Mirror of espurna firmware for wireless switches and more
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

3220 lines
84 KiB

/*
LIGHT MODULE
Copyright (C) 2016-2019 by Xose Pérez <xose dot perez at gmail dot com>
Copyright (C) 2019-2021 by Maxim Prokhorov <prokhorov dot max at outlook dot com>
*/
#include "light.h"
#if LIGHT_PROVIDER != LIGHT_PROVIDER_NONE
#include "api.h"
#include "mqtt.h"
#include "relay.h"
#include "rpc.h"
#include "rtcmem.h"
#include "ws.h"
#include <Ticker.h>
#include <Schedule.h>
#include <ArduinoJson.h>
#include <array>
#include <cstring>
#include <vector>
#if LIGHT_PROVIDER == LIGHT_PROVIDER_MY92XX
#include <my92xx.h>
#endif
extern "C" {
#include "libs/fs_math.h"
}
#if LIGHT_PROVIDER == LIGHT_PROVIDER_DIMMER
// default is 8, we only need up to 5
#define PWM_CHANNEL_NUM_MAX Light::ChannelsMax
extern "C" {
#include "libs/pwm.h"
}
#endif
// -----------------------------------------------------------------------------
#if __GNUC__ > 4
static_assert(std::is_trivially_copyable<Light::Rgb>::value, "");
static_assert(std::is_trivially_copyable<Light::Hsv>::value, "");
static_assert(std::is_trivially_copyable<Light::MiredsRange>::value, "");
#endif
namespace Light {
// TODO: gcc4 treats these as real statics, so everything needs to be bound to this .cpp
#if __GNUC__ < 5
constexpr long Rgb::Min;
constexpr long Rgb::Max;
constexpr long Hsv::HueMin;
constexpr long Hsv::HueMax;
constexpr long Hsv::SaturationMin;
constexpr long Hsv::SaturationMax;
constexpr long Hsv::ValueMin;
constexpr long Hsv::ValueMax;
#endif
static_assert(MiredsCold < MiredsWarm, "");
constexpr long MiredsDefault { (MiredsCold + MiredsWarm) / 2L };
namespace {
namespace build {
constexpr float WhiteFactor { LIGHT_WHITE_FACTOR };
constexpr bool relay() {
return 1 == LIGHT_RELAY_ENABLED;
}
constexpr bool color() {
return 1 == LIGHT_USE_COLOR;
}
constexpr bool white() {
return 1 == LIGHT_USE_WHITE;
}
constexpr bool cct() {
return 1 == LIGHT_USE_CCT;
}
constexpr bool rgb() {
return 1 == LIGHT_USE_RGB;
}
constexpr bool gamma() {
return 1 == LIGHT_USE_GAMMA;
}
constexpr bool transition() {
return 1 == LIGHT_USE_TRANSITIONS;
}
constexpr unsigned long transitionTime() {
return LIGHT_TRANSITION_TIME;
}
constexpr unsigned long transitionStep() {
return LIGHT_TRANSITION_STEP;
}
constexpr bool save() {
return 1 == LIGHT_SAVE_ENABLED;
}
constexpr unsigned long saveDelay() {
return LIGHT_SAVE_DELAY;
}
constexpr unsigned long reportDelay() {
return LIGHT_REPORT_DELAY;
}
constexpr unsigned char enablePin() {
return LIGHT_ENABLE_PIN;
}
constexpr unsigned char channelPin(size_t index) {
return (
(index == 0) ? LIGHT_CH1_PIN :
(index == 1) ? LIGHT_CH2_PIN :
(index == 2) ? LIGHT_CH3_PIN :
(index == 3) ? LIGHT_CH4_PIN :
(index == 4) ? LIGHT_CH5_PIN : GPIO_NONE
);
}
constexpr bool inverse(size_t index) {
return (
(index == 0) ? (1 == LIGHT_CH1_INVERSE) :
(index == 1) ? (1 == LIGHT_CH2_INVERSE) :
(index == 2) ? (1 == LIGHT_CH3_INVERSE) :
(index == 3) ? (1 == LIGHT_CH4_INVERSE) :
(index == 4) ? (1 == LIGHT_CH5_INVERSE) : false
);
}
#if LIGHT_PROVIDER == LIGHT_PROVIDER_MY92XX
constexpr my92xx_cmd_t my92xxCommand() {
return MY92XX_COMMAND;
}
constexpr size_t my92xxChannels() {
return MY92XX_CHANNELS;
}
constexpr my92xx_model_t my92xxModel() {
return MY92XX_MODEL;
}
constexpr int my92xxChips() {
return MY92XX_CHIPS;
}
constexpr int my92xxDiPin() {
return MY92XX_DI_PIN;
}
constexpr int my92xxDckiPin() {
return MY92XX_DCKI_PIN;
}
#if defined(MY92XX_MAPPING)
namespace my92xx {
constexpr unsigned char mapping[MY92XX_CHANNELS] {
MY92XX_MAPPING
};
template <typename... T>
struct FailSafe {
static constexpr bool value { false };
};
constexpr unsigned char channel(T channel) {
static_assert(FailSafe<T>::value, "MY92XX_CH# flags should be used instead of MY92XX_MAPPING");
return mapping[channel];
}
} // namespace my92xx
constexpr unsigned char my92xxChannel(size_t channel) {
return my92xx::channel(channel);
}
#else // !defined(MY92XX_MAPPING)
constexpr unsigned char my92xxChannel(size_t channel) {
return (channel == 0) ? MY92XX_CH1 :
(channel == 1) ? MY92XX_CH2 :
(channel == 2) ? MY92XX_CH3 :
(channel == 3) ? MY92XX_CH4 :
(channel == 4) ? MY92XX_CH5 : Light::ChannelsMax;
}
#endif
#endif
} // namespace build
namespace settings {
unsigned char enablePin() {
return getSetting("ltEnableGPIO", Light::build::enablePin());
}
#if LIGHT_PROVIDER == LIGHT_PROVIDER_DIMMER
unsigned char channelPin(size_t index) {
return getSetting({"ltDimmerGPIO", index}, build::channelPin(index));
}
#endif
bool inverse(size_t index) {
return getSetting({"ltInv", index}, build::inverse(index));
}
#if LIGHT_PROVIDER == LIGHT_PROVIDER_MY92XX
size_t my92xxChannels() {
return getSetting("ltMy92xxChannels", build::my92xxChannels());
}
my92xx_model_t my92xxModel() {
return getSetting("ltMy92xxModel", build::my92xxModel());
}
int my92xxChips() {
return getSetting("ltMy92xxChips", build::my92xxChips());
}
int my92xxDiPin() {
return getSetting("ltMy92xxDiGPIO", build::my92xxDiPin());
}
int my92xxDckiPin() {
return getSetting("ltMy92xxDckiGPIO", build::my92xxDckiPin());
}
unsigned char my92xxChannel(size_t channel) {
return getSetting({"ltMy92xxCh", channel}, build::my92xxChannel(channel));
}
#endif
// TODO: avoid clamping here in favour of handlers themselves always making sure values are in range?
long value(size_t channel) {
const long defaultValue { (channel == 0) ? Light::ValueMax : Light::ValueMin };
return std::clamp(getSetting({"ch", channel}, defaultValue), Light::ValueMin, Light::ValueMax);
}
void value(size_t channel, long input) {
setSetting({"ch", channel}, input);
}
long mireds() {
return std::clamp(getSetting("mireds", Light::MiredsDefault), Light::MiredsCold, Light::MiredsWarm);
}
long miredsCold() {
return std::clamp(getSetting("ltColdMired", Light::MiredsCold), Light::MiredsCold, Light::MiredsWarm);
}
long miredsWarm() {
return std::clamp(getSetting("ltWarmMired", Light::MiredsWarm), Light::MiredsCold, Light::MiredsWarm);
}
void mireds(long input) {
setSetting("mireds", input);
}
long brightness() {
return std::clamp(getSetting("brightness", Light::BrightnessMax), Light::BrightnessMin, Light::BrightnessMax);
}
void brightness(long input) {
setSetting("brightness", input);
}
String mqttGroup() {
return getSetting("mqttGroupColor");
}
bool relay() {
return getSetting("ltRelay", build::relay());
}
bool color() {
return getSetting("useColor", build::color());
}
void color(bool value) {
setSetting("useColor", value);
}
bool white() {
return getSetting("useWhite", build::white());
}
void white(bool value) {
setSetting("useWhite", value);
}
bool cct() {
return getSetting("useCCT", build::cct());
}
void cct(bool value) {
setSetting("useCCT", value);
}
bool rgb() {
return getSetting("useRGB", build::rgb());
}
bool gamma() {
return getSetting("useGamma", build::gamma());
}
bool transition() {
return getSetting("useTransitions", build::transition());
}
void transition(bool value) {
setSetting("useTransitions", value);
}
unsigned long transitionTime() {
return getSetting("ltTime", build::transitionTime());
}
void transitionTime(unsigned long value) {
setSetting("ltTime", value);
}
unsigned long transitionStep() {
return getSetting("ltStep", build::transitionStep());
}
void transitionStep(unsigned long value) {
setSetting("ltStep", value);
}
bool save() {
return getSetting("ltSave", build::save());
}
unsigned long saveDelay() {
return getSetting("ltSaveDelay", build::saveDelay());
}
} // namespace settings
} // namespace
} // namespace Light
// -----------------------------------------------------------------------------
#if RELAY_SUPPORT
// Setup virtual relays contolling the light's state
// TODO: only do per-channel setup optionally
class LightChannelProvider : public RelayProviderBase {
public:
LightChannelProvider() = delete;
explicit LightChannelProvider(size_t id) :
_id(id)
{}
const char* id() const override {
return "light_channel";
}
void change(bool status) override {
lightState(_id, status);
lightState(true);
lightUpdate();
}
private:
size_t _id { RelaysMax };
};
class LightGlobalProvider : public RelayProviderBase {
public:
const char* id() const override {
return "light_global";
}
void change(bool status) override {
lightState(status);
lightUpdate();
}
};
#endif
namespace {
template <typename T>
long _lightChainedValue(long input, const T& process) {
return process(input);
}
template <typename T, typename... Args>
long _lightChainedValue(long input, const T& process, Args&&... args) {
return _lightChainedValue(process(input), std::forward<Args>(args)...);
}
} // namespace
struct LightChannel {
LightChannel() = default;
// TODO: set & store pin in the provider, only hold the channel values
LightChannel(unsigned char pin_, bool inverse_, bool gamma_) :
pin(pin_),
inverse(inverse_),
gamma(gamma_)
{
pinMode(pin, OUTPUT);
}
explicit LightChannel(unsigned char pin_) :
pin(pin_)
{
pinMode(pin, OUTPUT);
}
LightChannel& operator=(long input) {
inputValue = std::clamp(input, Light::ValueMin, Light::ValueMax);
return *this;
}
void apply() {
value = inputValue;
}
template <typename T>
void apply(const T& process) {
value = std::clamp(process(inputValue), Light::ValueMin, Light::ValueMax);
}
template <typename T, typename... Args>
void apply(const T& process, Args&&... args) {
value = std::clamp(
_lightChainedValue(process(inputValue), std::forward<Args>(args)...),
Light::ValueMin, Light::ValueMax);
}
unsigned char pin { GPIO_NONE }; // real GPIO pin
bool inverse { false }; // re-map the value from [ValueMin:ValueMax] to [ValueMax:ValueMin]
bool gamma { false }; // apply gamma correction to the target value
// TODO: remove in favour of global control, since relays are no longer bound to a single channel?
bool state { true }; // is the channel ON
long inputValue { Light::ValueMin }; // raw, without the brightness
long value { Light::ValueMin }; // normalized, including brightness
long target { Light::ValueMin }; // resulting value that will be given to the provider
float current { Light::ValueMin }; // interim between input and target, used by the transition handler
};
using LightChannels = std::vector<LightChannel>;
LightChannels _light_channels;
namespace Light {
namespace {
struct Pointers {
Pointers() = default;
Pointers(const Pointers&) = default;
Pointers(Pointers&&) = default;
Pointers& operator=(const Pointers&) = default;
Pointers& operator=(Pointers&&) = default;
Pointers(LightChannel* red, LightChannel* green, LightChannel* blue, LightChannel* cold, LightChannel* warm) :
_red(red),
_green(green),
_blue(blue),
_cold(cold),
_warm(warm)
{}
LightChannel* red() const {
return _red;
}
LightChannel* green() const {
return _green;
}
LightChannel* blue() const {
return _blue;
}
LightChannel* cold() const {
return _cold;
}
LightChannel* warm() const {
return _warm;
}
private:
LightChannel* _red { nullptr };
LightChannel* _green { nullptr };
LightChannel* _blue { nullptr };
LightChannel* _cold { nullptr };
LightChannel* _warm { nullptr };
};
struct Mapping {
template <typename ...Args>
void update(Args&&... args) {
_pointers = Pointers(std::forward<Args>(args)...);
}
void reset() {
_pointers = Pointers();
}
long red() const {
return get(_pointers.red());
}
void red(long value) {
set(_pointers.red(), value);
}
long green() const {
return get(_pointers.green());
}
void green(long value) {
set(_pointers.green(), value);
}
long blue() const {
return get(_pointers.blue());
}
void blue(long value) {
set(_pointers.blue(), value);
}
long cold() const {
return get(_pointers.cold());
}
void cold(long value) {
set(_pointers.cold(), value);
}
long warm() const {
return get(_pointers.warm());
}
void warm(long value) {
set(_pointers.warm(), value);
}
const Pointers& pointers() const {
return _pointers;
}
private:
static long get(LightChannel* ptr) {
if (ptr) {
return ptr->target;
}
return Light::ValueMin;
}
static void set(LightChannel* ptr, long value) {
if (ptr) {
*ptr = value;
}
}
Pointers _pointers;
};
} // namespace
} // namespace Light
namespace {
Light::Mapping _light_mapping;
template <typename T>
void _lightUpdateMapping(T& channels) {
switch (channels.size()) {
case 0:
break;
case 1:
_light_mapping.update(nullptr, nullptr, nullptr, &channels[0], nullptr);
break;
case 2:
_light_mapping.update(nullptr, nullptr, nullptr, &channels[0], &channels[1]);
break;
case 3:
_light_mapping.update(&_light_channels[0], &channels[1], &channels[2], nullptr, nullptr);
break;
case 4:
_light_mapping.update(&channels[0], &channels[1], &channels[2], &channels[3], nullptr);
break;
case 5:
_light_mapping.update(&channels[0], &channels[1], &channels[2], &channels[3], &channels[4]);
break;
}
}
bool _light_save { Light::build::save() };
unsigned long _light_save_delay { Light::build::saveDelay() };
Ticker _light_save_ticker;
unsigned long _light_report_delay { Light::build::reportDelay() };
Ticker _light_report_ticker;
std::forward_list<LightReportListener> _light_report;
bool _light_has_controls = false;
bool _light_has_color = false;
bool _light_use_rgb = false;
bool _light_use_white = false;
bool _light_use_cct = false;
bool _light_use_gamma = false;
bool _light_state = false;
long _light_brightness = Light::BrightnessMax;
// Default to the Philips Hue value that HA also use.
// https://developers.meethue.com/documentation/core-concepts
// TODO: We only accept this as input, thus setting 'related' channels directly
// will cause the cached mireds value to be used:
// - by brightness function in R G B CW and R G B CW WW as a factor for CW and WW channels
// - by setter in CW and CW WW modes
long _light_cold_mireds = Light::MiredsCold;
long _light_warm_mireds = Light::MiredsWarm;
long _light_cold_kelvin = (1000000L / _light_cold_mireds);
long _light_warm_kelvin = (1000000L / _light_warm_mireds);
long _light_mireds { Light::MiredsDefault };
// In case we somehow forgot to initialize the brightness func, nullptr is expected to trigger an exception
using LightProcessInputValues = void(*)(LightChannels&, long brightness);
LightProcessInputValues _light_process_input_values { nullptr };
bool _light_state_changed = false;
LightStateListener _light_state_listener = nullptr;
#if LIGHT_PROVIDER == LIGHT_PROVIDER_MY92XX
my92xx* _my92xx { nullptr };
#endif
#if LIGHT_PROVIDER == LIGHT_PROVIDER_CUSTOM
std::unique_ptr<LightProvider> _light_provider;
#endif
} // namespace
// -----------------------------------------------------------------------------
// UTILS
// -----------------------------------------------------------------------------
#if LIGHT_PROVIDER == LIGHT_PROVIDER_MY92XX
namespace settings {
namespace internal {
template <>
my92xx_model_t convert(const String& value) {
if (value.length() == 1) {
switch (*value.c_str()) {
case 0x01:
return MY92XX_MODEL_MY9291;
case 0x02:
return MY92XX_MODEL_MY9231;
}
} else {
if (value == "9291") {
return MY92XX_MODEL_MY9291;
} else if (value == "9231") {
return MY92XX_MODEL_MY9231;
}
}
return Light::build::my92xxModel();
}
} // namespace internal
} // namespace settings
#endif
namespace {
// After the channel value was updated through the API (i.e. through changing the `inputValue`),
// these functions are expected to be called. Which one is chosen is based on the current settings values.
// TODO: existing mapping class handles setting `inputValue` & getting `target` value applied by the transition handler
// should it also handle setting the `value` so there's no need to refer to channels through numbers?
struct LightBrightness {
LightBrightness() = delete;
explicit LightBrightness(long brightness) :
_brightness(std::clamp(brightness, Light::BrightnessMin, Light::BrightnessMax))
{}
long operator()(long input) const {
return (input * _brightness) / Light::BrightnessMax;
}
private:
long _brightness;
};
void _lightValuesWithBrightness(LightChannels& channels, long brightness) {
const auto Brightness = LightBrightness{brightness};
for (auto& channel : channels) {
channel.apply(Brightness);
}
}
void _lightValuesWithBrightnessExceptWhite(LightChannels& channels, long brightness) {
const auto Brightness = LightBrightness{brightness};
auto it = channels.begin();
(*it).apply(Brightness);
++it;
(*it).apply(Brightness);
++it;
(*it).apply(Brightness);
++it;
while (it != channels.end()) {
(*it).apply();
++it;
}
}
// When `useWhite` is enabled, white channels are 'detached' from the processing and their value depends on the RGB ones.
// Common calculation is to subtract 'white value' from the RGB based on the minimum channel value, e.g. [250, 150, 50] becomes [200, 100, 0, 50]
//
// With `useCCT` also enabled, value is instead split between Warm and Cold channels based on the current `mireds`.
// Otherwise, Warm channel is using the remainder and Cold uses the `inputValue` directly.
//
// (TODO: notice that this also means HSV mode will hardly agree with our changes and will try to bounce
// the brigthness all over the place. at least for now, only `useRGB` mode works correctly)
// Map from normal 153...500 to 0...347, so we get a value 0...1
double _lightMiredFactor() {
if (_light_cold_mireds < _light_warm_mireds) {
const auto Cold = static_cast<double>(_light_cold_mireds);
const auto Warm = static_cast<double>(_light_warm_mireds);
const auto Mireds = static_cast<double>(_light_mireds);
return (Mireds - Cold) / (Warm - Cold);
}
return 0.0;
}
Light::MiredsRange _lightCctRange(long value) {
const double Factor { _lightMiredFactor() };
return {
std::lround(Factor * value),
std::lround((1.0 - Factor) * value)};
}
// To handle both 4 and 5 channels, allow to 'adjust' internal factor calculation after construction
// When processing the channel values, this is the expected sequence:
// [250,150,0] -> [200,100,0,50] -> [250,125,0,63], factor is 1.25
//
// XXX: before 1.15.0:
// - factor for the example above is 1 b/c of integer division, meaning the sequence is instead:
// [250,150,0] -> [200,100,0,50] -> [200,100,0,50]
// - when modified, white channels(s) `inputValue` is always equal to the output `value`
struct LightRgbWithoutWhite {
LightRgbWithoutWhite() = delete;
explicit LightRgbWithoutWhite(const LightChannels& channels) :
_common(makeCommon(channels)),
_factor(makeFactor(_common))
{}
long operator()(long input) const {
return std::lround(static_cast<float>(input - _common.inputMin) * _factor);
}
template <typename... Args>
void adjustOutput(Args&&... args) {
_common.outputMax = std::max({_common.outputMax, std::forward<Args>(args)...});
_factor = makeFactor(_common);
}
long inputMin() const {
return _common.inputMin;
}
float factor() const {
return _factor;
}
private:
struct Common {
long inputMin;
long inputMax;
long outputMax;
};
static float makeFactor(const Common& common) {
return (common.outputMax > 0)
? static_cast<float>(common.inputMax) / static_cast<float>(common.outputMax)
: 0.0f;
}
static Common makeCommon(const LightChannels& channels) {
Common out;
out.inputMax = std::max({
channels[0].inputValue, channels[1].inputValue, channels[2].inputValue});
out.inputMin = std::min({
channels[0].inputValue, channels[1].inputValue, channels[2].inputValue});
out.outputMax = std::max({
channels[0].inputValue - out.inputMin,
channels[1].inputValue - out.inputMin,
channels[2].inputValue - out.inputMin
});
return out;
}
Common _common;
float _factor;
};
struct LightScaledWhite {
LightScaledWhite() = delete;
explicit LightScaledWhite(float factor) :
_factor(factor)
{}
long operator()(long input) const {
return std::lround(static_cast<float>(input) * _factor * Light::build::WhiteFactor);
}
private:
float _factor;
};
// General case when `useCCT` is disabled, but there are 4 channels and `useWhite` is enabled
// Keeps 5th channel as-is, without applying the brightness scale or resetting the value to 0
void _lightValuesWithRgbWhite(LightChannels& channels, long brightness) {
auto rgb = LightRgbWithoutWhite{channels};
rgb.adjustOutput(rgb.inputMin());
const auto Brightness = LightBrightness(brightness);
auto it = channels.begin();
(*it).apply(rgb, Brightness);
++it;
(*it).apply(rgb, Brightness);
++it;
(*it).apply(rgb, Brightness);
++it;
(*it) = rgb.inputMin();
(*it).apply(LightScaledWhite{rgb.factor()}, Brightness);
++it;
if (it != channels.end()) {
(*it).apply();
}
}
// Instead of the above, use `mireds` value as a range for warm and cold channels, based on the calculated rgb common values
// Every value is also scaled by `brightness` after applying all of the previous steps
void _lightValuesWithRgbCct(LightChannels& channels, long brightness) {
auto rgb = LightRgbWithoutWhite{channels};
const auto Range = _lightCctRange(rgb.inputMin());
rgb.adjustOutput(Range.warm(), Range.cold());
const auto Brightness = LightBrightness(brightness);
auto it = channels.begin();
(*it).apply(rgb, Brightness);
++it;
(*it).apply(rgb, Brightness);
++it;
(*it).apply(rgb, Brightness);
++it;
const auto White = LightScaledWhite{rgb.factor()};
(*it) = Range.warm();
(*it).apply(White, Brightness);
++it;
(*it) = Range.cold();
(*it).apply(White, Brightness);
}
// UI hints about channel distribution
char _lightTag(size_t channels, size_t index) {
constexpr size_t Columns { 5ul };
constexpr size_t Rows { 5ul };
auto row = channels - 1ul;
if (row < Rows) {
constexpr char tags[Rows][Columns] = {
{'W', 0, 0, 0, 0},
{'W', 'C', 0, 0, 0},
{'R', 'G', 'B', 0, 0},
{'R', 'G', 'B', 'W', 0},
{'R', 'G', 'B', 'W', 'C'},
};
return tags[row][index];
}
return 0;
}
const char* _lightDesc(size_t channels, size_t index) {
const __FlashStringHelper* ptr { F("UNKNOWN") };
switch (_lightTag(channels, index)) {
case 'W':
ptr = F("WARM WHITE");
break;
case 'C':
ptr = F("COLD WHITE");
break;
case 'R':
ptr = F("RED");
break;
case 'G':
ptr = F("GREEN");
break;
case 'B':
ptr = F("BLUE");
break;
}
return reinterpret_cast<const char*>(ptr);
}
} // namespace
// -----------------------------------------------------------------------------
// Input Values
// -----------------------------------------------------------------------------
namespace {
void _lightFromHexPayload(const char* payload, size_t len) {
const bool JustRgb { (len == 6) };
const bool WithBrightness { (len == 8) };
if (!JustRgb && !WithBrightness) {
return;
}
uint8_t values[4] {0, 0, 0, 0};
if (hexDecode(payload, len, values, sizeof(values))) {
_light_mapping.red(values[0]);
_light_mapping.green(values[1]);
_light_mapping.blue(values[2]);
if (WithBrightness) {
lightBrightness(values[3]);
}
}
}
void _lightFromCommaSeparatedPayload(const char* payload, size_t len) {
constexpr size_t BufferSize { 16 };
if (len < BufferSize) {
char buffer[BufferSize] = {0};
std::copy(payload, payload + len, buffer);
auto it = _light_channels.begin();
char* tok = std::strtok(buffer, ",");
while ((it != _light_channels.end()) && (tok != nullptr)) {
char* endp { nullptr };
auto value = std::strtol(tok, &endp, 10);
if ((endp == tok) || (*endp != '\0')) {
break;
}
(*it) = value;
++it;
tok = std::strtok(nullptr, ",");
}
// same as previous versions, set the rest to zeroes
while (it != _light_channels.end()) {
(*it) = 0;
++it;
}
}
}
void _lightFromRgbPayload(const char* rgb) {
if (!_light_has_color || (_light_channels.size() < 3)) {
return;
}
if (!rgb || (*rgb == '\0')) {
return;
}
const size_t PayloadLen { strlen(rgb) };
// HEX value is always prefixed, like CSS
// - #AABBCC
// Extra byte is interpreted like RGB + brightness
// - #AABBCCDD
if (rgb[0] == '#') {
_lightFromHexPayload(rgb + 1, PayloadLen - 1);
return;
}
// Otherwise, assume comma-separated decimal values
_lightFromCommaSeparatedPayload(rgb, PayloadLen);
}
// HSV string is expected to be "H,S,V", where:
// - H [0...360]
// - S [0...100]
// - V [0...100]
void _lightFromHsvPayload(const char* hsv) {
if (!hsv || (*hsv == '\0') || !_light_has_color) {
return;
}
const size_t PayloadLen { strlen(hsv) };
constexpr size_t BufferSize { 16 };
if (PayloadLen < BufferSize) {
char buffer[BufferSize] = {0};
std::copy(hsv, hsv + PayloadLen, buffer);
long values[3] {0, 0, 0};
char* tok = std::strtok(buffer, ",");
auto it = std::begin(values);
while ((it != std::end(values)) && (tok != nullptr)) {
char* endp { nullptr };
auto value = std::strtol(tok, &endp, 10);
if ((endp == tok) || (*endp != '\0')) {
break;
}
(*it) = value;
++it;
tok = std::strtok(nullptr, ",");
}
if (it != std::end(values)) {
return;
}
lightHsv({values[0], values[1], values[2]});
}
}
// Thanks to Sacha Telgenhof for sharing this code in his AiLight library
// https://github.com/stelgenhof/AiLight
// Color temperature is measured in mireds (kelvin = 1e6/mired)
long _toKelvin(long mireds) {
return constrain(static_cast<long>(1000000L / mireds), _light_warm_kelvin, _light_cold_kelvin);
}
long _toMireds(long kelvin) {
return constrain(static_cast<long>(lround(1000000L / kelvin)), _light_cold_mireds, _light_warm_mireds);
}
void _lightMireds(long kelvin) {
_light_mireds = _toMireds(kelvin);
}
void _lightMiredsCCT(long kelvin) {
_lightMireds(kelvin);
const auto Range = _lightCctRange(Light::ValueMax);
_light_mapping.warm(Range.warm());
_light_mapping.cold(Range.cold());
}
// TODO: is there a sane way to deduce this back from RGB variant?
// TODO: should mireds require CCT mode, so we only deal with white value?
#if 0
long _lightCCTMireds() {
auto cold = static_cast<double>(_light_cold_mireds);
auto warm = static_cast<double>(_light_warm_mireds);
auto factor = (static_cast<double>(lightColdWhite()) / Light::ValueMax);
return cold + (factor * (warm - cold));
}
#endif
// TODO: function ptr like for input values?
void _fromKelvin(long kelvin) {
// work through the brightness function instead of adjusting here
// (but, note that +color +cct -white variant will set every rgb channel to 0)
if (_light_has_color && _light_use_cct) {
if (_light_use_white) {
_lightMireds(kelvin);
} else {
_light_mapping.red(Light::ValueMax);
_light_mapping.green(Light::ValueMax);
_light_mapping.blue(Light::ValueMax);
}
return;
}
if (!_light_has_color && _light_use_cct) {
_lightMiredsCCT(kelvin);
return;
}
// otherwise, only apply approximated color values
kelvin /= 100;
_light_mapping.red((kelvin <= 66)
? Light::ValueMax
: std::lround(329.698727446 * fs_pow(static_cast<double>(kelvin - 60), -0.1332047592)));
_light_mapping.green((kelvin <= 66)
? std::lround(99.4708025861 * fs_log(kelvin) - 161.1195681661)
: std::lround(288.1221695283 * fs_pow(static_cast<double>(kelvin), -0.0755148492)));
_light_mapping.blue((kelvin >= 66)
? Light::ValueMax
: ((kelvin <= 19)
? Light::ValueMin
: std::lround(138.5177312231 * fs_log(static_cast<double>(kelvin - 10)) - 305.0447927307)));
_lightMireds(kelvin);
}
void _fromMireds(long mireds) {
_fromKelvin(_toKelvin(mireds));
}
} // namespace
// -----------------------------------------------------------------------------
// Output Values
// -----------------------------------------------------------------------------
namespace {
Light::Rgb _lightToTargetRgb() {
return {
_light_mapping.red(),
_light_mapping.green(),
_light_mapping.blue()};
}
Light::Rgb _lightToInputRgb() {
const auto& ptr = _light_mapping.pointers();
long values[] {0, 0, 0};
if (ptr.red() && ptr.green() && ptr.blue()) {
values[0] = ptr.red()->inputValue;
values[1] = ptr.green()->inputValue;
values[2] = ptr.blue()->inputValue;
}
return {values[0], values[1], values[2]};
}
String _lightRgbHexPayload(Light::Rgb rgb) {
static_assert(Light::Rgb::Min == 0, "");
static_assert(Light::Rgb::Max == 255, "");
uint8_t values[] {
static_cast<uint8_t>(rgb.red()),
static_cast<uint8_t>(rgb.green()),
static_cast<uint8_t>(rgb.blue())};
String out;
char buffer[8] {0};
if (hexEncode(values, sizeof(values), buffer, sizeof(buffer))) {
out.reserve(8);
out.concat('#');
out.concat(&buffer[0], sizeof(buffer) - 1);
}
return out;
}
String _lightRgbPayload(Light::Rgb rgb) {
String out;
out.reserve(12);
out += rgb.red();
out += ',';
out += rgb.green();
out += ',';
out += rgb.blue();
return out;
}
String _lightRgbPayload() {
return _lightRgbPayload(_lightToInputRgb());
}
void _lightFromGroupPayload(const char* payload) {
if (!payload || *payload == '\0') {
return;
}
constexpr size_t BufferSize { 32 };
const size_t PayloadLen { strlen(payload) };
if (PayloadLen < BufferSize) {
char buffer[BufferSize] = {0};
std::copy(payload, payload + PayloadLen, buffer);
char* tok = std::strtok(buffer, ",");
auto it = _light_channels.begin();
while ((it != _light_channels.end()) && (tok != nullptr)) {
char* endp { nullptr };
auto value = std::strtol(tok, &endp, 10);
if ((endp == tok) || (*endp != '\0')) {
return;
}
(*it) = value;
++it;
tok = std::strtok(nullptr, ",");
}
}
}
Light::Hsv _lightHsv(Light::Rgb rgb) {
auto r = static_cast<double>(rgb.red()) / Light::ValueMax;
auto g = static_cast<double>(rgb.green()) / Light::ValueMax;
auto b = static_cast<double>(rgb.blue()) / Light::ValueMax;
auto max = std::max({r, g, b});
auto min = std::min({r, g, b});
auto v = max;
if (min != max) {
auto s = (max - min) / max;
auto delta = max - min;
auto rc = (max - r) / delta;
auto gc = (max - g) / delta;
auto bc = (max - b) / delta;
double h { 0.0 };
if (r == max) {
h = bc - gc;
} else if (g == max) {
h = 2.0 + rc - bc;
} else {
h = 4.0 + gc - rc;
}
h = fs_fmod((h / 6.0), 1.0);
if (h < 0.0) {
h = 1.0 + h;
}
return Light::Hsv(
std::lround(h * 360.0),
std::lround(s * 100.0),
std::lround(v * 100.0));
}
return Light::Hsv(Light::Hsv::HueMin, Light::Hsv::SaturationMin, v);
}
String _lightHsvPayload(Light::Rgb rgb) {
String out;
out.reserve(12);
auto hsv = _lightHsv(rgb);
long values[3] {hsv.hue(), hsv.saturation(), hsv.value()};
for (const auto& value : values) {
if (out.length()) {
out += ',';
}
out += value;
}
return out;
}
String _lightHsvPayload() {
return _lightHsvPayload(_lightToTargetRgb());
}
String _lightGroupPayload() {
const auto Channels = _light_channels.size();
String result;
result.reserve(4 * Channels);
for (const auto& channel : _light_channels) {
if (result.length()) {
result += ',';
}
result += String(channel.inputValue);
}
return result;
}
// Basic value adjustments. Expression can be:
// +offset, -offset or the new value
long _lightAdjustValue(long value, const String& operation) {
if (operation.length()) {
char* endp { nullptr };
auto updated = std::strtol(operation.c_str(), &endp, 10);
if ((endp == operation.c_str()) || (*endp != '\0')) {
return value;
}
switch (operation[0]) {
case '+':
case '-':
return updated + value;
}
return updated;
}
return value;
}
void _lightAdjustBrightness(const String& payload) {
lightBrightness(_lightAdjustValue(_light_brightness, payload));
}
void _lightAdjustBrightness(const char* payload) {
_lightAdjustBrightness(String(payload));
}
void _lightAdjustChannel(LightChannel& channel, const String& payload) {
channel = _lightAdjustValue(channel.inputValue, payload);
}
void _lightAdjustChannel(size_t id, const String& payload) {
if (id < _light_channels.size()) {
_lightAdjustChannel(_light_channels[id], payload);
}
}
void _lightAdjustChannel(size_t id, const char* payload) {
_lightAdjustChannel(id, String(payload));
}
void _lightAdjustKelvin(const String& payload) {
_fromKelvin(_lightAdjustValue(_toKelvin(_light_mireds), payload));
}
void _lightAdjustKelvin(const char* payload) {
_lightAdjustKelvin(String(payload));
}
void _lightAdjustMireds(const String& payload) {
_fromMireds(_lightAdjustValue(_light_mireds, payload));
}
void _lightAdjustMireds(const char* payload) {
_lightAdjustMireds(String(payload));
}
} // namespace
// -----------------------------------------------------------------------------
// PROVIDER
// -----------------------------------------------------------------------------
namespace {
// Gamma Correction lookup table (8 bit, ~2.2)
// TODO: input value modifier, instead of a transition-only thing?
// TODO: calculate on the fly instead of limiting this to an 8bit value?
constexpr long LightGammaMin { 0 };
constexpr long LightGammaMax { 255 };
long _lightGammaMap(size_t index) {
const static std::array<uint8_t, 256> Gamma PROGMEM {
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2,
3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 6, 6,
6, 7, 7, 7, 7, 8, 8, 8, 9, 9, 9, 10, 10, 11, 11, 11,
12, 12, 13, 13, 14, 14, 14, 15, 15, 16, 16, 17, 17, 18, 18, 19,
19, 20, 20, 21, 22, 22, 23, 23, 24, 25, 25, 26, 26, 27, 28, 28,
29, 30, 30, 31, 32, 33, 33, 34, 35, 35, 36, 37, 38, 39, 39, 40,
41, 42, 43, 43, 44, 45, 46, 47, 48, 49, 50, 50, 51, 52, 53, 54,
55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 71,
72, 73, 74, 75, 76, 77, 78, 80, 81, 82, 83, 84, 86, 87, 88, 89,
91, 92, 93, 94, 96, 97, 98, 100, 101, 102, 104, 105, 106, 108, 109, 110,
112, 113, 115, 116, 118, 119, 121, 122, 123, 125, 126, 128, 130, 131, 133, 134,
136, 137, 139, 140, 142, 144, 145, 147, 149, 150, 152, 154, 155, 157, 159, 160,
162, 164, 166, 167, 169, 171, 173, 175, 176, 178, 180, 182, 184, 186, 187, 189,
191, 193, 195, 197, 199, 201, 203, 205, 207, 209, 211, 213, 215, 217, 219, 221,
223, 225, 227, 229, 231, 233, 235, 238, 240, 242, 244, 246, 248, 251, 253, 255
};
if (index < Gamma.size()) {
return pgm_read_byte(&Gamma[index]);
}
return 0;
}
long _lightGammaMap(long value) {
static_assert(Light::ValueMin >= 0, "");
static_assert(Light::ValueMax >= 0, "");
constexpr auto Divisor = (Light::ValueMax - Light::ValueMin);
if (Divisor != 0l) {
const long Scaled {
(value - Light::ValueMin) * (LightGammaMax - LightGammaMin) / Divisor + LightGammaMin };
return _lightGammaMap(static_cast<size_t>(Scaled));
}
return Light::ValueMin;
}
class LightTransitionHandler {
public:
// internal calculations are done in floats, so hard-limit target & step time to a certain value
// that can be representend precisely when casting milliseconds times back and forth
static constexpr unsigned long TimeMax { 1ul << 24ul };
struct Transition {
float& value;
long target;
float step;
size_t count;
};
using Transitions = std::vector<Transition>;
LightTransitionHandler(LightChannels& channels, bool state, LightTransition transition) :
_state(state),
_time(std::min(transition.time, TimeMax)),
_step(std::min(transition.step, TimeMax))
{
// generate a single transitions list for all the channels that had changed
// after that, provider loop will run() the list and assign intermediate target value(s)
bool delayed { false };
for (auto& channel : channels) {
if (prepare(channel, state)) {
delayed = true;
}
}
// target values are already assigned, next provider loop will apply them
if (!delayed) {
reset();
return;
}
}
bool prepare(LightChannel& channel, bool state) {
long target = (state && channel.state)
? channel.value
: Light::ValueMin;
channel.target = target;
if (channel.gamma) {
target = _lightGammaMap(target);
}
if (channel.inverse) {
target = Light::ValueMax - target;
}
// TODO: implement different functions when there are multiple steps?
const float Diff { static_cast<float>(target) - channel.current };
if (!isImmediate(Diff)) {
pushGradual(channel.current, target, Diff);
return true;
}
pushImmediate(channel.current, target, Diff);
return false;
}
void reset() {
_step = 10;
_time = 10;
}
template <typename StateFunc, typename ValueFunc, typename UpdateFunc>
bool run(StateFunc&& state, ValueFunc&& value, UpdateFunc&& update) {
bool next { false };
if (!_state_notified && _state) {
_state_notified = true;
state(_state);
}
for (size_t index = 0; index < _transitions.size(); ++index) {
auto& transition = _transitions[index];
if (!transition.count) {
continue;
}
if (--transition.count) {
transition.value += transition.step;
next = true;
} else {
transition.value = transition.target;
}
value(index, transition.value);
}
if (!_state_notified && !next && !_state) {
_state_notified = true;
state(_state);
}
update();
return next;
}
const Transitions& transitions() const {
return _transitions;
}
bool state() const {
return _state;
}
unsigned long time() const {
return _time;
}
unsigned long step() const {
return _step;
}
private:
void push(float& current, long target, float diff, size_t count) {
Transition transition{current, target, diff, count};
_transitions.push_back(std::move(transition));
}
void pushImmediate(float& current, long target, float diff) {
push(current, target, diff, 1);
}
void pushGradual(float& current, long target, float diff) {
const float TotalTime { static_cast<float>(_time) };
const float StepTime { static_cast<float>(_step) };
constexpr float BaseStep { 1.0f };
const float Diff { std::abs(diff) };
const float Every { TotalTime / Diff };
float step { (diff > 0.0f) ? BaseStep : -BaseStep };
if (Every < StepTime) {
step *= (StepTime / Every);
}
const float Count { std::floor(Diff / std::abs(step)) };
push(current, target, step, static_cast<size_t>(Count));
}
bool isImmediate(float diff) const {
return (!_time || (_step >= _time) || (std::abs(diff) <= std::numeric_limits<float>::epsilon()));
}
Transitions _transitions;
bool _state_notified { false };
bool _state;
unsigned long _time;
unsigned long _step;
};
struct LightUpdate {
bool save { false };
LightTransition transition { 0, 0 };
int report { 0 };
};
struct LightUpdateHandler {
LightUpdateHandler() = default;
LightUpdateHandler(const LightUpdateHandler&) = delete;
LightUpdateHandler(LightUpdateHandler&&) = delete;
LightUpdateHandler& operator=(const LightUpdateHandler&) = delete;
LightUpdateHandler& operator=(LightUpdateHandler&&) = delete;
// TODO: (esp8266) there is only a single thread, and explicit context switch via yield()
// callback() below is allowed to yield() and possibly reset the values, but we already have a copy
// TODO: (esp32?) set() and run() need locking, in case there are multiple threads *and* set() may be called outside of the main one
explicit operator bool() const {
return _run;
}
void set(bool save, LightTransition transition, int report) {
_update.save = save;
_update.transition = transition;
_update.report = report;
_run = true;
}
void cancel() {
_run = false;
}
template <typename T>
void run(T&& callback) {
if (_run) {
_run = false;
LightUpdate update{_update};
callback(update.save, update.transition, update.report);
}
}
private:
LightUpdate _update;
bool _run { false };
};
LightUpdateHandler _light_update;
bool _light_provider_update = false;
std::unique_ptr<LightTransitionHandler> _light_transition;
Ticker _light_transition_ticker;
bool _light_use_transitions = false;
unsigned long _light_transition_time { Light::build::transitionTime() };
unsigned long _light_transition_step { Light::build::transitionStep() };
void _lightProviderSchedule(unsigned long ms);
#if (LIGHT_PROVIDER == LIGHT_PROVIDER_DIMMER) || (LIGHT_PROVIDER == LIGHT_PROVIDER_MY92XX)
#if LIGHT_PROVIDER == LIGHT_PROVIDER_MY92XX
unsigned char _light_my92xx_channel_map[Light::ChannelsMax] = {};
#endif
// there is no PWM stop, but my92xx has some internal state control that will send 0 as values when OFF
void _lightProviderHandleState(bool state [[gnu::unused]]) {
#if LIGHT_PROVIDER == LIGHT_PROVIDER_MY92XX
_my92xx->setState(state);
#endif
}
// See cores/esp8266/WMath.cpp::map
inline bool _lightPwmMap(long value, long& result) {
constexpr auto Divisor = (Light::ValueMax - Light::ValueMin);
if (Divisor != 0l){
result = (value - Light::ValueMin) * (Light::PwmLimit - Light::PwmMin) / Divisor + Light::PwmMin;
return true;
}
return false;
}
// both require original values to be scaled into a PWM frequency
void _lightProviderHandleValue(size_t channel, float value) {
long pwm;
if (!_lightPwmMap(std::lround(value), pwm)) {
return;
}
#if LIGHT_PROVIDER == LIGHT_PROVIDER_DIMMER
pwm_set_duty(pwm, channel);
#elif LIGHT_PROVIDER == LIGHT_PROVIDER_MY92XX
_my92xx->setChannel(_light_my92xx_channel_map[channel], pwm);
#endif
}
void _lightProviderHandleUpdate() {
#if LIGHT_PROVIDER == LIGHT_PROVIDER_DIMMER
pwm_start();
#elif LIGHT_PROVIDER == LIGHT_PROVIDER_MY92XX
_my92xx->update();
#endif
}
#elif LIGHT_PROVIDER == LIGHT_PROVIDER_CUSTOM
void _lightProviderHandleState(bool state) {
_light_provider->state(state);
}
void _lightProviderHandleValue(size_t channel, float value) {
_light_provider->channel(channel, value);
}
void _lightProviderHandleUpdate() {
_light_provider->update();
}
#endif
void _lightProviderUpdate() {
if (!_light_provider_update) {
return;
}
if (!_light_transition) {
_light_provider_update = false;
return;
}
auto next = _light_transition->run(
_lightProviderHandleState,
_lightProviderHandleValue,
_lightProviderHandleUpdate);
if (next) {
_lightProviderSchedule(_light_transition->step());
} else {
_light_transition.reset(nullptr);
}
_light_provider_update = false;
}
void _lightProviderSchedule(unsigned long ms) {
_light_transition_ticker.once_ms(ms, []() {
_light_provider_update = true;
});
}
} // namespace
// -----------------------------------------------------------------------------
// PERSISTANCE
// -----------------------------------------------------------------------------
// Layout should match the old union:
//
// union light_rtcmem_t {
// struct {
// uint8_t channels[Light::ChannelsMax];
// uint8_t brightness;
// uint16_t mired;
// } __attribute__((packed)) packed;
// uint64_t value;
// };
struct LightRtcmem {
// 1 2 3 4 5 6 7 8
// [ m m b c c c c c ]
// ^ ^ ^ ^ ^ channels
// ^ ~ ~ ~ ~ ~ brightness
// ^ ^ ~ ~ ~ ~ ~ ~ mireds
//
// As seen in the rtcmem dump:
// `ddccbbaa 112233ee`
// Where:
// - 1122 are mireds
// [153...500]
// - 33 is brightness
// [0...255]
// - aabbccddee are channels (from 0 to 5 respectively)
// [0...255]
//
// Prefer to use u64 value for {de,se}rialization instead of a struct.
static_assert(Light::ChannelsMax == 5, "");
static_assert(Light::ValueMin >= 0, "");
static_assert(Light::ValueMax <= 255, "");
using Values = std::array<long, Light::ChannelsMax>;
LightRtcmem() = default;
explicit LightRtcmem(uint64_t value) {
_mireds = (value >> (8ull * 6ull)) & 0xffffull;
_brightness = (value >> (8ull * 5ull)) & 0xffull;
_values[4] = ((value >> (8ull * 4ull)) & 0xffull);
_values[3] = ((value >> (8ull * 3ull)) & 0xffull);
_values[2] = ((value >> (8ull * 2ull)) & 0xffull);
_values[1] = ((value >> (8ull * 1ull)) & 0xffull);
_values[0] = ((value & 0xffull));
}
LightRtcmem(const Values& values, long brightness, long mireds) :
_values(values),
_brightness(brightness),
_mireds(mireds)
{}
uint64_t serialize() const {
return ((static_cast<uint64_t>(_mireds) & 0xffffull) << (8ull * 6ull))
| ((static_cast<uint64_t>(_brightness) & 0xffull) << (8ull * 5ull))
| (static_cast<uint64_t>(_values[4] & 0xffl) << (8ull * 4ull))
| (static_cast<uint64_t>(_values[3] & 0xffl) << (8ull * 3ull))
| (static_cast<uint64_t>(_values[2] & 0xffl) << (8ull * 2ull))
| (static_cast<uint64_t>(_values[1] & 0xffl) << (8ull * 1ull))
| (static_cast<uint64_t>(_values[0] & 0xffl));
}
static Values defaultValues() {
Values out;
out.fill(Light::ValueMin);
return out;
}
const Values& values() const {
return _values;
}
long brightness() const {
return _brightness;
}
long mireds() const {
return _mireds;
}
private:
Values _values = defaultValues();
long _brightness { Light::BrightnessMax };
long _mireds { Light::MiredsDefault };
};
bool lightSave() {
return _light_save;
}
void lightSave(bool save) {
_light_save = save;
}
namespace {
void _lightSaveRtcmem() {
auto values = LightRtcmem::defaultValues();
for (size_t channel = 0; channel < _light_channels.size(); ++channel) {
values[channel] = _light_channels[channel].inputValue;
}
LightRtcmem light(values, _light_brightness, _light_mireds);
Rtcmem->light = light.serialize();
}
void _lightRestoreRtcmem() {
uint64_t value = Rtcmem->light;
LightRtcmem light(value);
const auto& values = light.values();
for (size_t channel = 0; channel < _light_channels.size(); ++channel) {
_light_channels[channel] = values[channel];
}
_light_mireds = light.mireds(); // channels are already set
lightBrightness(light.brightness());
}
void _lightSaveSettings() {
if (!_light_save) {
return;
}
for (size_t channel = 0; channel < _light_channels.size(); ++channel) {
Light::settings::value(channel, _light_channels[channel].inputValue);
}
Light::settings::brightness(_light_brightness);
Light::settings::mireds(_light_mireds);
saveSettings();
}
void _lightRestoreSettings() {
for (size_t channel = 0; channel < _light_channels.size(); ++channel) {
_light_channels[channel] = Light::settings::value(channel);
}
_light_mireds = Light::settings::mireds();
lightBrightness(Light::settings::brightness());
}
bool _lightParsePayload(const char* payload) {
switch (rpcParsePayload(payload)) {
case PayloadStatus::On:
lightState(true);
break;
case PayloadStatus::Off:
lightState(false);
break;
case PayloadStatus::Toggle:
lightState(!_light_state);
break;
case PayloadStatus::Unknown:
return false;
}
return true;
}
bool _lightParsePayload(const String& payload) {
return _lightParsePayload(payload.c_str());
}
bool _lightTryParseChannel(const char* p, size_t& id) {
return tryParseId(p, lightChannels, id);
}
} // namespace
// -----------------------------------------------------------------------------
// MQTT
// -----------------------------------------------------------------------------
namespace {
int _lightMqttReportMask() {
return Light::DefaultReport & ~(static_cast<int>(mqttForward() ? Light::Report::None : Light::Report::Mqtt));
}
int _lightMqttReportGroupMask() {
return _lightMqttReportMask() & ~static_cast<int>(Light::Report::MqttGroup);
}
void _lightUpdateFromMqtt(LightTransition transition) {
lightUpdate(_light_save, transition, _lightMqttReportMask());
}
void _lightUpdateFromMqtt() {
_lightUpdateFromMqtt(lightTransition());
}
void _lightUpdateFromMqttGroup() {
lightUpdate(_light_save, lightTransition(), _lightMqttReportGroupMask());
}
#if MQTT_SUPPORT
// TODO: implement per-module heartbeat mask? e.g. to exclude unwanted topics based on preference, not settings
bool _lightMqttHeartbeat(heartbeat::Mask mask) {
if (mask & heartbeat::Report::Light) {
lightMQTT();
}
return mqttConnected();
}
void _lightMqttCallback(unsigned int type, const char* topic, char* payload) {
String mqtt_group_color = Light::settings::mqttGroup();
if (type == MQTT_CONNECT_EVENT) {
mqttSubscribe(MQTT_TOPIC_BRIGHTNESS);
if (_light_has_color) {
mqttSubscribe(MQTT_TOPIC_COLOR_RGB);
mqttSubscribe(MQTT_TOPIC_COLOR_HEX);
mqttSubscribe(MQTT_TOPIC_COLOR_HSV);
}
if (_light_has_color || _light_use_cct) {
mqttSubscribe(MQTT_TOPIC_MIRED);
mqttSubscribe(MQTT_TOPIC_KELVIN);
}
// Transition config (everything sent after this will use this new value)
mqttSubscribe(MQTT_TOPIC_TRANSITION);
// Group color
if (mqtt_group_color.length() > 0) {
mqttSubscribeRaw(mqtt_group_color.c_str());
}
// Channels
mqttSubscribe(MQTT_TOPIC_CHANNEL "/+");
// Global lights control
if (!_light_has_controls) {
mqttSubscribe(MQTT_TOPIC_LIGHT);
}
}
if (type == MQTT_MESSAGE_EVENT) {
// Group color
if ((mqtt_group_color.length() > 0) && (mqtt_group_color.equals(topic))) {
_lightFromGroupPayload(payload);
_lightUpdateFromMqttGroup();
return;
}
// Match topic
String t = mqttMagnitude(topic);
// Color temperature in mireds
if (t.equals(MQTT_TOPIC_MIRED)) {
_lightAdjustMireds(payload);
_lightUpdateFromMqtt();
return;
}
// Color temperature in kelvins
if (t.equals(MQTT_TOPIC_KELVIN)) {
_lightAdjustKelvin(payload);
_lightUpdateFromMqtt();
return;
}
// Color
if (t.equals(MQTT_TOPIC_COLOR_RGB) || t.equals(MQTT_TOPIC_COLOR_HEX)) {
_lightFromRgbPayload(payload);
_lightUpdateFromMqtt();
return;
}
if (t.equals(MQTT_TOPIC_COLOR_HSV)) {
_lightFromHsvPayload(payload);
_lightUpdateFromMqtt();
return;
}
// Transition setting
if (t.equals(MQTT_TOPIC_TRANSITION)) {
lightTransition(strtoul(payload, nullptr, 10), _light_transition_step);
return;
}
// Brightness
if (t.equals(MQTT_TOPIC_BRIGHTNESS)) {
_lightAdjustBrightness(payload);
_lightUpdateFromMqtt();
return;
}
// Channel
if (t.startsWith(MQTT_TOPIC_CHANNEL)) {
size_t id;
if (!_lightTryParseChannel(t.c_str() + strlen(MQTT_TOPIC_CHANNEL) + 1, id)) {
return;
}
_lightAdjustChannel(id, payload);
_lightUpdateFromMqtt();
return;
}
// Global
if (t.equals(MQTT_TOPIC_LIGHT)) {
_lightParsePayload(payload);
_lightUpdateFromMqtt();
}
}
}
void _lightMqttSetup() {
mqttHeartbeat(_lightMqttHeartbeat);
mqttRegister(_lightMqttCallback);
}
} // namespace
void lightMQTT() {
if (_light_has_color) {
auto rgb = _lightToTargetRgb();
mqttSend(MQTT_TOPIC_COLOR_HEX, _lightRgbHexPayload(rgb).c_str());
mqttSend(MQTT_TOPIC_COLOR_RGB, _lightRgbPayload(rgb).c_str());
mqttSend(MQTT_TOPIC_COLOR_HSV, _lightHsvPayload(rgb).c_str());
}
if (_light_has_color || _light_use_cct) {
mqttSend(MQTT_TOPIC_MIRED, String(_light_mireds).c_str());
}
for (size_t channel = 0; channel < _light_channels.size(); ++channel) {
mqttSend(MQTT_TOPIC_CHANNEL, channel, String(_light_channels[channel].target).c_str());
}
mqttSend(MQTT_TOPIC_BRIGHTNESS, String(_light_brightness).c_str());
if (!_light_has_controls) {
mqttSend(MQTT_TOPIC_LIGHT, _light_state ? "1" : "0");
}
}
void lightMQTTGroup() {
const String mqtt_group_color = Light::settings::mqttGroup();
if (mqtt_group_color.length()) {
mqttSendRaw(mqtt_group_color.c_str(), _lightGroupPayload().c_str());
}
}
#endif
// -----------------------------------------------------------------------------
// API
// -----------------------------------------------------------------------------
#if API_SUPPORT
namespace {
template <typename T>
bool _lightApiTryHandle(ApiRequest& request, T&& callback) {
auto id_param = request.wildcard(0);
size_t id;
if (!_lightTryParseChannel(id_param.c_str(), id)) {
return false;
}
return callback(id);
}
bool _lightApiRgbSetter(ApiRequest& request) {
lightColor(request.param(F("value")), true);
lightUpdate();
return true;
}
void _lightApiSetup() {
if (_light_has_color) {
apiRegister(F(MQTT_TOPIC_COLOR_RGB),
[](ApiRequest& request) {
request.send(_lightRgbPayload(_lightToTargetRgb()));
return true;
},
_lightApiRgbSetter
);
apiRegister(F(MQTT_TOPIC_COLOR_HEX),
[](ApiRequest& request) {
request.send(_lightRgbHexPayload(_lightToTargetRgb()));
return true;
},
_lightApiRgbSetter
);
apiRegister(F(MQTT_TOPIC_COLOR_HSV),
[](ApiRequest& request) {
request.send(_lightHsvPayload());
return true;
},
[](ApiRequest& request) {
lightColor(request.param(F("value")), false);
lightUpdate();
return true;
}
);
apiRegister(F(MQTT_TOPIC_MIRED),
[](ApiRequest& request) {
request.send(String(_light_mireds));
return true;
},
[](ApiRequest& request) {
_lightAdjustMireds(request.param(F("value")));
lightUpdate();
return true;
}
);
apiRegister(F(MQTT_TOPIC_KELVIN),
[](ApiRequest& request) {
request.send(String(_toKelvin(_light_mireds)));
return true;
},
[](ApiRequest& request) {
_lightAdjustKelvin(request.param(F("value")));
lightUpdate();
return true;
}
);
}
apiRegister(F(MQTT_TOPIC_TRANSITION),
[](ApiRequest& request) {
request.send(String(lightTransitionTime()));
return true;
},
[](ApiRequest& request) {
auto value = request.param(F("value"));
lightTransition(strtoul(value.c_str(), nullptr, 10), _light_transition_step);
return true;
}
);
apiRegister(F(MQTT_TOPIC_BRIGHTNESS),
[](ApiRequest& request) {
request.send(String(static_cast<int>(_light_brightness)));
return true;
},
[](ApiRequest& request) {
_lightAdjustBrightness(request.param(F("value")));
lightUpdate();
return true;
}
);
apiRegister(F(MQTT_TOPIC_CHANNEL "/+"),
[](ApiRequest& request) {
return _lightApiTryHandle(request, [&](size_t id) {
request.send(String(static_cast<int>(_light_channels[id].target)));
return true;
});
},
[](ApiRequest& request) {
return _lightApiTryHandle(request, [&](size_t id) {
_lightAdjustChannel(id, request.param(F("value")));
lightUpdate();
return true;
});
}
);
if (!_light_has_controls) {
apiRegister(F(MQTT_TOPIC_LIGHT),
[](ApiRequest& request) {
request.send(lightState() ? "1" : "0");
return true;
},
[](ApiRequest& request) {
_lightParsePayload(request.param(F("value")));
lightUpdate();
return true;
}
);
}
}
} // namespace
#endif // API_SUPPORT
#if WEB_SUPPORT
namespace {
bool _lightWebSocketOnKeyCheck(const char* key, JsonVariant&) {
return (strncmp(key, "light", 5) == 0)
|| (strncmp(key, "use", 3) == 0)
|| (strncmp(key, "lt", 2) == 0);
}
void _lightWebSocketStatus(JsonObject& root) {
if (_light_has_color) {
if (_light_use_rgb) {
root["rgb"] = _lightRgbHexPayload(_lightToInputRgb());
} else {
root["hsv"] = _lightHsvPayload(_lightToTargetRgb());
}
}
if (_light_use_cct) {
JsonObject& mireds = root.createNestedObject("mireds");
mireds["value"] = _light_mireds;
mireds["cold"] = _light_cold_mireds;
mireds["warm"] = _light_warm_mireds;
root["useCCT"] = _light_use_cct;
}
JsonArray& channels = root.createNestedArray("channels");
for (auto& channel : _light_channels) {
channels.add(channel.inputValue);
}
root["brightness"] = _light_brightness;
root["lightstate"] = _light_state;
}
void _lightWebSocketOnVisible(JsonObject& root) {
wsPayloadModule(root, "color");
}
void _lightWebSocketOnConnected(JsonObject& root) {
root["mqttGroupColor"] = Light::settings::mqttGroup();
root["useColor"] = _light_has_color;
root["useWhite"] = _light_use_white;
root["useGamma"] = _light_use_gamma;
root["useTransitions"] = _light_use_transitions;
root["useRGB"] = _light_use_rgb;
root["ltSave"] = _light_save;
root["ltSaveDelay"] = _light_save_delay;
root["ltTime"] = _light_transition_time;
root["ltStep"] = _light_transition_step;
#if RELAY_SUPPORT
root["ltRelay"] = Light::settings::relay();
#endif
}
void _lightWebSocketOnAction(uint32_t client_id, const char* action, JsonObject& data) {
if (_light_has_color) {
if (strcmp(action, "color") == 0) {
if (data.containsKey("rgb")) {
_lightFromRgbPayload(data["rgb"].as<const char*>());
lightUpdate();
} else if (data.containsKey("hsv")) {
_lightFromHsvPayload(data["hsv"].as<const char*>());
lightUpdate();
}
}
}
if (strcmp(action, "mireds") == 0) {
if (data.containsKey("mireds")) {
_fromMireds(data["mireds"].as<long>());
lightUpdate();
}
} else if (strcmp(action, "channel") == 0) {
if (data.containsKey("id") && data.containsKey("value")) {
lightChannel(data["id"].as<size_t>(), data["value"].as<long>());
lightUpdate();
}
} else if (strcmp(action, "brightness") == 0) {
if (data.containsKey("value")) {
lightBrightness(data["value"].as<long>());
lightUpdate();
}
}
}
} // namespace
#endif
#if TERMINAL_SUPPORT
namespace {
void _lightInitCommands() {
terminalRegisterCommand(F("LIGHT"), [](const terminal::CommandContext& ctx) {
if (ctx.argc > 1) {
if (!_lightParsePayload(ctx.argv[1].c_str())) {
terminalError(ctx, F("Invalid payload"));
return;
}
lightUpdate();
}
ctx.output.printf("%s\n", _light_state ? "ON" : "OFF");
terminalOK(ctx);
});
terminalRegisterCommand(F("BRIGHTNESS"), [](const terminal::CommandContext& ctx) {
if (ctx.argc > 1) {
_lightAdjustBrightness(ctx.argv[1]);
lightUpdate();
}
ctx.output.printf("%ld\n", _light_brightness);
terminalOK(ctx);
});
terminalRegisterCommand(F("CHANNEL"), [](const terminal::CommandContext& ctx) {
const size_t Channels { _light_channels.size() };
if (!Channels) {
terminalError(ctx, F("No channels configured"));
return;
}
auto description = [&](size_t channel) {
ctx.output.printf("#%u (%s) input:%ld value:%ld target:%ld current:%s\n",
channel, _lightDesc(Channels, channel),
_light_channels[channel].inputValue,
_light_channels[channel].value,
_light_channels[channel].target,
String(_light_channels[channel].current, 2).c_str());
};
if (ctx.argc > 2) {
size_t id;
if (!_lightTryParseChannel(ctx.argv[1].c_str(), id)) {
terminalError(ctx, F("Invalid channel ID"));
return;
}
_lightAdjustChannel(id, ctx.argv[2]);
lightUpdate();
description(id);
} else {
for (size_t index = 0; index < Channels; ++index) {
description(index);
}
}
terminalOK(ctx);
});
terminalRegisterCommand(F("RGB"), [](const terminal::CommandContext& ctx) {
if (ctx.argc > 1) {
_lightFromRgbPayload(ctx.argv[1].c_str());
lightUpdate();
}
ctx.output.printf_P(PSTR("rgb %s\n"), _lightRgbPayload(_lightToTargetRgb()).c_str());
terminalOK(ctx);
});
terminalRegisterCommand(F("HSV"), [](const terminal::CommandContext& ctx) {
if (ctx.argc > 1) {
_lightFromHsvPayload(ctx.argv[1].c_str());
lightUpdate();
}
ctx.output.printf_P(PSTR("hsv %s\n"), _lightHsvPayload().c_str());
terminalOK(ctx);
});
terminalRegisterCommand(F("KELVIN"), [](const terminal::CommandContext& ctx) {
if (ctx.argc > 1) {
_lightAdjustKelvin(ctx.argv[1]);
lightUpdate();
}
ctx.output.printf_P(PSTR("kelvin %ld\n"), _toKelvin(_light_mireds));
terminalOK(ctx);
});
terminalRegisterCommand(F("MIRED"), [](const terminal::CommandContext& ctx) {
if (ctx.argc > 1) {
_lightAdjustMireds(ctx.argv[1]);
lightUpdate();
}
ctx.output.printf_P(PSTR("mireds %ld\n"), _light_mireds);
terminalOK(ctx);
});
}
} // namespace
#endif // TERMINAL_SUPPORT
size_t lightChannels() {
return _light_channels.size();
}
bool lightHasColor() {
return _light_has_color;
}
bool lightUseCCT() {
return _light_use_cct;
}
bool lightUseRGB() {
return _light_use_rgb;
}
// -----------------------------------------------------------------------------
Light::Rgb lightRgb() {
return _lightToTargetRgb();
}
void lightRgb(Light::Rgb rgb) {
_light_mapping.red(rgb.red());
_light_mapping.green(rgb.green());
_light_mapping.blue(rgb.blue());
}
// HSV to RGB transformation -----------------------------------------------
//
// INPUT: [0,100,57]
// IS: [145,0,0]
// SHOULD: [255,0,0]
void lightHsv(Light::Hsv hsv) {
double r { 0.0 };
double g { 0.0 };
double b { 0.0 };
auto v = static_cast<double>(hsv.value()) / 100.0;
long brightness { std::lround(v * static_cast<double>(Light::BrightnessMax)) };
if (hsv.saturation()) {
auto h = hsv.hue();
if (h < 0) {
h = 0;
} else if (h >= 360) {
h = 359;
}
auto s = static_cast<double>(hsv.saturation()) / 100.0;
auto c = v * s;
auto hmod2 = fs_fmod(static_cast<double>(h) / 60.0, 2.0);
auto x = c * (1.0 - std::abs(hmod2 - 1.0));
auto m = v - c;
if ((0 <= h) && (h < 60)) {
r = c;
g = x;
} else if ((60 <= h) && (h < 120)) {
r = x;
g = c;
} else if ((120 <= h) && (h < 180)) {
g = c;
b = x;
} else if ((180 <= h) && (h < 240)) {
g = x;
b = c;
} else if ((240 <= h) && (h < 300)) {
r = x;
b = c;
} else if ((300 <= h) && (h < 360)) {
r = c;
b = x;
}
r = (r + m) * 255.0;
g = (g + m) * 255.0;
b = (b + m) * 255.0;
} else {
r = brightness;
g = brightness;
b = brightness;
}
_light_mapping.red(std::lround(r));
_light_mapping.green(std::lround(g));
_light_mapping.blue(std::lround(b));
lightBrightness(brightness);
}
void lightHs(long hue, long saturation) {
lightHsv({hue, saturation, Light::Hsv::ValueMax});
}
Light::Hsv lightHsv() {
return _lightHsv(_lightToTargetRgb());
}
// -----------------------------------------------------------------------------
void lightOnReport(LightReportListener func) {
_light_report.push_front(func);
}
namespace {
void _lightReport(int report) {
#if MQTT_SUPPORT
if (report & Light::Report::Mqtt) {
lightMQTT();
}
if (report & Light::Report::MqttGroup) {
lightMQTTGroup();
}
#endif
#if WEB_SUPPORT
if (report & Light::Report::Web) {
wsPost(_lightWebSocketStatus);
}
#endif
for (auto& report : _light_report) {
report();
}
}
// Called in the loop() when we received lightUpdate(...) values
void _lightUpdateDebug(const LightTransitionHandler& handler) {
const auto Time = handler.time();
const auto Step = handler.step();
if (Time - Step) {
DEBUG_MSG_P(PSTR("[LIGHT] Scheduled transition for %u (ms) every %u (ms)\n"), Time, Step);
}
for (auto& transition : handler.transitions()) {
if (transition.count > 1) {
DEBUG_MSG_P(PSTR("[LIGHT] Transition from %s to %ld (step %s, %u times)\n"),
String(transition.value, 2).c_str(), transition.target,
String(transition.step, 2).c_str(), transition.count);
}
}
}
struct LightValuesObserver {
using Values = std::vector<long>;
LightValuesObserver() = delete;
explicit LightValuesObserver(const LightChannels& channels) :
_channels(channels)
{
save(_last);
}
bool changed() const {
static Values current;
save(current);
return current != _last;
}
private:
void save(Values& output) const {
output.clear();
output.reserve(_channels.size());
for (auto& channel : _channels) {
output.push_back(channel.value);
}
}
static Values _last;
const LightChannels& _channels;
};
LightValuesObserver::Values LightValuesObserver::_last;
void _lightUpdate() {
if (!_light_update) {
return;
}
LightValuesObserver observer(_light_channels);
_light_process_input_values(_light_channels, _light_brightness);
if (!_light_state_changed && !observer.changed()) {
_light_update.cancel();
return;
}
_light_state_changed = false;
_light_update.run([](bool save, LightTransition transition, int report) {
// Channel output values will be set by the handler class and the specified provider
// We either set the values immediately or schedule an ongoing transition
_light_transition = std::make_unique<LightTransitionHandler>(_light_channels, _light_state, transition);
_lightProviderSchedule(_light_transition->step());
_lightUpdateDebug(*_light_transition);
// Send current state to all available 'report' targets
// (make sure to delay the report, in case lightUpdate is called repeatedly)
_light_report_ticker.once_ms(_light_report_delay, [report]() {
_lightReport(report);
});
// Always save to RTCMEM, optionally preserve the state in the settings storage
_lightSaveRtcmem();
if (save) {
_light_save_ticker.once_ms(_light_save_delay, _lightSaveSettings);
}
});
}
} // namespace
void lightUpdate(bool save, LightTransition transition, int report) {
#if LIGHT_PROVIDER == LIGHT_PROVIDER_CUSTOM
if (!_light_provider) {
return;
}
#endif
if (!_light_channels.size()) {
return;
}
_light_update.set(save, transition, report);
}
void lightUpdate(bool save, LightTransition transition, Light::Report report) {
lightUpdate(save, transition, static_cast<int>(report));
}
void lightUpdate(LightTransition transition) {
lightUpdate(_light_save, transition, Light::DefaultReport);
}
void lightUpdate(bool save) {
lightUpdate(save, lightTransition(), Light::DefaultReport);
}
void lightUpdate() {
lightUpdate(lightTransition());
}
void lightState(size_t id, bool state) {
if ((id < _light_channels.size()) && _light_channels[id].state != state) {
_light_channels[id].state = state;
_light_state_changed = true;
}
}
bool lightState(size_t id) {
if (id < _light_channels.size()) {
return _light_channels[id].state;
}
return false;
}
void lightState(bool state) {
if (_light_state != state) {
_light_state = state;
if (_light_state_listener) {
_light_state_listener(state);
}
_light_state_changed = true;
}
}
bool lightState() {
return _light_state;
}
void lightColor(const char* color, bool rgb) {
DEBUG_MSG_P(PSTR("[LIGHT] %s: %s\n"), rgb ? "RGB" : "HSV", color);
if (rgb) {
_lightFromRgbPayload(color);
} else {
_lightFromHsvPayload(color);
}
}
void lightColor(const String& color, bool rgb) {
lightColor(color.c_str(), rgb);
}
void lightColor(const char* color) {
lightColor(color, true);
}
void lightColor(const String& color) {
lightColor(color.c_str());
}
String lightRgbPayload() {
return _lightRgbPayload();
}
String lightHsvPayload() {
return _lightHsvPayload();
}
String lightColor() {
return _light_use_rgb ? lightRgbPayload() : lightHsvPayload();
}
long lightRed() {
return _light_mapping.red();
}
void lightRed(long value) {
_light_mapping.red(value);
}
long lightGreen() {
return _light_mapping.green();
}
void lightGreen(long value) {
_light_mapping.green(value);
}
long lightBlue() {
return _light_mapping.blue();
}
void lightBlue(long value) {
_light_mapping.blue(value);
}
long lightWarmWhite() {
return _light_mapping.warm();
}
void lightWarmWhite(long value) {
_light_mapping.warm(value);
}
long lightColdWhite() {
return _light_mapping.cold();
}
void lightColdWhite(long value) {
_light_mapping.cold(value);
}
void lightMireds(long mireds) {
_fromMireds(mireds);
}
Light::MiredsRange lightMiredsRange() {
return { _light_cold_mireds, _light_warm_mireds };
}
long lightChannel(size_t id) {
if (id < _light_channels.size()) {
return _light_channels[id].inputValue;
}
return 0l;
}
void lightChannel(size_t id, long value) {
if (id < _light_channels.size()) {
_light_channels[id] = value;
}
}
void lightChannelStep(size_t id, long steps, long multiplier) {
lightChannel(id, lightChannel(id) + (steps * multiplier));
}
long lightBrightness() {
return _light_brightness;
}
void lightBrightness(long brightness) {
_light_brightness = std::clamp(brightness, Light::BrightnessMin, Light::BrightnessMax);
}
void lightBrightnessStep(long steps, long multiplier) {
lightBrightness(static_cast<int>(_light_brightness) + (steps * multiplier));
}
unsigned long lightTransitionTime() {
return _light_use_transitions ? _light_transition_time : 0;
}
unsigned long lightTransitionStep() {
return _light_use_transitions ? _light_transition_step : 0;
}
LightTransition lightTransition() {
return {lightTransitionTime(), lightTransitionStep()};
}
void lightTransition(unsigned long time, unsigned long step) {
bool save { false };
_light_use_transitions = (time && step);
if (_light_use_transitions) {
save = true;
_light_transition_time = time;
_light_transition_step = step;
}
Light::settings::transition(_light_use_transitions);
if (save) {
Light::settings::transitionTime(_light_transition_time);
Light::settings::transitionStep(_light_transition_step);
}
saveSettings();
}
void lightTransition(LightTransition transition) {
lightTransition(transition.time, transition.step);
}
// -----------------------------------------------------------------------------
// SETUP
// -----------------------------------------------------------------------------
namespace {
#if LIGHT_PROVIDER == LIGHT_PROVIDER_DIMMER
const unsigned long _light_iomux[16] PROGMEM = {
PERIPHS_IO_MUX_GPIO0_U, PERIPHS_IO_MUX_U0TXD_U, PERIPHS_IO_MUX_GPIO2_U, PERIPHS_IO_MUX_U0RXD_U,
PERIPHS_IO_MUX_GPIO4_U, PERIPHS_IO_MUX_GPIO5_U, PERIPHS_IO_MUX_SD_CLK_U, PERIPHS_IO_MUX_SD_DATA0_U,
PERIPHS_IO_MUX_SD_DATA1_U, PERIPHS_IO_MUX_SD_DATA2_U, PERIPHS_IO_MUX_SD_DATA3_U, PERIPHS_IO_MUX_SD_CMD_U,
PERIPHS_IO_MUX_MTDI_U, PERIPHS_IO_MUX_MTCK_U, PERIPHS_IO_MUX_MTMS_U, PERIPHS_IO_MUX_MTDO_U
};
const unsigned long _light_iofunc[16] PROGMEM = {
FUNC_GPIO0, FUNC_GPIO1, FUNC_GPIO2, FUNC_GPIO3,
FUNC_GPIO4, FUNC_GPIO5, FUNC_GPIO6, FUNC_GPIO7,
FUNC_GPIO8, FUNC_GPIO9, FUNC_GPIO10, FUNC_GPIO11,
FUNC_GPIO12, FUNC_GPIO13, FUNC_GPIO14, FUNC_GPIO15
};
#endif
inline bool _lightUseGamma(size_t channels, size_t index) {
switch (_lightTag(channels, index)) {
case 'R':
case 'G':
case 'B':
return true;
}
return false;
}
inline bool _lightUseGamma(size_t index) {
return _lightUseGamma(_light_channels.size(), index);
}
void _lightConfigure() {
const size_t Channels { _light_channels.size() };
// TODO: just bounce off invalid input, so there's no need for setting values back?
_light_has_color = Light::settings::color();
if (_light_has_color && (Channels < 3)) {
_light_has_color = false;
Light::settings::color(false);
}
_light_use_white = Light::settings::white();
if (_light_use_white && (Channels < 4) && (Channels != 2)) {
_light_use_white = false;
Light::settings::white(false);
}
_light_use_cct = Light::settings::cct();
if (_light_use_cct && (((Channels < 5) && (Channels != 2)) || !_light_use_white)) {
_light_use_cct = false;
Light::settings::cct(false);
}
// TODO: cct and white can't be enabled at the same time
const auto last_process_input_values = _light_process_input_values;
_light_process_input_values =
(_light_has_color) ? (
(_light_use_cct) ? _lightValuesWithRgbCct :
(_light_use_white) ? _lightValuesWithRgbWhite :
_lightValuesWithBrightnessExceptWhite) :
_lightValuesWithBrightness;
_light_use_rgb = Light::settings::rgb();
// TODO: provide single entrypoint for colortemp
_light_cold_mireds = Light::settings::miredsCold();
_light_warm_mireds = Light::settings::miredsWarm();
_light_cold_kelvin = (1000000L / _light_cold_mireds);
_light_warm_kelvin = (1000000L / _light_warm_mireds);
_light_use_transitions = Light::settings::transition();
_light_transition_time = Light::settings::transitionTime();
_light_transition_step = Light::settings::transitionStep();
_light_save = Light::settings::save();
_light_save_delay = Light::settings::saveDelay();
_light_use_gamma = Light::settings::gamma();
for (size_t index = 0; index < Channels; ++index) {
#if LIGHT_PROVIDER == LIGHT_PROVIDER_MY92XX
_light_my92xx_channel_map[index] = Light::settings::my92xxChannel(index);
#endif
_light_channels[index].inverse = Light::settings::inverse(index);
_light_channels[index].gamma = (_light_has_color && _light_use_gamma) && _lightUseGamma(Channels, index);
}
if (!_light_update && (last_process_input_values != _light_process_input_values)) {
lightUpdate(false);
}
}
#if RELAY_SUPPORT
void _lightRelayBoot() {
if (_light_has_controls) {
return;
}
auto next_id = relayCount();
if (relayAdd(std::make_unique<LightGlobalProvider>())) {
_light_state_listener = [next_id](bool state) {
relayStatus(next_id, state);
};
_light_has_controls = true;
}
}
#endif
void _lightBoot() {
const size_t Channels { _light_channels.size() };
if (Channels) {
DEBUG_MSG_P(PSTR("[LIGHT] Number of channels: %u\n"), Channels);
_lightUpdateMapping(_light_channels);
_lightConfigure();
if (rtcmemStatus()) {
_lightRestoreRtcmem();
} else {
_lightRestoreSettings();
}
_light_state_changed = true;
lightUpdate(false);
}
}
} // namespace
#if LIGHT_PROVIDER == LIGHT_PROVIDER_CUSTOM
// Custom provider is expected to:
// - register a controller class via `lightSetProvider(...)`
// - use `lightAdd()` N times to create N channels that will be handled via the controller
// Once that's done, we 'boot' the provider and disable further calls to the `lightAdd()`
void lightSetProvider(std::unique_ptr<LightProvider>&& ptr) {
_light_provider = std::move(ptr);
}
bool lightAdd() {
enum class State {
None,
Scheduled,
Done
};
static State state { State::None };
if (State::Done == state) {
return false;
}
if (_light_channels.size() < Light::ChannelsMax) {
_light_channels.emplace_back(GPIO_NONE);
if (State::Scheduled != state) {
state = State::Scheduled;
schedule_function([]() {
_lightBoot();
state = State::Done;
});
}
return true;
}
return false;
}
#else
bool lightAdd() {
return false;
}
#endif // LIGHT_PROVIDER_CUSTOM
namespace {
void _lightProviderDebug() {
DEBUG_MSG_P(PSTR("[LIGHT] Provider: "
#if LIGHT_PROVIDER == LIGHT_PROVIDER_NONE
"NONE"
#elif LIGHT_PROVIDER == LIGHT_PROVIDER_DIMMER
"DIMMER"
#elif LIGHT_PROVIDER == LIGHT_PROVIDER_MY92XX
"MY92XX"
#elif LIGHT_PROVIDER == LIGHT_PROVIDER_CUSTOM
"CUSTOM"
#endif
"\n"));
}
void _lightSettingsMigrate(int version) {
if (version < 5) {
delSettingPrefix({
"chGPIO",
"chLogic",
"myChips",
"myDCKGPIO",
"myDIGPIO"
});
delSetting("lightProvider");
delSetting("useCSS");
moveSetting("lightTime", "ltTime");
moveSetting("lightColdMired", "ltColdMired");
moveSetting("lightWarmMired", "ltWarmMired");
}
}
} // namespace
// -----------------------------------------------------------------------------
void lightSetup() {
migrateVersion(_lightSettingsMigrate);
const auto enable_pin = Light::settings::enablePin();
if (enable_pin != GPIO_NONE) {
pinMode(enable_pin, OUTPUT);
digitalWrite(enable_pin, HIGH);
}
_light_channels.reserve(Light::ChannelsMax);
_lightProviderDebug();
#if LIGHT_PROVIDER == LIGHT_PROVIDER_MY92XX
{
// TODO: library API specifies some hard-coded amount of channels, based off of the model and chips
// we always map channel index 1-to-1, to simplify hw config, but most of the time there are less active channels
// than the value generated by the lib (ref. `my92xx::getChannels()`)
auto channels = Light::settings::my92xxChannels();
if (channels) {
_my92xx = new my92xx(
Light::settings::my92xxModel(),
Light::settings::my92xxChips(),
Light::settings::my92xxDiPin(),
Light::settings::my92xxDckiPin(),
Light::build::my92xxCommand());
for (size_t index = 0; index < channels; ++index) {
_light_channels.emplace_back(GPIO_NONE);
}
}
}
#elif LIGHT_PROVIDER == LIGHT_PROVIDER_DIMMER
{
// Initial duty value (will be passed to pwm_set_duty(...), OFF in this case)
uint32_t pwm_duty_init[Light::ChannelsMax] = {0};
// 3-tuples of MUX_REGISTER, MUX_VALUE and GPIO number
uint32_t io_info[Light::ChannelsMax][3];
for (size_t index = 0; index < Light::ChannelsMax; ++index) {
// Load up until first GPIO_NONE. Allow settings to override, but not remove values
const auto pin = Light::settings::channelPin(index);
if (!gpioValid(pin)) {
break;
}
_light_channels.emplace_back(pin);
io_info[index][0] = pgm_read_dword(&_light_iomux[pin]);
io_info[index][1] = pgm_read_dword(&_light_iofunc[pin]);
io_info[index][2] = pin;
pinMode(pin, OUTPUT);
}
// with 0 channels this should not do anything at all and provider will never call pwm_set_duty(...)
pwm_init(Light::PwmMax, pwm_duty_init, _light_channels.size(), io_info);
pwm_start();
}
#endif
_lightBoot();
#if RELAY_SUPPORT
if (Light::settings::relay()) {
_lightRelayBoot();
}
#endif
#if WEB_SUPPORT
wsRegister()
.onVisible(_lightWebSocketOnVisible)
.onConnected(_lightWebSocketOnConnected)
.onData(_lightWebSocketStatus)
.onAction(_lightWebSocketOnAction)
.onKeyCheck(_lightWebSocketOnKeyCheck);
#endif
#if API_SUPPORT
_lightApiSetup();
#endif
#if MQTT_SUPPORT
_lightMqttSetup();
#endif
#if TERMINAL_SUPPORT
_lightInitCommands();
#endif
espurnaRegisterReload(_lightConfigure);
espurnaRegisterLoop([]() {
_lightUpdate();
_lightProviderUpdate();
});
}
#endif // LIGHT_PROVIDER != LIGHT_PROVIDER_NONE