
}
if (_light_has_color) {
if (_light_use_white) {
_light_brightness_func = _lightApplyBrightnessColor;
} else {
_light_brightness_func = _lightApplyBrightnessRgb;
}
} else {
_light_brightness_func = _lightApplyBrightnessAll;
}
_light_use_cct = getSetting("useCCT", 1 == LIGHT_USE_CCT);
if (_light_use_cct && (((channels < 5) && (channels != 2)) || !_light_use_white)) {
_light_use_cct = false;
setSetting("useCCT", _light_use_cct);
}
_light_use_rgb = getSetting("useRGB", 1 == LIGHT_USE_RGB);
_light_cold_mireds = getSetting("ltColdMired", Light::MiredsCold);
_light_warm_mireds = getSetting("ltWarmMired", Light::MiredsWarm);
_light_cold_kelvin = (1000000L / _light_cold_mireds);
_light_warm_kelvin = (1000000L / _light_warm_mireds);
_light_use_transitions = getSetting("useTransitions", 1 == LIGHT_USE_TRANSITIONS);
_light_save = getSetting("ltSave", 1 == LIGHT_SAVE_ENABLED);
_light_save_delay = getSetting("ltSaveDelay", LIGHT_SAVE_DELAY);
_light_transition_time = getSetting("ltTime", LIGHT_TRANSITION_TIME);
_light_transition_step = getSetting("ltStep", LIGHT_TRANSITION_STEP);
_light_use_gamma = getSetting("useGamma", 1 == LIGHT_USE_GAMMA);
for (size_t index = 0; index < lightChannels(); ++index) {
#if LIGHT_PROVIDER == LIGHT_PROVIDER_MY92XX
_light_my92xx_channel_map[index] = getSetting({"ltMy92xxCh", index}, Light::build::my92xxChannel(index));
#endif
_light_channels[index].inverse = getSetting({"ltInv", index}, Light::build::inverse(index));
_light_channels[index].gamma = (_light_has_color && _light_use_gamma) && _lightUseGamma(channels, index);
}
}
#if RELAY_SUPPORT
void _lightRelaySupport() {
if (!getSetting("ltRelay", 1 == LIGHT_RELAY_ENABLED)) {
return;
}
if (_light_has_controls) {
return;
}
auto next_id = relayCount();
if (relayAdd(std::make_unique<LightGlobalProvider>())) {
_light_state_listener = [next_id](bool state) {
relayStatus(next_id, state);
};
_light_has_controls = true;
}
}
#endif
void _lightBoot() {
const size_t Channels { _light_channels.size() };
if (Channels) {
DEBUG_MSG_P(PSTR("[LIGHT] Number of channels: %u\n"), Channels);
_lightUpdateMapping(_light_channels);
_lightConfigure();
if (rtcmemStatus()) {
_lightRestoreRtcmem();
} else {
_lightRestoreSettings();
}
_light_state_changed = true;
lightUpdate(false);
}
}
} // namespace
#if LIGHT_PROVIDER == LIGHT_PROVIDER_CUSTOM
// Custom provider is expected to:
// - register a controller class via `lightSetProvider(...)`
// - use `lightAdd()` N times to create N channels that will be handled via the controller
// Once that's done, we 'boot' the provider and disable further calls to the `lightAdd()`
void lightSetProvider(std::unique_ptr<LightProvider>&& ptr) {
_light_provider = std::move(ptr);
}
bool lightAdd() {
enum class State {
None,
Scheduled,
Done
};
static State state { State::None };
if (State::Done == state) {
return false;
}
if (_light_channels.size() < Light::ChannelsMax) {
_light_channels.emplace_back(GPIO_NONE);
if (State::Scheduled != state) {
state = State::Scheduled;
schedule_function([]() {
_lightBoot();
state = State::Done;
});
}
return true;
}
return false;
}
#else
bool lightAdd() {
return false;
}
#endif // LIGHT_PROVIDER_CUSTOM
namespace {
void _lightProviderDebug() {
DEBUG_MSG_P(PSTR("[LIGHT] Provider: "
#if LIGHT_PROVIDER == LIGHT_PROVIDER_NONE
"NONE"
#elif LIGHT_PROVIDER == LIGHT_PROVIDER_DIMMER
"DIMMER"
#elif LIGHT_PROVIDER == LIGHT_PROVIDER_MY92XX
"MY92XX"
#elif LIGHT_PROVIDER == LIGHT_PROVIDER_CUSTOM
"CUSTOM"
#endif
"\n"));
}
void _lightSettingsMigrate(int version) {
if (!version || (version >= 5)) {
return;
}
delSettingPrefix({
"chGPIO",
"chLogic",
"myChips",
"myDCKGPIO",
"myDIGPIO"
});
delSetting("lightProvider");
delSetting("useCSS");
moveSetting("lightTime", "ltTime");
moveSetting("lightColdMired", "ltColdMired");
moveSetting("lightWarmMired", "ltWarmMired");
}
} // namespace
// -----------------------------------------------------------------------------
void lightSetup() {
_lightSettingsMigrate(migrateVersion());
const auto enable_pin = getSetting("ltEnableGPIO", Light::build::enablePin());
if (enable_pin != GPIO_NONE) {
pinMode(enable_pin, OUTPUT);
digitalWrite(enable_pin, HIGH);
}
_light_channels.reserve(Light::ChannelsMax);
_lightProviderDebug();
#if LIGHT_PROVIDER == LIGHT_PROVIDER_MY92XX
{
// TODO: library API specifies some hard-coded amount of channels, based off of the model and chips
// we always map channel index 1-to-1, to simplify hw config, but most of the time there are less active channels
// than the value generated by the lib (ref. `my92xx::getChannels()`)
auto channels = getSetting("ltMy92xxChannels", Light::build::my92xxChannels());
_my92xx = new my92xx(
getSetting("ltMy92xxModel", Light::build::my92xxModel()),
getSetting("ltMy92xxChips", Light::build::my92xxChips()),
getSetting("ltMy92xxDiGPIO", Light::build::my92xxDiPin()),
getSetting("ltMy92xxDckiGPIO", Light::build::my92xxDckiPin()),
Light::build::my92xxCommand());
for (size_t index = 0; index < channels; ++index) {
_light_channels.emplace_back(GPIO_NONE);
}
}
#elif LIGHT_PROVIDER == LIGHT_PROVIDER_DIMMER
{
// Initial duty value (will be passed to pwm_set_duty(...), OFF in this case)
uint32_t pwm_duty_init[Light::ChannelsMax] = {0};
// 3-tuples of MUX_REGISTER, MUX_VALUE and GPIO number
uint32_t io_info[Light::ChannelsMax][3];
for (size_t index = 0; index < Light::ChannelsMax; ++index) {
// Load up until first GPIO_NONE. Allow settings to override, but not remove values
const auto pin = getSetting({"ltDimmerGPIO", index}, Light::build::channelPin(index));
if (!gpioValid(pin)) {
break;
}
_light_channels.emplace_back(pin);
io_info[index][0] = pgm_read_dword(&_light_iomux[pin]);
io_info[index][1] = pgm_read_dword(&_light_iofunc[pin]);
io_info[index][2] = pin;
pinMode(pin, OUTPUT);
}
// with 0 channels this should not do anything at all and provider will never call pwm_set_duty(...)
pwm_init(Light::PwmMax, pwm_duty_init, _light_channels.size(), io_info);
pwm_start();
}
#endif
_lightBoot();
#if RELAY_SUPPORT
_lightRelaySupport();
#endif
#if WEB_SUPPORT
wsRegister()
.onVisible(_lightWebSocketOnVisible)
.onConnected(_lightWebSocketOnConnected)
.onData(_lightWebSocketStatus)
.onAction(_lightWebSocketOnAction)
.onKeyCheck(_lightWebSocketOnKeyCheck);
#endif
#if API_SUPPORT
_lightApiSetup();
#endif
#if MQTT_SUPPORT
_lightMqttSetup();
#endif
#if TERMINAL_SUPPORT
_lightInitCommands();
#endif
espurnaRegisterReload(_lightConfigure);
espurnaRegisterLoop([]() {
_lightUpdate();
_lightProviderUpdate();
});
}
#endif // LIGHT_PROVIDER != LIGHT_PROVIDER_NONE