Mirror of espurna firmware for wireless switches and more
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

3725 lines
97 KiB

/*
LIGHT MODULE
Copyright (C) 2016-2019 by Xose Pérez <xose dot perez at gmail dot com>
Copyright (C) 2019-2021 by Maxim Prokhorov <prokhorov dot max at outlook dot com>
*/
#include "light.h"
#if LIGHT_PROVIDER != LIGHT_PROVIDER_NONE
#include "api.h"
#include "mqtt.h"
#include "relay.h"
#include "rpc.h"
#include "rtcmem.h"
#include "ws.h"
#include <ArduinoJson.h>
#include <array>
#include <cstring>
#include <vector>
#include "libs/fs_math.h"
#if LIGHT_PROVIDER == LIGHT_PROVIDER_MY92XX
#include <my92xx.h>
#endif
#if LIGHT_PROVIDER == LIGHT_PROVIDER_DIMMER
#include "pwm.h"
#endif
// -----------------------------------------------------------------------------
namespace espurna {
namespace light {
#if __GNUC__ > 4
static_assert(std::is_trivially_copyable<Rgb>::value, "");
static_assert(std::is_trivially_copyable<Hsv>::value, "");
static_assert(std::is_trivially_copyable<TemperatureRange>::value, "");
#endif
constexpr long Rgb::Min;
constexpr long Rgb::Max;
constexpr long Hsv::HueMin;
constexpr long Hsv::HueMax;
constexpr long Hsv::SaturationMin;
constexpr long Hsv::SaturationMax;
constexpr long Hsv::ValueMin;
constexpr long Hsv::ValueMax;
static_assert(MiredsCold < MiredsWarm, "");
constexpr long MiredsDefault { (MiredsCold + MiredsWarm) / 2L };
namespace {
namespace build {
constexpr float WhiteFactor { LIGHT_WHITE_FACTOR };
constexpr bool relay() {
return 1 == LIGHT_RELAY_ENABLED;
}
constexpr bool color() {
return 1 == LIGHT_USE_COLOR;
}
constexpr bool white() {
return 1 == LIGHT_USE_WHITE;
}
constexpr bool cct() {
return 1 == LIGHT_USE_CCT;
}
constexpr bool rgb() {
return 1 == LIGHT_USE_RGB;
}
constexpr bool gamma() {
return 1 == LIGHT_USE_GAMMA;
}
constexpr bool transition() {
return 1 == LIGHT_USE_TRANSITIONS;
}
constexpr espurna::duration::Milliseconds transitionTime() {
return espurna::duration::Milliseconds(LIGHT_TRANSITION_TIME);
}
constexpr espurna::duration::Milliseconds transitionStep() {
return espurna::duration::Milliseconds(LIGHT_TRANSITION_STEP);
}
constexpr bool save() {
return 1 == LIGHT_SAVE_ENABLED;
}
constexpr espurna::duration::Milliseconds saveDelay() {
return espurna::duration::Milliseconds(LIGHT_SAVE_DELAY);
}
constexpr espurna::duration::Milliseconds reportDelay() {
return espurna::duration::Milliseconds(LIGHT_REPORT_DELAY);
}
constexpr unsigned char enablePin() {
return LIGHT_ENABLE_PIN;
}
constexpr unsigned char channelPin(size_t index) {
return (
(index == 0) ? LIGHT_CH1_PIN :
(index == 1) ? LIGHT_CH2_PIN :
(index == 2) ? LIGHT_CH3_PIN :
(index == 3) ? LIGHT_CH4_PIN :
(index == 4) ? LIGHT_CH5_PIN : GPIO_NONE
);
}
constexpr bool inverse(size_t index) {
return (
(index == 0) ? (1 == LIGHT_CH1_INVERSE) :
(index == 1) ? (1 == LIGHT_CH2_INVERSE) :
(index == 2) ? (1 == LIGHT_CH3_INVERSE) :
(index == 3) ? (1 == LIGHT_CH4_INVERSE) :
(index == 4) ? (1 == LIGHT_CH5_INVERSE) : false
);
}
#if LIGHT_PROVIDER == LIGHT_PROVIDER_MY92XX
constexpr my92xx_cmd_t my92xxCommand() {
return MY92XX_COMMAND;
}
constexpr size_t my92xxChannels() {
return MY92XX_CHANNELS;
}
constexpr my92xx_model_t my92xxModel() {
return MY92XX_MODEL;
}
constexpr int my92xxChips() {
return MY92XX_CHIPS;
}
constexpr int my92xxDiPin() {
return MY92XX_DI_PIN;
}
constexpr int my92xxDckiPin() {
return MY92XX_DCKI_PIN;
}
#if defined(MY92XX_MAPPING)
namespace my92xx {
constexpr unsigned char mapping[MY92XX_CHANNELS] {
MY92XX_MAPPING
};
template <typename... T>
struct FailSafe {
static constexpr bool value { false };
};
constexpr unsigned char channel(T channel) {
static_assert(FailSafe<T>::value, "MY92XX_CH# flags should be used instead of MY92XX_MAPPING");
return mapping[channel];
}
} // namespace my92xx
constexpr unsigned char my92xxChannel(size_t channel) {
return my92xx::channel(channel);
}
#else // !defined(MY92XX_MAPPING)
constexpr unsigned char my92xxChannel(size_t channel) {
return (channel == 0) ? MY92XX_CH1 :
(channel == 1) ? MY92XX_CH2 :
(channel == 2) ? MY92XX_CH3 :
(channel == 3) ? MY92XX_CH4 :
(channel == 4) ? MY92XX_CH5 : espurna::light::ChannelsMax;
}
#endif
#endif
} // namespace build
namespace settings {
unsigned char enablePin() {
return getSetting("ltEnableGPIO", espurna::light::build::enablePin());
}
#if LIGHT_PROVIDER == LIGHT_PROVIDER_DIMMER
unsigned char channelPin(size_t index) {
return getSetting({"ltDimmerGPIO", index}, build::channelPin(index));
}
#endif
bool inverse(size_t index) {
return getSetting({"ltInv", index}, build::inverse(index));
}
#if LIGHT_PROVIDER == LIGHT_PROVIDER_MY92XX
size_t my92xxChannels() {
return getSetting("ltMy92xxChannels", build::my92xxChannels());
}
my92xx_model_t my92xxModel() {
return getSetting("ltMy92xxModel", build::my92xxModel());
}
int my92xxChips() {
return getSetting("ltMy92xxChips", build::my92xxChips());
}
int my92xxDiPin() {
return getSetting("ltMy92xxDiGPIO", build::my92xxDiPin());
}
int my92xxDckiPin() {
return getSetting("ltMy92xxDckiGPIO", build::my92xxDckiPin());
}
unsigned char my92xxChannel(size_t channel) {
return getSetting({"ltMy92xxCh", channel}, build::my92xxChannel(channel));
}
#endif
// TODO: avoid clamping here in favour of handlers themselves always making sure values are in range?
long value(size_t channel) {
const long defaultValue { (channel == 0) ? espurna::light::ValueMax : espurna::light::ValueMin };
return std::clamp(getSetting({"ch", channel}, defaultValue), espurna::light::ValueMin, espurna::light::ValueMax);
}
void value(size_t channel, long input) {
setSetting({"ch", channel}, input);
}
espurna::light::Mireds mireds() {
return getSetting(
"mireds",
espurna::light::Mireds{
.value = espurna::light::MiredsDefault
});
}
long miredsCold() {
return getSetting("ltColdMired", espurna::light::MiredsCold);
}
long miredsWarm() {
return getSetting("ltWarmMired", espurna::light::MiredsWarm);
}
void mireds(espurna::light::Mireds mireds) {
setSetting("mireds", mireds.value);
}
long brightness() {
return getSetting("brightness", espurna::light::BrightnessMax);
}
void brightness(long input) {
setSetting("brightness", input);
}
String mqttGroup() {
return getSetting("mqttGroupColor");
}
bool relay() {
return getSetting("ltRelay", build::relay());
}
bool color() {
return getSetting("useColor", build::color());
}
void color(bool value) {
setSetting("useColor", value);
}
bool white() {
return getSetting("useWhite", build::white());
}
void white(bool value) {
setSetting("useWhite", value);
}
bool cct() {
return getSetting("useCCT", build::cct());
}
void cct(bool value) {
setSetting("useCCT", value);
}
bool rgb() {
return getSetting("useRGB", build::rgb());
}
bool gamma() {
return getSetting("useGamma", build::gamma());
}
bool transition() {
return getSetting("useTransitions", build::transition());
}
void transition(bool value) {
setSetting("useTransitions", value);
}
espurna::duration::Milliseconds transitionTime() {
return getSetting("ltTime", build::transitionTime());
}
void transitionTime(espurna::duration::Milliseconds value) {
setSetting("ltTime", value.count());
}
espurna::duration::Milliseconds transitionStep() {
return getSetting("ltStep", build::transitionStep());
}
void transitionStep(espurna::duration::Milliseconds value) {
setSetting("ltStep", value.count());
}
bool save() {
return getSetting("ltSave", build::save());
}
espurna::duration::Milliseconds saveDelay() {
return getSetting("ltSaveDelay", build::saveDelay());
}
} // namespace settings
} // namespace
} // namespace light
} // namespace espurna
// -----------------------------------------------------------------------------
#if RELAY_SUPPORT
// Setup virtual relays contolling the light's state
// TODO: only do per-channel setup optionally
class LightChannelProvider : public RelayProviderBase {
public:
LightChannelProvider() = delete;
explicit LightChannelProvider(size_t id) :
_id(id)
{}
const char* id() const override {
return "light_channel";
}
void change(bool status) override {
lightState(_id, status);
lightState(true);
lightUpdate();
}
private:
size_t _id { RelaysMax };
};
class LightGlobalProvider : public RelayProviderBase {
public:
const char* id() const override {
return "light_global";
}
void change(bool status) override {
lightState(status);
lightUpdate();
}
};
#endif
namespace {
template <typename T>
long _lightChainedValue(long input, const T& process) {
return process(input);
}
template <typename T, typename... Args>
long _lightChainedValue(long input, const T& process, Args&&... args) {
return _lightChainedValue(process(input), std::forward<Args>(args)...);
}
} // namespace
struct LightChannel {
LightChannel() = default;
LightChannel(bool inverse, bool gamma) :
inverse(inverse),
gamma(gamma)
{}
LightChannel& operator=(long input) {
inputValue = std::clamp(input, espurna::light::ValueMin, espurna::light::ValueMax);
return *this;
}
void apply() {
value = inputValue;
}
template <typename T>
void apply(const T& process) {
value = std::clamp(process(inputValue), espurna::light::ValueMin, espurna::light::ValueMax);
}
template <typename T, typename... Args>
void apply(const T& process, Args&&... args) {
value = std::clamp(
_lightChainedValue(process(inputValue), std::forward<Args>(args)...),
espurna::light::ValueMin, espurna::light::ValueMax);
}
bool inverse { false }; // re-map the value from [ValueMin:ValueMax] to [ValueMax:ValueMin]
bool gamma { false }; // apply gamma correction to the target value
// TODO: remove in favour of global control, since relays are no longer bound to a single channel?
bool state { true }; // is the channel ON
long inputValue { espurna::light::ValueMin }; // raw, without the brightness
long value { espurna::light::ValueMin }; // normalized, including brightness
long target { espurna::light::ValueMin }; // resulting value that will be given to the provider
float current { espurna::light::ValueMin }; // interim between input and target, used by the transition handler
};
using LightChannels = std::vector<LightChannel>;
LightChannels _light_channels;
namespace espurna {
namespace light {
namespace {
struct Pointers {
using Type = LightChannels::pointer;
using Data = std::array<Type, 5>;
Pointers() = default;
explicit Pointers(LightChannels&);
Pointers(const Pointers&) = default;
Pointers& operator=(const Pointers&) = default;
Pointers(Pointers&&) = default;
Pointers& operator=(Pointers&&) = default;
Pointers& operator=(LightChannels& channels) {
_data.fill(nullptr);
reset(channels);
return *this;
}
LightChannel* red() const {
return _data[0];
}
LightChannel* green() const {
return _data[1];
}
LightChannel* blue() const {
return _data[2];
}
LightChannel* warm() const {
return _data[3];
}
LightChannel* cold() const {
return _data[4];
}
template <typename ...Args>
void maybeApply(Args&&... args) const {
for (auto ptr : _data) {
if (ptr) {
(*ptr).apply(std::forward<Args>(args)...);
}
}
}
private:
void reset(LightChannels& channels);
Data _data{};
};
void Pointers::reset(LightChannels& channels) {
switch (channels.size()) {
case 0:
break;
case 1:
_data[3] = &channels[0];
break;
case 2:
_data[3] = &channels[0];
_data[4] = &channels[1];
break;
case 3:
_data[0] = &channels[0];
_data[1] = &channels[1];
_data[2] = &channels[2];
break;
case 4:
_data[0] = &channels[0];
_data[1] = &channels[1];
_data[2] = &channels[2];
_data[3] = &channels[3];
break;
case 5:
_data[0] = &channels[0];
_data[1] = &channels[1];
_data[2] = &channels[2];
_data[3] = &channels[3];
_data[4] = &channels[4];
break;
}
}
Pointers::Pointers(LightChannels& channels) {
reset(channels);
}
struct Mapping {
void reset() {
_pointers = Pointers();
}
template <typename T>
Mapping operator=(T&& other) {
_pointers = std::forward<T>(other);
return *this;
}
long red() const {
return get(_pointers.red());
}
void red(long value) {
set(_pointers.red(), value);
}
long green() const {
return get(_pointers.green());
}
void green(long value) {
set(_pointers.green(), value);
}
long blue() const {
return get(_pointers.blue());
}
void blue(long value) {
set(_pointers.blue(), value);
}
long cold() const {
return get(_pointers.cold());
}
void cold(long value) {
set(_pointers.cold(), value);
}
long warm() const {
return get(_pointers.warm());
}
void warm(long value) {
set(_pointers.warm(), value);
}
const Pointers& pointers() const {
return _pointers;
}
private:
static long get(LightChannel* ptr) {
if (ptr) {
return ptr->target;
}
return espurna::light::ValueMin;
}
static void set(LightChannel* ptr, long value) {
if (ptr) {
*ptr = value;
}
}
Pointers _pointers;
};
} // namespace
} // namespace light
namespace settings {
namespace internal {
template <>
light::Mireds convert(const String& value) {
return light::Mireds{ .value = convert<long>(value) };
}
#if LIGHT_PROVIDER == LIGHT_PROVIDER_MY92XX
template <>
my92xx_model_t convert(const String& value) {
PROGMEM_STRING(MY9291, "9291");
PROGMEM_STRING(MY9231, "9231");
using Options = std::array<espurna::settings::options::Enumeration<my92xx_model_t>, 2>;
static constexpr Options options {
{{MY92XX_MODEL_MY9291, MY9291},
{MY92XX_MODEL_MY9231, MY9231}}
};
return convert(options, value, espurna::light::build::my92xxModel());
}
#endif
} // namespace internal
} // namespace settings
} // namespace espurna
namespace {
espurna::light::Mapping _light_mapping;
void _lightUpdateMapping(LightChannels& channels) {
_light_mapping = channels;
}
template <typename T>
struct LightTimerValue {
using Timer = espurna::timer::SystemTimer;
using Duration = Timer::Duration;
LightTimerValue() = delete;
constexpr LightTimerValue(T defaultValue) :
_defaultValue(defaultValue)
{}
explicit operator bool() const {
return _value != _defaultValue;
}
void wait_set(Duration duration, T value) {
_timer.once(
duration,
[this, value]() {
_value = value;
});
}
void reset() {
_value = _defaultValue;
}
T get() {
const auto value = _value;
reset();
return value;
}
private:
T _defaultValue;
T _value;
espurna::timer::SystemTimer _timer;
};
auto _light_save_delay = espurna::light::build::saveDelay();
bool _light_save { espurna::light::build::save() };
LightTimerValue<bool> _light_save_timer(false);
auto _light_report_delay = espurna::light::build::reportDelay();
std::forward_list<LightReportListener> _light_report;
LightTimerValue<int> _light_report_timer(0);
bool _light_has_controls = false;
bool _light_has_cold_white = false;
bool _light_has_warm_white = false;
bool _light_has_color = false;
bool _light_use_color = false;
bool _light_use_rgb = false;
bool _light_use_white = false;
bool _light_use_cct = false;
bool _light_use_gamma = false;
bool _light_state = false;
struct LightBrightness {
LightBrightness() = default;
explicit LightBrightness(long value) :
_value(clamp(value))
{}
LightBrightness& operator=(long value) {
this->value(value);
return *this;
}
long value() const {
return _value;
}
void value(long value) {
_value = clamp(value);
}
long percent() const {
return (_value * 100l) / espurna::light::BrightnessMax;
}
void percent(long value) {
const auto Fixed = std::clamp(value, 0l, 100l);
const auto Ratio = espurna::light::BrightnessMax * Fixed;
this->value(Ratio / 100l);
}
long operator()(long input) const {
return (input * _value) / espurna::light::BrightnessMax;
}
String toString() const {
return String(_value, 10);
}
private:
long clamp(long value) {
return std::clamp(value,
espurna::light::BrightnessMin,
espurna::light::BrightnessMax);
}
long _value { espurna::light::BrightnessMax };
};
LightBrightness _light_brightness;
// Default to the mireds scale, similar to Philips Hue and old Home Assistant.
// * https://developers.meethue.com/documentation/core-concepts
// Note that HA 2022.11+ uses kelvin as the native color temperature unit
// * https://www.home-assistant.io/blog/2022/11/02/release-202211/#color-temperatures-in-kelvin
struct LightTemperature {
static constexpr long MiredsKelvinScale { 1000000 };
long cold() const {
return _cold;
}
void cold(long value) {
_cold = value;
}
long warm() const {
return _warm;
}
void warm(long value) {
_warm = value;
}
void range(espurna::light::TemperatureRange range) {
_cold = range.cold();
_warm = range.warm();
}
float factor() const {
const auto Mireds = static_cast<float>(_value);
const auto Cold = static_cast<float>(_cold);
const auto Warm = static_cast<float>(_warm);
return (Mireds - Cold) / (Warm - Cold);
}
espurna::light::TemperatureRange range() const {
return {_cold, _warm};
}
espurna::light::Mireds mireds() const {
return {_value};
}
void mireds(espurna::light::Mireds mireds) {
_value = std::clamp(mireds.value, _cold, _warm);
}
espurna::light::Kelvin kelvin() const {
return {MiredsKelvinScale / _value};
}
LightTemperature& operator=(espurna::light::Mireds mireds) {
this->mireds(mireds);
return *this;
}
LightTemperature& operator=(espurna::light::Kelvin kelvin) {
*this = espurna::light::Mireds{
.value = MiredsKelvinScale / kelvin.value
};
return *this;
}
private:
long _value { espurna::light::MiredsDefault };
long _warm { espurna::light::MiredsWarm };
long _cold { espurna::light::MiredsCold };
};
LightTemperature _light_temperature;
bool _light_state_changed = false;
LightStateListener _light_state_listener = nullptr;
void _lightProcessNoop(LightChannels&) {
}
using LightProcessInputValues = void(*)(LightChannels&);
LightProcessInputValues _light_process_input_values { _lightProcessNoop };
#if LIGHT_PROVIDER == LIGHT_PROVIDER_MY92XX
std::unique_ptr<my92xx> _my92xx;
#endif
#if LIGHT_PROVIDER == LIGHT_PROVIDER_CUSTOM
std::unique_ptr<LightProvider> _light_provider;
#endif
} // namespace
// -----------------------------------------------------------------------------
// UTILS
// -----------------------------------------------------------------------------
namespace {
void _lightBrightnessPercent(long value) {
_light_brightness.percent(value);
}
long _lightBrightnessPercent() {
return _light_brightness.percent();
}
// After the channel value was updated through the API (i.e. through changing the `inputValue`),
// these functions are expected to be called. Which one is chosen is based on the current settings values.
// Basic brightness application; default when all other processing options are disabled
void _lightValuesWithBrightness(LightChannels& channels) {
const auto Brightness = _light_brightness;
for (auto& channel : channels) {
channel.apply(Brightness);
}
}
// Maintain compatibility with older versions, limit brightness application to the RGB when using 'color mode'.
void _lightValuesWithBrightnessExceptWhite(LightChannels& channels) {
auto ptr = espurna::light::Pointers(channels);
const auto Brightness = _light_brightness;
(*ptr.red()).apply(Brightness);
(*ptr.green()).apply(Brightness);
(*ptr.blue()).apply(Brightness);
if (ptr.warm()) {
(*ptr.warm()).apply();
}
if (ptr.cold()) {
(*ptr.cold()).apply();
}
}
// Reset inputValue directly in the expression
// Ignores all previous values, should only be used at the beginning
struct LightResetInput {
LightResetInput() = delete;
explicit LightResetInput(long value) :
_value(value)
{}
long operator()(long) const {
return _value;
}
// 0.0 is the 'coldest', 1.0 is the 'warmest'
static LightResetInput forWarm(float factor) {
return LightResetInput(factor * espurna::light::ValueMax);
}
// opposite value of `forWarm` for the given factor
static LightResetInput forCold(float factor) {
return LightResetInput((1.0f - factor) * espurna::light::ValueMax);
}
private:
long _value;
};
// With `useCCT`, balance the value between Warm and Cold channels based on the current `mireds`.
struct LightScaledWhite {
static auto constexpr Default = espurna::light::build::WhiteFactor;
LightScaledWhite() = default;
explicit LightScaledWhite(float factor) :
_factor(factor)
{}
static LightScaledWhite with(float factor) {
return LightScaledWhite{factor * Default};
}
long operator()(long input) const {
return std::lround(static_cast<float>(input) * _factor);
}
private:
float _factor { Default };
};
void _lightValuesWithCct(LightChannels& channels) {
const auto CctFactor = _light_temperature.factor();
const auto White = LightScaledWhite();
auto ptr = espurna::light::Pointers(channels);
(*ptr.warm()).apply(
LightResetInput::forWarm(CctFactor), White);
(*ptr.cold()).apply(
LightResetInput::forCold(CctFactor), White);
const auto Brightness = _light_brightness;
ptr.maybeApply(Brightness);
}
// To handle both 4 and 5 channels, allow to 'adjust' internal factor calculation after construction
// When processing the channel values, this is the expected sequence:
// [250,150,0] -> [200,100,0,50] -> [250,125,0,63], factor is 1.25
//
// XXX: before 1.15.0:
// - factor for the example above is 1 b/c of integer division, meaning the sequence is instead:
// [250,150,0] -> [200,100,0,50] -> [200,100,0,50]
// - when modified, white channels(s) `inputValue` is always equal to the output `value`
struct LightRgbWithoutWhite {
LightRgbWithoutWhite() = delete;
explicit LightRgbWithoutWhite(espurna::light::Rgb rgb) :
_common(makeCommon(rgb)),
_factor(makeFactor(_common)),
_luminance(makeLuminance(_common))
{}
explicit LightRgbWithoutWhite(const LightChannels& channels) :
LightRgbWithoutWhite{makeRgb(channels)}
{}
long operator()(long input) const {
return std::lround(static_cast<float>(input - _common.inputMin) * _factor);
}
template <typename... Args>
void adjustOutput(Args&&... args) {
_common.outputMax = std::max({
_common.outputMax,
std::forward<Args>(args)...
});
_factor = makeFactor(_common);
_luminance = makeLuminance(_common);
}
long inputMin() const {
return _common.inputMin;
}
float factor() const {
return _factor;
}
float luminance() const {
return _luminance;
}
private:
struct Common {
long inputMin;
long inputMax;
long outputMax;
};
static float makeLuminance(Common common) {
const auto raw = (common.inputMin + common.inputMax) / 2;
return static_cast<float>(raw) / espurna::light::ValueMax;
}
static float makeFactor(Common common) {
const auto inputMax = static_cast<float>(common.inputMax);
const auto outputMax = static_cast<float>(common.outputMax);
return (outputMax > 0.0f)
? (inputMax / outputMax)
: 0.0f;
}
static espurna::light::Rgb makeRgb(const LightChannels& channels) {
return {
channels[0].inputValue,
channels[1].inputValue,
channels[2].inputValue,
};
}
static Common makeCommon(espurna::light::Rgb rgb) {
Common out;
out.inputMax = std::max({rgb.red(), rgb.green(), rgb.blue()});
out.inputMin = std::min({rgb.red(), rgb.green(), rgb.blue()});
out.outputMax = std::max({
rgb.red() - out.inputMin,
rgb.green() - out.inputMin,
rgb.blue() - out.inputMin
});
return out;
}
Common _common;
float _factor;
float _luminance;
};
// When `useWhite` is enabled, white channels are 'detached' from the processing and their value depends on the RGB ones.
// Common calculation is to subtract 'white value' from the RGB based on the minimum channel value, e.g. [250, 150, 50] becomes [200, 100, 0, 50]
//
// General case when `useCCT` is disabled, but there are 4 channels.
// Keeps 5th channel as-is, without applying the brightness scale or resetting the value to 0
void _lightValuesWithRgbWhite(LightChannels& channels) {
auto rgb = LightRgbWithoutWhite{channels};
rgb.adjustOutput(rgb.inputMin());
const auto Brightness = _light_brightness;
auto ptr = espurna::light::Pointers(channels);
(*ptr.red()).apply(rgb, Brightness);
(*ptr.green()).apply(rgb, Brightness);
(*ptr.blue()).apply(rgb, Brightness);
(*ptr.warm()).apply(
LightResetInput{rgb.inputMin()},
LightScaledWhite::with(rgb.factor()),
Brightness);
if (ptr.cold()) {
(*ptr.cold()).apply();
}
}
// Kelvin to RGB approximation algorithm by Tanner Helland
// * https://tannerhelland.com/2012/09/18/convert-temperature-rgb-algorithm-code.html
// Original code for RGB lights from AiLight library by Sacha Telgenhof (@
// * https://github.com/stelgenhof/AiLight/blob/develop/lib/AiLight/AiLight.cpp
// Instead of the above, use `mireds` value as a range for warm and cold channels, based on the calculated rgb common values
// Every value is also scaled by `brightness` after applying all of the previous steps
// Notice that we completely ignore inputs and reset them to either kelvin'ized or hardcoded ValueMin or ValueMax
// (also, RED **always** stays at ValueMax b/c we never go above 6.6k kelvin)
espurna::light::Rgb _lightKelvinRgb(espurna::light::Kelvin kelvin) {
kelvin.value /= 100;
const auto red = ((kelvin.value <= 66)
? espurna::light::ValueMax
: std::lround(329.698727446 * fs_pow(static_cast<double>(kelvin.value - 60), -0.1332047592)));
const auto green = ((kelvin.value <= 66)
? std::lround(99.4708025861 * fs_log(kelvin.value) - 161.1195681661)
: std::lround(288.1221695283 * fs_pow(static_cast<double>(kelvin.value), -0.0755148492)));
const auto blue = ((kelvin.value >= 66)
? espurna::light::ValueMax
: ((kelvin.value <= 19)
? espurna::light::ValueMin
: std::lround(138.5177312231 * fs_log(static_cast<double>(kelvin.value - 10)) - 305.0447927307)));
return {red, green, blue};
}
void _lightValuesWithRgbCct(LightChannels& channels) {
const auto Temperature = _light_temperature;
const auto RgbFromKelvin = _lightKelvinRgb(Temperature.kelvin());
auto rgb = LightRgbWithoutWhite{RgbFromKelvin};
rgb.adjustOutput(rgb.inputMin());
const auto Brightness = _light_brightness;
auto ptr = espurna::light::Pointers(channels);
(*ptr.red()).apply(
LightResetInput{RgbFromKelvin.red()},
rgb, Brightness);
(*ptr.green()).apply(
LightResetInput{RgbFromKelvin.green()},
rgb, Brightness);
(*ptr.blue()).apply(
LightResetInput{RgbFromKelvin.blue()},
rgb, Brightness);
const auto White = LightScaledWhite(rgb.factor());
(*ptr.warm()).apply(
LightResetInput::forWarm(Temperature.factor()),
White, Brightness);
(*ptr.cold()).apply(
LightResetInput::forCold(Temperature.factor()),
White, Brightness);
}
// UI hints about channel distribution
char _lightTag(size_t channels, size_t index) {
constexpr size_t Columns { 5ul };
constexpr size_t Rows { 5ul };
auto row = channels - 1ul;
if (row < Rows) {
constexpr char tags[Rows][Columns] = {
{'W', 0, 0, 0, 0},
{'W', 'C', 0, 0, 0},
{'R', 'G', 'B', 0, 0},
{'R', 'G', 'B', 'W', 0},
{'R', 'G', 'B', 'W', 'C'},
};
return tags[row][index];
}
return 0;
}
const char* _lightDesc(size_t channels, size_t index) {
const char* out = PSTR("UNKNOWN");
switch (_lightTag(channels, index)) {
case 'W':
out = PSTR("WARM WHITE");
break;
case 'C':
out = PSTR("COLD WHITE");
break;
case 'R':
out = PSTR("RED");
break;
case 'G':
out = PSTR("GREEN");
break;
case 'B':
out = PSTR("BLUE");
break;
}
return out;
}
} // namespace
// -----------------------------------------------------------------------------
// Input Values
// -----------------------------------------------------------------------------
namespace {
void _lightFromHexPayload(espurna::StringView payload) {
const bool JustRgb { (payload.length() == 6) };
const bool WithBrightness { (payload.length() == 8) };
if (!JustRgb && !WithBrightness) {
return;
}
uint8_t values[4] {0, 0, 0, 0};
if (hexDecode(payload.begin(), payload.length(), values, sizeof(values))) {
_light_mapping.red(values[0]);
_light_mapping.green(values[1]);
_light_mapping.blue(values[2]);
if (WithBrightness) {
lightBrightness(values[3]);
}
}
}
template <typename T>
const char* _lightForEachToken(espurna::StringView payload, char sep, T&& callback) {
const auto begin = payload.begin();
const auto end = payload.end();
auto it = begin;
for (auto last = it; it != end; ++it) {
last = it;
it = std::find(it, payload.end(), ',');
if (!callback(espurna::StringView(last, it))) {
break;
}
if (it == end) {
break;
}
}
return it;
}
void _lightFromCommaSeparatedPayload(espurna::StringView payload, decltype(_light_channels.end()) end) {
auto it = _light_channels.begin();
if (it == end) {
return;
}
// every channel value is separated by a comma
_lightForEachToken(payload, ',',
[&](espurna::StringView token) {
if (it != end) {
const auto result = parseUnsigned(token, 10);
if (result.ok) {
(*it) = result.value;
++it;
return true;
}
}
return false;
});
// fill the rest with zeroes
while (it != end) {
(*it) = 0;
++it;
}
}
void _lightFromCommaSeparatedPayload(espurna::StringView payload) {
_lightFromCommaSeparatedPayload(payload, _light_channels.end());
}
void _lightFromRgbPayload(espurna::StringView payload) {
if (!_light_has_color) {
return;
}
if (!payload.length() || (payload[0] == '\0')) {
return;
}
// HEX value is always prefixed, like CSS
// - #AABBCC
// Extra byte is interpreted like RGB + brightness
// - #AABBCCDD
if (payload[0] == '#') {
_lightFromHexPayload(
espurna::StringView(payload.begin() + 1, payload.end()));
return;
}
// Otherwise, assume comma-separated decimal values
_lightFromCommaSeparatedPayload(payload, _light_channels.begin() + 3);
}
espurna::light::Hsv _lightHsvFromPayload(espurna::StringView payload) {
espurna::light::Hsv::Array values;
auto it = std::begin(values);
// HSV string is expected to be "H,S,V", where:
// - H [0...360]
// - S [0...100]
// - V [0...100]
const auto end = std::end(values);
const auto parsed = _lightForEachToken(payload, ',',
[&](espurna::StringView token) {
if (it != end) {
const auto result = parseUnsigned(token, 10);
if (result.ok) {
(*it) = result.value;
++it;
return true;
}
}
return false;
});
// discard partial or uneven payloads
espurna::light::Hsv out;
if ((parsed != payload.end()) || (it != end)) {
return out;
}
// values are expected to be 'clamped' either in the
// following call or in ctor of the helper object
out = espurna::light::Hsv(values);
return out;
}
void _lightFromHsvPayload(espurna::StringView payload) {
if (!_light_has_color || !payload.length()) {
return;
}
lightHsv(_lightHsvFromPayload(payload));
}
template <typename T>
void _lightTemperature(T value) {
_light_temperature = value;
}
} // namespace
// -----------------------------------------------------------------------------
// Output Values
// -----------------------------------------------------------------------------
namespace {
espurna::light::Rgb _lightToTargetRgb() {
return {
_light_mapping.red(),
_light_mapping.green(),
_light_mapping.blue()};
}
espurna::light::Rgb _lightToInputRgb() {
const auto& ptr = _light_mapping.pointers();
long values[] {0, 0, 0};
if (ptr.red() && ptr.green() && ptr.blue()) {
values[0] = ptr.red()->inputValue;
values[1] = ptr.green()->inputValue;
values[2] = ptr.blue()->inputValue;
}
return {values[0], values[1], values[2]};
}
// instead of falling back to scale, use channels as reference in simple modes
String _lightRgbHexPayload(espurna::light::Rgb rgb) {
static_assert(espurna::light::Rgb::Min == 0, "");
static_assert(espurna::light::Rgb::Max == 255, "");
uint8_t values[] {
static_cast<uint8_t>(rgb.red()),
static_cast<uint8_t>(rgb.green()),
static_cast<uint8_t>(rgb.blue())};
String out;
char buffer[8] {0};
if (hexEncode(values, sizeof(values), buffer, sizeof(buffer))) {
out.reserve(8);
out.concat('#');
out.concat(&buffer[0], sizeof(buffer) - 1);
}
return out;
}
String _lightRgbPayload(espurna::light::Rgb rgb) {
String out;
out.reserve(12);
out += rgb.red();
out += ',';
out += rgb.green();
out += ',';
out += rgb.blue();
return out;
}
String _lightRgbPayload() {
return _lightRgbPayload(_lightToInputRgb());
}
// HSV to RGB transformation
//
// INPUT: [0,100,57]
// IS: [145,0,0]
// SHOULD: [255,0,0]
espurna::light::Rgb _lightRgb(espurna::light::Hsv hsv) {
constexpr auto ValueMin = static_cast<double>(espurna::light::ValueMin);
double r { ValueMin };
double g { ValueMin };
double b { ValueMin };
static constexpr auto Scale = 100.0;
auto v = static_cast<double>(hsv.value()) / Scale;
if (hsv.saturation()) {
auto h = hsv.hue();
if (h < 0) {
h = 0;
} else if (h >= 360) {
h = 359;
}
auto s = static_cast<double>(hsv.saturation()) / Scale;
auto c = v * s;
auto hmod2 = fs_fmod(static_cast<double>(h) / 60.0, 2.0);
auto x = c * (1.0 - std::abs(hmod2 - 1.0));
auto m = v - c;
if ((0 <= h) && (h < 60)) {
r = c;
g = x;
} else if ((60 <= h) && (h < 120)) {
r = x;
g = c;
} else if ((120 <= h) && (h < 180)) {
g = c;
b = x;
} else if ((180 <= h) && (h < 240)) {
g = x;
b = c;
} else if ((240 <= h) && (h < 300)) {
r = x;
b = c;
} else if ((300 <= h) && (h < 360)) {
r = c;
b = x;
}
constexpr auto ValueMax = static_cast<double>(espurna::light::ValueMax);
r = (r + m) * ValueMax;
g = (g + m) * ValueMax;
b = (b + m) * ValueMax;
}
return {
static_cast<long>(std::nearbyint(r)),
static_cast<long>(std::nearbyint(g)),
static_cast<long>(std::nearbyint(b))};
}
espurna::light::Hsv _lightHsv(espurna::light::Rgb rgb) {
using namespace espurna::light;
const auto r = static_cast<double>(rgb.red()) / ValueMax;
const auto g = static_cast<double>(rgb.green()) / ValueMax;
const auto b = static_cast<double>(rgb.blue()) / ValueMax;
const auto max = std::max({r, g, b});
const auto min = std::min({r, g, b});
auto v = max;
if (min != max) {
auto delta = max - min;
auto s = delta / max;
auto rc = (max - r) / delta;
auto gc = (max - g) / delta;
auto bc = (max - b) / delta;
double h;
if (r == max) {
h = bc - gc;
} else if (g == max) {
h = 2.0 + rc - bc;
} else {
h = 4.0 + gc - rc;
}
h = fs_fmod((h / 6.0), 1.0);
if (h < 0.0) {
h = 1.0 + h;
}
return Hsv(
std::lround(h * 360.0),
std::lround(s * 100.0),
std::lround(v * 100.0));
}
return Hsv(Hsv::HueMin, Hsv::SaturationMin, v);
}
String _lightHsvPayload(espurna::light::Hsv hsv) {
String out;
auto values = hsv.asArray();
for (const auto& value : values) {
if (out.length()) {
out += ',';
}
out += value;
}
return out;
}
String _lightHsvPayload(espurna::light::Rgb rgb) {
return _lightHsvPayload(_lightHsv(rgb));
}
String _lightHsvPayload() {
return _lightHsvPayload(_lightToTargetRgb());
}
String _lightGroupPayload() {
const auto Channels = _light_channels.size();
String result;
result.reserve(4 * Channels);
for (const auto& channel : _light_channels) {
if (result.length()) {
result += ',';
}
result += String(channel.inputValue);
}
return result;
}
// Basic value adjustments. Expression can be:
// +offset, -offset or the new value
long _lightAdjustValue(long value, espurna::StringView operation) {
if (operation.length()) {
switch (operation[0]) {
case '+':
case '-':
{
const long multiplier = (operation[0] == '-') ? -1 : 1;
operation = espurna::StringView(
operation.begin() + 1, operation.end());
const auto result = parseUnsigned(operation, 10);
if (result.ok && result.value < std::numeric_limits<long>::max()) {
return value + (static_cast<long>(result.value) * multiplier);
}
break;
}
default:
{
const auto result = parseUnsigned(operation, 10);
if (result.ok && result.value < std::numeric_limits<long>::max()) {
return result.value;
}
}
}
}
return value;
}
void _lightAdjustBrightness(espurna::StringView payload) {
lightBrightness(_lightAdjustValue(_light_brightness.value(), payload));
}
void _lightAdjustChannel(LightChannel& channel, espurna::StringView payload) {
channel = _lightAdjustValue(channel.inputValue, payload);
}
void _lightAdjustChannel(size_t id, espurna::StringView payload) {
if (id < _light_channels.size()) {
_lightAdjustChannel(_light_channels[id], payload);
}
}
void _lightAdjustKelvin(espurna::StringView payload) {
const auto kelvin = _light_temperature.kelvin();
const auto adjusted = _lightAdjustValue(kelvin.value, payload);
_lightTemperature(espurna::light::Kelvin{
.value = adjusted,
});
}
void _lightAdjustMireds(espurna::StringView payload) {
const auto mireds = _light_temperature.mireds();
const auto adjusted = _lightAdjustValue(mireds.value, payload);
_lightTemperature(espurna::light::Mireds{
.value = adjusted,
});
}
} // namespace
// -----------------------------------------------------------------------------
// PROVIDER
// -----------------------------------------------------------------------------
namespace {
// Gamma Correction lookup table (8 bit, ~2.2)
// TODO: input value modifier, instead of a transition-only thing?
// TODO: calculate on the fly instead of limiting this to an 8bit value?
static constexpr long LightGammaMin { 0 };
static constexpr long LightGammaMax { 255 };
long _lightGammaValue(size_t index) {
static const std::array<uint8_t, 256> Gamma PROGMEM {
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2,
3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 6, 6,
6, 7, 7, 7, 7, 8, 8, 8, 9, 9, 9, 10, 10, 11, 11, 11,
12, 12, 13, 13, 14, 14, 14, 15, 15, 16, 16, 17, 17, 18, 18, 19,
19, 20, 20, 21, 22, 22, 23, 23, 24, 25, 25, 26, 26, 27, 28, 28,
29, 30, 30, 31, 32, 33, 33, 34, 35, 35, 36, 37, 38, 39, 39, 40,
41, 42, 43, 43, 44, 45, 46, 47, 48, 49, 50, 50, 51, 52, 53, 54,
55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 71,
72, 73, 74, 75, 76, 77, 78, 80, 81, 82, 83, 84, 86, 87, 88, 89,
91, 92, 93, 94, 96, 97, 98, 100, 101, 102, 104, 105, 106, 108, 109, 110,
112, 113, 115, 116, 118, 119, 121, 122, 123, 125, 126, 128, 130, 131, 133, 134,
136, 137, 139, 140, 142, 144, 145, 147, 149, 150, 152, 154, 155, 157, 159, 160,
162, 164, 166, 167, 169, 171, 173, 175, 176, 178, 180, 182, 184, 186, 187, 189,
191, 193, 195, 197, 199, 201, 203, 205, 207, 209, 211, 213, 215, 217, 219, 221,
223, 225, 227, 229, 231, 233, 235, 238, 240, 242, 244, 246, 248, 251, 253, 255
};
if (index < Gamma.size()) {
return pgm_read_byte(&Gamma[index]);
}
return 0;
}
long _lightGammaMap(long value) {
static_assert(espurna::light::ValueMin >= 0, "");
static_assert(espurna::light::ValueMax >= 0, "");
constexpr auto Divisor = (espurna::light::ValueMax - espurna::light::ValueMin);
if (Divisor != 0l) {
const long Scaled {
(value - espurna::light::ValueMin) * (LightGammaMax - LightGammaMin) / Divisor + LightGammaMin };
return _lightGammaValue(static_cast<size_t>(Scaled));
}
return espurna::light::ValueMin;
}
class LightTransitionHandler {
public:
// internal calculations are done in floats, so hard-limit target & step time to a certain value
// that can be representend precisely when casting milliseconds times back and forth
static constexpr espurna::duration::Milliseconds TimeMin { 10 };
static constexpr espurna::duration::Milliseconds TimeMax { 1ul << 24ul };
struct Transition {
float& value;
long target;
float step;
size_t count;
};
using Transitions = std::vector<Transition>;
LightTransitionHandler() = delete;
LightTransitionHandler(LightChannels& channels, LightTransition transition, bool state) :
_transition(clamp(transition)),
_state(state)
{
prepare(channels, transition, state);
}
template <typename StateFunc, typename ValueFunc, typename UpdateFunc>
bool run(StateFunc&& state, ValueFunc&& value, UpdateFunc&& update) {
bool next { false };
if (!_state_notified && _state) {
_state_notified = true;
state(_state);
}
for (size_t index = 0; index < _prepared.size(); ++index) {
auto& transition = _prepared[index];
if (!transition.count) {
continue;
}
if (--transition.count) {
transition.value += transition.step;
next = true;
} else {
transition.value = transition.target;
}
value(index, transition.value);
}
if (!_state_notified && !next && !_state) {
_state_notified = true;
state(_state);
}
update();
return next;
}
const Transitions& prepared() const {
return _prepared;
}
bool state() const {
return _state;
}
espurna::duration::Milliseconds time() const {
return _transition.time;
}
espurna::duration::Milliseconds step() const {
return _transition.step;
}
private:
void minimalTime() {
_transition.time = TimeMin;
_transition.step = TimeMin;
}
void prepare(LightChannels& channels, LightTransition transition, bool state) {
// generate a single transitions list for all the channels that had changed
// after that, provider loop will run() the list and assign intermediate target value(s)
bool delayed { false };
for (auto& channel : channels) {
if (prepare(channel, transition, state)) {
delayed = true;
}
}
// target values are already assigned, next provider loop will apply them
if (!delayed) {
minimalTime();
}
}
bool prepare(LightChannel& channel, const LightTransition& transition, bool state) {
long target = (state && channel.state)
? channel.value
: espurna::light::ValueMin;
channel.target = target;
if (channel.gamma) {
target = _lightGammaMap(target);
}
if (channel.inverse) {
target = espurna::light::ValueMax - target;
}
const float Diff { static_cast<float>(target) - channel.current };
if (!isImmediate(transition, Diff)) {
pushGradual(transition, channel.current, target, Diff);
return true;
}
pushImmediate(channel.current, target, Diff);
return false;
}
void push(float& current, long target, float diff, size_t count) {
_prepared.push_back(
Transition{
.value = current,
.target = target,
.step = diff,
.count = count,
});
}
void pushImmediate(float& current, long target, float diff) {
push(current, target, diff, 1);
}
void pushGradual(const LightTransition& transition, float& current, long target, float diff) {
const auto TotalTime = static_cast<float>(transition.time.count());
const auto StepTime = static_cast<float>(transition.step.count());
constexpr float BaseStep { 1.0f };
const float Diff { std::abs(diff) };
const float Every { TotalTime / Diff };
float step { (diff > 0.0f) ? BaseStep : -BaseStep };
if (Every < StepTime) {
step *= (StepTime / Every);
}
const float Count { std::floor(Diff / std::abs(step)) };
push(current, target, step, static_cast<size_t>(Count));
}
static bool isImmediate(const LightTransition& transition, float diff) {
return !transition.time.count()
|| (transition.step >= transition.time)
|| (std::abs(diff) <= std::numeric_limits<float>::epsilon());
}
static LightTransition clamp(LightTransition value) {
LightTransition out;
out.time = std::min(value.time, TimeMax);
out.step = std::min(value.step, TimeMax);
return out;
}
Transitions _prepared;
bool _state_notified { false };
LightTransition _transition;
bool _state;
};
constexpr espurna::duration::Milliseconds LightTransitionHandler::TimeMin;
constexpr espurna::duration::Milliseconds LightTransitionHandler::TimeMax;
struct LightUpdate {
LightTransition transition;
int report { 0 };
bool save { false };
};
struct LightUpdateHandler {
LightUpdateHandler() = default;
LightUpdateHandler(const LightUpdateHandler&) = delete;
LightUpdateHandler(LightUpdateHandler&&) = delete;
LightUpdateHandler& operator=(const LightUpdateHandler&) = delete;
LightUpdateHandler& operator=(LightUpdateHandler&&) = delete;
// TODO: (esp8266) there is only a single thread, and explicit context switch via yield()
// callback() below is allowed to yield() and possibly reset the values, but we already have a copy
// TODO: (esp32?) set() and run() need locking, in case there are multiple threads *and* set() may be called outside of the main one
explicit operator bool() const {
return _run;
}
void set(LightTransition transition, int report, bool save) {
_update.transition = transition;
_update.report = report;
_update.save = save;
_run = true;
}
void cancel() {
_run = false;
}
template <typename T>
void run(T&& callback) {
if (_run) {
_run = false;
LightUpdate update{_update};
callback(update.transition, update.report, update.save);
}
}
private:
LightUpdate _update;
bool _run { false };
};
struct LightSequenceHandler {
LightSequenceHandler& operator=(LightSequenceCallbacks&& callbacks) {
_callbacks = std::move(callbacks);
return *this;
}
void run() {
if (!_callbacks.empty()) {
auto callback = std::move(_callbacks.front());
_callbacks.pop_front();
callback();
}
}
void clear() {
_callbacks.clear();
}
private:
LightSequenceCallbacks _callbacks;
};
struct LightProviderHandler {
using Timer = espurna::timer::SystemTimer;
using Duration = Timer::Duration;
LightProviderHandler() = default;
explicit operator bool() const {
return _ready;
}
void stop() {
_ready = false;
_timer.stop();
}
void reset() {
_ready = false;
}
void start(Duration duration) {
_ready = false;
_timer.repeat(
duration,
[&]() {
_ready = true;
});
}
private:
Timer _timer;
bool _ready { false };
};
LightUpdateHandler _light_update;
LightProviderHandler _light_provider_update;
LightSequenceHandler _light_sequence;
std::unique_ptr<LightTransitionHandler> _light_transition;
auto _light_transition_time = espurna::light::build::transitionTime();
auto _light_transition_step = espurna::light::build::transitionStep();
bool _light_use_transitions = false;
static_assert((espurna::light::ValueMax - espurna::light::ValueMin) != 0, "");
template <typename T>
constexpr T _lightValueMap(long value, T min, T max) {
return (value - espurna::light::ValueMin) * (max - min) / (espurna::light::ValueMax - espurna::light::ValueMin) + min;
}
#if LIGHT_PROVIDER == LIGHT_PROVIDER_DIMMER
uint32_t _light_pwm_min;
uint32_t _light_pwm_max;
// since we expect 0 duty on OFF state, no need to do anything else from here
void _lightProviderHandleState(bool) {
}
// Automatically scale from our value to the internal one used by the PWM
// Currently, both u32 and float variants are almost the same precision
// Slight difference would be the amount of generated code; one variant
// needs to call float division, the other one is to simply truncate it
// using two external values which are then used in integer divison
// TODO: actually check call speed?
// TODO: any difference between __fixsfsi and lround?
void _lightProviderHandleValue(size_t channel, float value) {
pwmDuty(channel, _lightValueMap(value, _light_pwm_min, _light_pwm_max));
}
void _lightProviderHandleUpdate() {
pwmUpdate();
}
#elif LIGHT_PROVIDER == LIGHT_PROVIDER_MY92XX
constexpr unsigned int _lightMy92xxValueShift(my92xx_cmd_bit_width_t width) {
return (width == MY92XX_CMD_BIT_WIDTH_16) ? 16 :
(width == MY92XX_CMD_BIT_WIDTH_14) ? 14 :
(width == MY92XX_CMD_BIT_WIDTH_12) ? 12 :
(width == MY92XX_CMD_BIT_WIDTH_8) ? 8 : 8;
}
constexpr unsigned int _lightMy92xxValueMax(my92xx_cmd_bit_width_t width) {
return (1 << _lightMy92xxValueShift(width)) - 1;
}
constexpr unsigned int _lightMy92xxValueMax(my92xx_cmd_t command) {
return _lightMy92xxValueMax(command.bit_width);
}
unsigned char _light_my92xx_channel_map[espurna::light::ChannelsMax] = {};
constexpr unsigned int _my92xx_value_min = 0;
constexpr unsigned int _my92xx_value_max =
_lightMy92xxValueMax(espurna::light::build::my92xxCommand());
void _lightProviderHandleValue(size_t channel, float value) {
_my92xx->setChannel(
_light_my92xx_channel_map[channel],
_lightValueMap(value, _my92xx_value_min, _my92xx_value_max));
}
void _lightProviderHandleUpdate() {
_my92xx->update();
}
void _lightProviderHandleState(bool state) {
_my92xx->setState(state);
}
#elif LIGHT_PROVIDER == LIGHT_PROVIDER_CUSTOM
void _lightProviderHandleState(bool state) {
_light_provider->state(state);
}
void _lightProviderHandleValue(size_t channel, float value) {
_light_provider->channel(channel, value);
}
void _lightProviderHandleUpdate() {
_light_provider->update();
}
#endif
void _lightProviderUpdate() {
if (!_light_provider_update) {
return;
}
if (!_light_transition) {
_light_provider_update.stop();
return;
}
auto next = _light_transition->run(
_lightProviderHandleState,
_lightProviderHandleValue,
_lightProviderHandleUpdate);
if (!next) {
_light_transition.reset(nullptr);
_light_provider_update.stop();
}
_light_provider_update.reset();
}
} // namespace
// -----------------------------------------------------------------------------
// PERSISTANCE
// -----------------------------------------------------------------------------
// Layout should match the old union:
//
// union light_rtcmem_t {
// struct {
// uint8_t channels[espurna::light::ChannelsMax];
// uint8_t brightness;
// uint16_t mired;
// } __attribute__((packed)) packed;
// uint64_t value;
// };
using LightValues = std::array<long, espurna::light::ChannelsMax>;
struct LightRtcmem {
// 1 2 3 4 5 6 7 8
// [ m m b c c c c c ]
// ^ ^ ^ ^ ^ channels
// ^ ~ ~ ~ ~ ~ brightness
// ^ ^ ~ ~ ~ ~ ~ ~ mireds
//
// As seen in the rtcmem dump:
// `ddccbbaa 112233ee`
// Where:
// - 1122 are mireds
// [153...500]
// - 33 is brightness
// [0...255]
// - aabbccddee are channels (from 0 to 5 respectively)
// [0...255]
//
// Prefer to use u64 value for {de,se}rialization instead of a struct.
static_assert(espurna::light::ChannelsMax == 5, "");
static_assert(espurna::light::ValueMin >= 0, "");
static_assert(espurna::light::ValueMax <= 255, "");
LightRtcmem() = default;
explicit LightRtcmem(uint64_t value) {
_mireds.value = (value >> (8ull * 6ull)) & 0xffffull;
_brightness = (value >> (8ull * 5ull)) & 0xffull;
_values[4] = ((value >> (8ull * 4ull)) & 0xffull);
_values[3] = ((value >> (8ull * 3ull)) & 0xffull);
_values[2] = ((value >> (8ull * 2ull)) & 0xffull);
_values[1] = ((value >> (8ull * 1ull)) & 0xffull);
_values[0] = ((value & 0xffull));
}
LightRtcmem(const LightValues& values, long brightness, espurna::light::Mireds mireds) :
_values(values),
_brightness(brightness),
_mireds(mireds)
{}
uint64_t serialize() const {
return ((static_cast<uint64_t>(_mireds.value) & 0xffffull) << (8ull * 6ull))
| ((static_cast<uint64_t>(_brightness) & 0xffull) << (8ull * 5ull))
| (static_cast<uint64_t>(_values[4] & 0xffl) << (8ull * 4ull))
| (static_cast<uint64_t>(_values[3] & 0xffl) << (8ull * 3ull))
| (static_cast<uint64_t>(_values[2] & 0xffl) << (8ull * 2ull))
| (static_cast<uint64_t>(_values[1] & 0xffl) << (8ull * 1ull))
| (static_cast<uint64_t>(_values[0] & 0xffl));
}
static LightValues defaultValues() {
LightValues out;
out.fill(espurna::light::ValueMin);
return out;
}
const LightValues& values() const {
return _values;
}
long brightness() const {
return _brightness;
}
espurna::light::Mireds mireds() const {
return _mireds;
}
private:
LightValues _values = defaultValues();
long _brightness { espurna::light::BrightnessMax };
espurna::light::Mireds _mireds { espurna::light::MiredsDefault };
};
bool lightSave() {
return _light_save;
}
void lightSave(bool save) {
_light_save = save;
}
namespace {
void _lightSaveRtcmem() {
auto values = LightRtcmem::defaultValues();
for (size_t channel = 0; channel < _light_channels.size(); ++channel) {
values[channel] = _light_channels[channel].inputValue;
}
LightRtcmem light(values,
_light_brightness.value(),
_light_temperature.mireds());
Rtcmem->light = light.serialize();
}
void _lightRestoreRtcmem() {
uint64_t value = Rtcmem->light;
LightRtcmem light(value);
const auto& values = light.values();
for (size_t channel = 0; channel < _light_channels.size(); ++channel) {
_light_channels[channel] = values[channel];
}
lightTemperature(light.mireds());
lightBrightness(light.brightness());
}
void _lightSaveSettings() {
if (!_light_save) {
return;
}
for (size_t channel = 0; channel < _light_channels.size(); ++channel) {
espurna::light::settings::value(
channel, _light_channels[channel].inputValue);
}
espurna::light::settings::brightness(_light_brightness.value());
espurna::light::settings::mireds(_light_temperature.mireds());
saveSettings();
}
void _lightRestoreSettings() {
for (size_t channel = 0; channel < _light_channels.size(); ++channel) {
_light_channels[channel] = espurna::light::settings::value(channel);
}
_light_temperature = espurna::light::settings::mireds();
lightBrightness(espurna::light::settings::brightness());
}
bool _lightParsePayload(espurna::StringView payload) {
switch (rpcParsePayload(payload)) {
case PayloadStatus::On:
lightState(true);
break;
case PayloadStatus::Off:
lightState(false);
break;
case PayloadStatus::Toggle:
lightState(!_light_state);
break;
case PayloadStatus::Unknown:
return false;
}
return true;
}
bool _lightTryParseChannel(espurna::StringView value, size_t& id) {
const auto channels = _light_channels.size();
if (std::find(value.begin(), value.end(), '/') != value.end()) {
return tryParseIdPath(value, channels, id);
}
return tryParseId(value, channels, id);
}
} // namespace
// -----------------------------------------------------------------------------
// MQTT
// -----------------------------------------------------------------------------
namespace {
bool _lightApiTransition(espurna::StringView payload) {
const auto result = parseUnsigned(payload, 10);
if (result.ok) {
lightTransition(
espurna::duration::Milliseconds(result.value),
_light_transition_step);
return true;
}
return false;
}
int _lightMqttReportMask() {
return espurna::light::Report::Default & ~(mqttForward() ? espurna::light::Report::None : espurna::light::Report::Mqtt);
}
int _lightMqttReportGroupMask() {
return _lightMqttReportMask() & ~espurna::light::Report::MqttGroup;
}
void _lightUpdateFromMqtt(LightTransition transition) {
lightUpdate(transition, _lightMqttReportMask(), _light_save);
}
void _lightUpdateFromMqtt() {
_lightUpdateFromMqtt(lightTransition());
}
void _lightUpdateFromMqttGroup() {
lightUpdate(lightTransition(), _lightMqttReportGroupMask(), _light_save);
}
#if MQTT_SUPPORT
// TODO: implement per-module heartbeat mask? e.g. to exclude unwanted topics based on preference, not settings
bool _lightMqttHeartbeat(espurna::heartbeat::Mask mask) {
if (mask & espurna::heartbeat::Report::Light) {
lightMQTT();
}
return mqttConnected();
}
void _lightMqttCallback(unsigned int type, espurna::StringView topic, espurna::StringView payload) {
String mqtt_group_color = espurna::light::settings::mqttGroup();
if (type == MQTT_CONNECT_EVENT) {
mqttSubscribe(MQTT_TOPIC_TRANSITION);
mqttSubscribe(MQTT_TOPIC_CHANNEL "/+");
mqttSubscribe(MQTT_TOPIC_BRIGHTNESS);
if (!_light_has_controls) {
mqttSubscribe(MQTT_TOPIC_LIGHT);
}
if (_light_has_color) {
mqttSubscribe(MQTT_TOPIC_COLOR_RGB);
mqttSubscribe(MQTT_TOPIC_COLOR_HEX);
mqttSubscribe(MQTT_TOPIC_COLOR_HSV);
}
if (_light_has_color || _light_has_cold_white || _light_has_warm_white) {
mqttSubscribe(MQTT_TOPIC_MIRED);
mqttSubscribe(MQTT_TOPIC_KELVIN);
}
if (mqtt_group_color.length() > 0) {
mqttSubscribeRaw(mqtt_group_color.c_str());
}
}
if (type == MQTT_MESSAGE_EVENT) {
// Group color
if ((mqtt_group_color.length() > 0) && (topic == mqtt_group_color)) {
_lightFromCommaSeparatedPayload(payload);
_lightUpdateFromMqttGroup();
return;
}
// Match topic
auto t = mqttMagnitude(topic);
// Color temperature in mireds
if (t.equals(MQTT_TOPIC_MIRED)) {
_lightAdjustMireds(payload);
_lightUpdateFromMqtt();
return;
}
// Color temperature in kelvins
if (t.equals(MQTT_TOPIC_KELVIN)) {
_lightAdjustKelvin(payload);
_lightUpdateFromMqtt();
return;
}
// Color
if (t.equals(MQTT_TOPIC_COLOR_RGB) || t.equals(MQTT_TOPIC_COLOR_HEX)) {
_lightFromRgbPayload(payload);
_lightUpdateFromMqtt();
return;
}
if (t.equals(MQTT_TOPIC_COLOR_HSV)) {
_lightFromHsvPayload(payload);
_lightUpdateFromMqtt();
return;
}
// Transition setting (persist)
if (t.equals(MQTT_TOPIC_TRANSITION)) {
_lightApiTransition(payload);
return;
}
// Brightness
if (t.equals(MQTT_TOPIC_BRIGHTNESS)) {
_lightAdjustBrightness(payload);
_lightUpdateFromMqtt();
return;
}
// Channel
if (t.startsWith(MQTT_TOPIC_CHANNEL)) {
size_t id;
if (_lightTryParseChannel(t, id)) {
_lightAdjustChannel(id, payload);
_lightUpdateFromMqtt();
}
return;
}
// Global
if (t.equals(MQTT_TOPIC_LIGHT)) {
_lightParsePayload(payload);
_lightUpdateFromMqtt();
}
}
}
void _lightMqttSetup() {
mqttHeartbeat(_lightMqttHeartbeat);
mqttRegister(_lightMqttCallback);
}
} // namespace
void lightMQTT() {
if (_light_has_color) {
const auto rgb = _lightToTargetRgb();
mqttSend(MQTT_TOPIC_COLOR_HEX, _lightRgbHexPayload(rgb).c_str());
mqttSend(MQTT_TOPIC_COLOR_RGB, _lightRgbPayload(rgb).c_str());
mqttSend(MQTT_TOPIC_COLOR_HSV, _lightHsvPayload(rgb).c_str());
}
if (_light_has_color || _light_has_cold_white) {
const auto mireds = _light_temperature.mireds();
mqttSend(MQTT_TOPIC_MIRED, String(mireds.value, 10).c_str());
}
for (size_t channel = 0; channel < _light_channels.size(); ++channel) {
mqttSend(MQTT_TOPIC_CHANNEL, channel, String(_light_channels[channel].target, 10).c_str());
}
mqttSend(MQTT_TOPIC_BRIGHTNESS, _light_brightness.toString().c_str());
if (!_light_has_controls) {
mqttSend(MQTT_TOPIC_LIGHT, _light_state ? "1" : "0");
}
}
void lightMQTTGroup() {
const auto mqtt_group_color = espurna::light::settings::mqttGroup();
if (mqtt_group_color.length()) {
mqttSendRaw(mqtt_group_color.c_str(), _lightGroupPayload().c_str());
}
}
#endif
// -----------------------------------------------------------------------------
// API
// -----------------------------------------------------------------------------
#if API_SUPPORT
namespace {
template <typename T>
bool _lightApiTryHandle(ApiRequest& request, T&& callback) {
const auto param = request.wildcard(0);
size_t id;
if (!_lightTryParseChannel(param, id)) {
return false;
}
return callback(id);
}
bool _lightApiRgbSetter(ApiRequest& request) {
lightParseRgb(request.param(F("value")));
lightUpdate();
return true;
}
void _lightApiSetup() {
if (_light_has_color) {
apiRegister(F(MQTT_TOPIC_COLOR_RGB),
[](ApiRequest& request) {
request.send(_lightRgbPayload(_lightToTargetRgb()));
return true;
},
_lightApiRgbSetter
);
apiRegister(F(MQTT_TOPIC_COLOR_HEX),
[](ApiRequest& request) {
request.send(_lightRgbHexPayload(_lightToTargetRgb()));
return true;
},
_lightApiRgbSetter
);
apiRegister(F(MQTT_TOPIC_COLOR_HSV),
[](ApiRequest& request) {
request.send(_lightHsvPayload());
return true;
},
[](ApiRequest& request) {
lightParseHsv(request.param(F("value")));
lightUpdate();
return true;
}
);
}
if (_light_has_color || _light_has_cold_white || _light_has_warm_white) {
apiRegister(F(MQTT_TOPIC_MIRED),
[](ApiRequest& request) {
const auto mireds = _light_temperature.mireds();
request.send(String(mireds.value, 10));
return true;
},
[](ApiRequest& request) {
_lightAdjustMireds(request.param(F("value")));
lightUpdate();
return true;
}
);
apiRegister(F(MQTT_TOPIC_KELVIN),
[](ApiRequest& request) {
const auto kelvin = _light_temperature.kelvin();
request.send(String(kelvin.value, 10));
return true;
},
[](ApiRequest& request) {
_lightAdjustKelvin(request.param(F("value")));
lightUpdate();
return true;
}
);
}
apiRegister(F(MQTT_TOPIC_TRANSITION),
[](ApiRequest& request) {
request.send(String(lightTransitionTime().count()));
return true;
},
[](ApiRequest& request) {
return _lightApiTransition(request.param(F("value")));
}
);
apiRegister(F(MQTT_TOPIC_BRIGHTNESS),
[](ApiRequest& request) {
request.send(_light_brightness.toString());
return true;
},
[](ApiRequest& request) {
_lightAdjustBrightness(request.param(F("value")));
lightUpdate();
return true;
}
);
apiRegister(F(MQTT_TOPIC_CHANNEL "/+"),
[](ApiRequest& request) {
return _lightApiTryHandle(request, [&](size_t id) {
request.send(String(_light_channels[id].target));
return true;
});
},
[](ApiRequest& request) {
return _lightApiTryHandle(request, [&](size_t id) {
_lightAdjustChannel(id, request.param(F("value")));
lightUpdate();
return true;
});
}
);
if (!_light_has_controls) {
apiRegister(F(MQTT_TOPIC_LIGHT),
[](ApiRequest& request) {
request.send(lightState() ? "1" : "0");
return true;
},
[](ApiRequest& request) {
_lightParsePayload(request.param(F("value")));
lightUpdate();
return true;
}
);
}
}
} // namespace
#endif // API_SUPPORT
#if WEB_SUPPORT
namespace {
bool _lightWebSocketOnKeyCheck(espurna::StringView key, const JsonVariant&) {
return espurna::settings::query::samePrefix(key, STRING_VIEW("light"))
|| espurna::settings::query::samePrefix(key, STRING_VIEW("use"))
|| espurna::settings::query::samePrefix(key, STRING_VIEW("lt"));
}
void _lightWebSocketStatus(JsonObject& root) {
JsonObject& light = root.createNestedObject("light");
if (_light_use_color) {
const auto rgb = _lightToInputRgb();
if (_light_use_rgb) {
light["rgb"] = _lightRgbHexPayload(rgb);
} else {
const auto hsv = _lightHsv(rgb);
light["hsv"] = _lightHsvPayload(espurna::light::Hsv(
hsv.hue(), hsv.saturation(), _lightBrightnessPercent()));
}
}
if (_light_use_cct) {
light["mireds"] = _light_temperature.mireds().value;
}
JsonArray& values = light.createNestedArray("values");
for (auto& channel : _light_channels) {
values.add(channel.inputValue);
}
light["brightness"] = _light_brightness.value();
light["state"] = _light_state;
}
void _lightWebSocketOnVisible(JsonObject& root) {
wsPayloadModule(root, PSTR("light"));
JsonObject& light = root.createNestedObject("light");
JsonArray& channels = light.createNestedArray("channels");
const auto Channels = _light_channels.size();
for (size_t index = 0; index < Channels; ++index) {
channels.add(String(_lightTag(Channels, index)));
}
if (_light_use_cct) {
JsonObject& cct = light.createNestedObject("cct");
cct["cold"] = _light_temperature.cold();
cct["warm"] = _light_temperature.warm();
}
}
void _lightWebSocketOnConnected(JsonObject& root) {
root["mqttGroupColor"] = espurna::light::settings::mqttGroup();
root["useWhite"] = _light_use_white;
root["useCCT"] = _light_use_cct;
root["useColor"] = _light_use_color;
root["useGamma"] = _light_use_gamma;
root["useRGB"] = _light_use_rgb;
root["useTransitions"] = _light_use_transitions;
root["ltSave"] = _light_save;
root["ltSaveDelay"] = _light_save_delay.count();
root["ltTime"] = _light_transition_time.count();
root["ltStep"] = _light_transition_step.count();
#if RELAY_SUPPORT
root["ltRelay"] = espurna::light::settings::relay();
#else
root["ltRelay"] = false;
#endif
}
void _lightWebSocketOnAction(uint32_t client_id, const char* action, JsonObject& data) {
STRING_VIEW_INLINE(Light, "light");
if (Light != action) {
return;
}
bool update { false };
STRING_VIEW_INLINE(State, "state");
if (data.containsKey("state")) {
lightState(data[State].as<bool>());
update = true;
}
STRING_VIEW_INLINE(Brightness, "brightness");
if (data.containsKey(Brightness)) {
lightBrightness(data[Brightness].as<long>());
update = true;
}
STRING_VIEW_INLINE(Rgb, "rgb");
if (data.containsKey(Rgb)) {
_lightFromRgbPayload(data[Rgb].as<String>());
update = true;
}
STRING_VIEW_INLINE(Hsv, "hsv");
if (data.containsKey(Hsv)) {
lightHsv(_lightHsvFromPayload(data[Hsv].as<String>()));
update = true;
}
STRING_VIEW_INLINE(Mireds, "mireds");
if (data.containsKey(Mireds)) {
_lightTemperature(espurna::light::Mireds{
.value = data[Mireds].as<long>()
});
update = true;
}
STRING_VIEW_INLINE(Channel, "channel");
JsonObject& channel = data[Channel];
if (channel.success()) {
for (auto& kv : channel) {
size_t id;
if (!_lightTryParseChannel(kv.key, id)) {
break;
}
_lightAdjustChannel(id, kv.value.as<String>());
update = true;
}
}
if (update) {
lightUpdate();
}
}
} // namespace
#endif
#if TERMINAL_SUPPORT
namespace {
// TODO: at this point we have 3 different state save / restoration
// routines that do *almost* the same thing
// (key point is, almost)
// Special persistance case were we take a snapshot of the boolean
// state, brightness and of current input and converted values
struct LightValuesState {
LightValues inputs;
long brightness;
bool state;
};
LightValuesState _lightValuesState() {
LightValuesState out{};
std::transform(
_light_channels.begin(), _light_channels.end(),
out.inputs.begin(),
[](const LightChannel& channel) {
return channel.inputValue;
});
out.brightness = _light_brightness.value();
out.state = _light_state;
return out;
}
void _lightNotificationRestore(const LightValuesState& state) {
for (size_t index = 0; index < _light_channels.size(); ++index) {
lightChannel(index, state.inputs[index]);
}
lightBrightness(state.brightness);
lightState(state.state);
}
void _lightNotificationInit(size_t channel) {
for (size_t channel = 0; channel < _light_channels.size(); ++channel) {
lightChannel(channel, espurna::light::ValueMin);
}
lightChannel(channel, espurna::light::ValueMax);
lightBrightness(espurna::light::BrightnessMax);
lightState(true);
}
PROGMEM_STRING(LightCommandNotify, "NOTIFY");
static void _lightCommandNotify(::terminal::CommandContext&& ctx) {
static constexpr auto NotifyTransition = LightTransition{
.time = espurna::duration::Seconds(1),
.step = espurna::duration::Milliseconds(50),
};
if ((ctx.argv.size() < 2) || (ctx.argv.size() > 5)) {
terminalError(ctx, F("NOTIFY <CHANNEL> [<REPEATS>] [<TIME>] [<STEP>]"));
return;
}
size_t channel;
if (!_lightTryParseChannel(ctx.argv[1], channel)) {
terminalError(ctx, F("Invalid channel ID"));
return;
}
using Duration = espurna::duration::Milliseconds;
const auto time_convert = espurna::settings::internal::convert<Duration>;
constexpr auto DefaultNotification = LightTransition {
.time = Duration(500),
.step = Duration(25),
};
const auto notification = (ctx.argv.size() >= 4)
? LightTransition{
.time = time_convert(ctx.argv[2]),
.step = time_convert(ctx.argv[3])}
: DefaultNotification;
constexpr size_t DefaultRepeats { 3 };
const auto repeats_convert = espurna::settings::internal::convert<size_t>;
const auto repeats = (ctx.argv.size() >= 5)
? repeats_convert(ctx.argv[4])
: DefaultRepeats;
auto state = std::make_shared<LightValuesState>(_lightValuesState());
auto restore = [state]() {
_lightNotificationRestore(*state);
lightUpdate(NotifyTransition, 0, false);
};
auto on = [channel, notification]() {
lightChannel(channel, espurna::light::ValueMax);
lightUpdateSequence(notification);
};
auto off = [channel, notification]() {
lightChannel(channel, espurna::light::ValueMin);
lightUpdateSequence(notification);
};
_lightNotificationInit(channel);
lightUpdate(NotifyTransition);
LightSequenceCallbacks callbacks;
callbacks.push_front(restore);
for (size_t n = 0; n < repeats; ++n) {
callbacks.push_front(off);
callbacks.push_front(on);
}
lightSequence(std::move(callbacks));
}
PROGMEM_STRING(LightCommand, "LIGHT");
static void _lightCommand(::terminal::CommandContext&& ctx) {
if (ctx.argv.size() > 1) {
if (!_lightParsePayload(ctx.argv[1])) {
terminalError(ctx, F("Invalid payload"));
return;
}
lightUpdate();
}
ctx.output.printf_P(PSTR("%s\n"),
_light_state ? PSTR("ON") : PSTR("OFF"));
terminalOK(ctx);
}
PROGMEM_STRING(LightCommandBrightness, "BRIGHTNESS");
static void _lightCommandBrightness(::terminal::CommandContext&& ctx) {
if (ctx.argv.size() > 1) {
_lightAdjustBrightness(ctx.argv[1]);
lightUpdate();
}
ctx.output.printf_P(PSTR("%ld\n"), _light_brightness);
terminalOK(ctx);
}
PROGMEM_STRING(LightCommandChannel, "CHANNEL");
static void _lightCommandChannel(::terminal::CommandContext&& ctx) {
const size_t Channels { _light_channels.size() };
if (!Channels) {
terminalError(ctx, F("No channels configured"));
return;
}
auto description = [&](size_t channel) {
ctx.output.printf_P(PSTR("#%zu (%s) input:%ld value:%ld target:%ld current:%s\n"),
channel,
_lightDesc(Channels, channel),
_light_channels[channel].inputValue,
_light_channels[channel].value,
_light_channels[channel].target,
String(_light_channels[channel].current, 2).c_str());
};
if (ctx.argv.size() > 2) {
size_t id;
if (!_lightTryParseChannel(ctx.argv[1], id)) {
terminalError(ctx, F("Invalid channel ID"));
return;
}
_lightAdjustChannel(id, ctx.argv[2]);
lightUpdate();
description(id);
} else {
for (size_t index = 0; index < Channels; ++index) {
description(index);
}
}
terminalOK(ctx);
}
PROGMEM_STRING(LightCommandRgb, "RGB");
static void _lightCommandColors(const ::terminal::CommandContext& ctx) {
const auto rgb = _lightToTargetRgb();
ctx.output.printf_P(PSTR("hsv %s\n"),
_lightHsvPayload(rgb).c_str());
ctx.output.printf_P(PSTR("rgb %s\n"),
_lightRgbPayload(rgb).c_str());
terminalOK(ctx);
}
static void _lightCommandRgb(::terminal::CommandContext&& ctx) {
if (ctx.argv.size() > 1) {
_lightFromRgbPayload(ctx.argv[1]);
lightUpdate();
}
_lightCommandColors(ctx);
}
PROGMEM_STRING(LightCommandHsv, "HSV");
static void _lightCommandHsv(::terminal::CommandContext&& ctx) {
if (ctx.argv.size() > 1) {
_lightFromHsvPayload(ctx.argv[1]);
lightUpdate();
}
_lightCommandColors(ctx);
}
PROGMEM_STRING(LightCommandKelvin, "KELVIN");
static void _lightCommandKelvin(::terminal::CommandContext&& ctx) {
if (ctx.argv.size() > 1) {
_lightAdjustKelvin(ctx.argv[1]);
lightUpdate();
}
const auto kelvin = _light_temperature.kelvin();
ctx.output.printf_P(PSTR("kelvin %ld\n"), kelvin.value);
terminalOK(ctx);
}
PROGMEM_STRING(LightCommandMired, "MIRED");
static void _lightCommandMired(::terminal::CommandContext&& ctx) {
if (ctx.argv.size() > 1) {
_lightAdjustMireds(ctx.argv[1]);
lightUpdate();
}
const auto mireds = _light_temperature.mireds();
const auto cold = _light_temperature.cold();
const auto warm = _light_temperature.warm();
ctx.output.printf_P(PSTR("mireds %ld range %ld...%ld (factor %s%)\n"),
mireds.value, cold, warm,
String(_light_temperature.factor(), 1).c_str());
terminalOK(ctx);
}
static constexpr ::terminal::Command Commands[] PROGMEM {
{LightCommandNotify, _lightCommandNotify},
{LightCommand, _lightCommand},
{LightCommandBrightness, _lightCommandBrightness},
{LightCommandChannel, _lightCommandChannel},
{LightCommandRgb, _lightCommandRgb},
{LightCommandHsv, _lightCommandHsv},
{LightCommandKelvin, _lightCommandKelvin},
{LightCommandMired, _lightCommandMired},
};
void _lightInitCommands() {
espurna::terminal::add(Commands);
}
} // namespace
#endif // TERMINAL_SUPPORT
size_t lightChannels() {
return _light_channels.size();
}
bool lightHasWhite() {
return _light_has_cold_white || _light_has_warm_white;
}
bool lightHasColdWhite() {
return _light_has_cold_white;
}
bool lightHasWarmWhite() {
return _light_has_warm_white;
}
bool lightHasColor() {
return _light_has_color;
}
bool lightUseCCT() {
return _light_use_cct;
}
bool lightUseRGB() {
return _light_use_rgb;
}
// -----------------------------------------------------------------------------
espurna::light::Rgb lightRgb() {
return _lightToTargetRgb();
}
void lightRgb(espurna::light::Rgb rgb) {
_light_mapping.red(rgb.red());
_light_mapping.green(rgb.green());
_light_mapping.blue(rgb.blue());
}
void lightHs(long hue, long saturation) {
lightRgb(_lightRgb(
espurna::light::Hsv(
hue, saturation,
espurna::light::Hsv::ValueMax)));
}
void lightHsv(espurna::light::Hsv hsv) {
lightHs(hsv.hue(), hsv.saturation());
lightBrightnessPercent(hsv.value());
}
espurna::light::Hsv lightHsv() {
return _lightHsv(_lightToTargetRgb());
}
// -----------------------------------------------------------------------------
void lightOnReport(LightReportListener func) {
_light_report.push_front(func);
}
namespace {
void _lightReport(int report) {
#if MQTT_SUPPORT
if (report & espurna::light::Report::Mqtt) {
lightMQTT();
}
if (report & espurna::light::Report::MqttGroup) {
lightMQTTGroup();
}
#endif
#if WEB_SUPPORT
if (report & espurna::light::Report::Web) {
wsPost(_lightWebSocketStatus);
}
#endif
for (auto& report : _light_report) {
report();
}
}
// Called in the loop() when we received lightUpdate(...) values
void _lightUpdateDebug(const LightTransitionHandler& handler) {
const auto Time = handler.time();
const auto Step = handler.step();
if (Time.count() - Step.count()) {
DEBUG_MSG_P(PSTR("[LIGHT] Scheduled transition for %u (ms) every %u (ms)\n"),
Time.count(), Step.count());
}
for (auto& transition : handler.prepared()) {
if (transition.count > 1) {
DEBUG_MSG_P(PSTR("[LIGHT] Transition from %s to %ld (step %s, %u times)\n"),
String(transition.value, 2).c_str(), transition.target,
String(transition.step, 2).c_str(), transition.count);
}
}
}
struct LightValuesObserver {
LightValuesObserver() = delete;
explicit LightValuesObserver(const LightChannels& channels) :
_channels(channels),
_last_values(values(_channels)),
_last_size(_channels.size())
{}
bool changed() const {
return (_last_size != _channels.size())
|| (_last_values != values(_channels));
}
private:
static LightValues values(const LightChannels& channels) {
LightValues out{};
std::transform(
channels.begin(), channels.end(), out.begin(),
[](const LightChannel& channel) {
return channel.value;
});
return out;
}
const LightChannels& _channels;
LightValues _last_values{};
size_t _last_size { 0 };
};
void _lightSequenceCheck() {
if (!_light_update && !_light_transition) {
_light_sequence.run();
}
}
void _lightPostLoop() {
if (_light_report_timer) {
_lightReport(_light_report_timer.get());
}
if (_light_save_timer) {
_light_save_timer.reset();
_lightSaveSettings();
}
}
void _lightUpdate() {
if (!_light_update) {
return;
}
LightValuesObserver observer(_light_channels);
_light_process_input_values(_light_channels);
if (!_light_state_changed && !observer.changed()) {
_light_update.cancel();
return;
}
_light_state_changed = false;
_light_update.run([](LightTransition transition, int report, bool save) {
// Channel output values will be set by the handler class and the specified provider
// We either set the values immediately or schedule an ongoing transition
_light_transition = std::make_unique<LightTransitionHandler>(_light_channels, transition, _light_state);
_light_provider_update.start(_light_transition->step());
_lightUpdateDebug(*_light_transition);
// Send current state to all available 'report' targets
// (make sure to delay the report, in case lightUpdate is called repeatedly)
_light_report_timer.wait_set(_light_report_delay, report);
// Always save to RTCMEM, optionally preserve the state in the settings storage
_lightSaveRtcmem();
if (save) {
_light_save_timer.wait_set(_light_save_delay, true);
}
});
}
void _lightUpdate(LightTransition transition, int report, bool save, bool sequence) {
#if LIGHT_PROVIDER == LIGHT_PROVIDER_CUSTOM
if (!_light_provider) {
return;
}
#endif
if (!_light_channels.size()) {
return;
}
_light_update.set(transition, report, save);
if (!sequence) {
_light_sequence.clear();
}
}
void _lightUpdate(LightTransition transition, int report, bool save) {
_lightUpdate(transition, report, save, false);
}
void _lightUpdate(LightTransition transition) {
_lightUpdate(transition, espurna::light::Report::Default, _light_save, false);
}
void _lightUpdate(bool save) {
_lightUpdate(lightTransition(), espurna::light::Report::Default, save, false);
}
} // namespace
void lightSequence(LightSequenceCallbacks callbacks) {
_light_sequence = std::move(callbacks);
}
void lightUpdateSequence(LightTransition transition) {
_lightUpdate(transition, espurna::light::Report::None, false, true);
}
void lightUpdate(LightTransition transition, int report, bool save) {
_lightUpdate(transition, report, save);
}
void lightUpdate(LightTransition transition) {
_lightUpdate(transition);
}
void lightUpdate(bool save) {
_lightUpdate(save);
}
void lightUpdate() {
_lightUpdate(lightTransition());
}
void lightState(size_t id, bool state) {
if ((id < _light_channels.size()) && _light_channels[id].state != state) {
_light_channels[id].state = state;
_light_state_changed = true;
}
}
bool lightState(size_t id) {
if (id < _light_channels.size()) {
return _light_channels[id].state;
}
return false;
}
void lightState(bool state) {
if (_light_state != state) {
_light_state = state;
if (_light_state_listener) {
_light_state_listener(state);
}
_light_state_changed = true;
}
}
bool lightState() {
return _light_state;
}
void lightParseHsv(espurna::StringView value) {
_lightFromHsvPayload(value);
}
void lightParseRgb(espurna::StringView value) {
_lightFromRgbPayload(value);
}
String lightRgbPayload() {
return _lightRgbPayload();
}
String lightHsvPayload() {
return _lightHsvPayload();
}
String lightColor() {
return _light_use_rgb ? lightRgbPayload() : lightHsvPayload();
}
long lightRed() {
return _light_mapping.red();
}
void lightRed(long value) {
_light_mapping.red(value);
}
long lightGreen() {
return _light_mapping.green();
}
void lightGreen(long value) {
_light_mapping.green(value);
}
long lightBlue() {
return _light_mapping.blue();
}
void lightBlue(long value) {
_light_mapping.blue(value);
}
long lightWarmWhite() {
return _light_mapping.warm();
}
void lightWarmWhite(long value) {
_light_mapping.warm(value);
}
long lightColdWhite() {
return _light_mapping.cold();
}
void lightColdWhite(long value) {
_light_mapping.cold(value);
}
void lightTemperature(espurna::light::Mireds mireds) {
_lightTemperature(mireds);
}
void lightMireds(espurna::light::Kelvin kelvin) {
_lightTemperature(kelvin);
}
espurna::light::TemperatureRange lightMiredsRange() {
return _light_temperature.range();
}
long lightChannel(size_t id) {
if (id < _light_channels.size()) {
return _light_channels[id].inputValue;
}
return 0l;
}
void lightChannel(size_t id, long value) {
if (id < _light_channels.size()) {
_light_channels[id] = value;
}
}
void lightChannelStep(size_t id, long steps, long multiplier) {
lightChannel(id, lightChannel(id) + (steps * multiplier));
}
void lightChannelStep(size_t id, long steps) {
lightChannelStep(id, steps, espurna::light::ValueStep);
}
long lightBrightness() {
return _light_brightness.value();
}
void lightBrightnessPercent(long percent) {
_lightBrightnessPercent(percent);
}
void lightBrightness(long brightness) {
_light_brightness = std::clamp(brightness, espurna::light::BrightnessMin, espurna::light::BrightnessMax);
}
void lightBrightnessStep(long steps, long multiplier) {
lightBrightness(_light_brightness.value() + (steps * multiplier));
}
void lightBrightnessStep(long steps) {
lightBrightnessStep(steps, espurna::light::ValueStep);
}
espurna::duration::Milliseconds lightTransitionTime() {
return _light_use_transitions
? _light_transition_time
: espurna::duration::Milliseconds(0);
}
espurna::duration::Milliseconds lightTransitionStep() {
return _light_use_transitions
? _light_transition_step
: espurna::duration::Milliseconds(0);
}
LightTransition lightTransition() {
return {lightTransitionTime(), lightTransitionStep()};
}
void lightTransition(espurna::duration::Milliseconds time, espurna::duration::Milliseconds step) {
bool save { false };
_light_use_transitions = (time.count() > 0) && (step.count() > 0);
if (_light_use_transitions) {
save = true;
_light_transition_time = time;
_light_transition_step = step;
}
espurna::light::settings::transition(_light_use_transitions);
if (save) {
espurna::light::settings::transitionTime(_light_transition_time);
espurna::light::settings::transitionStep(_light_transition_step);
}
saveSettings();
}
void lightTransition(LightTransition transition) {
lightTransition(transition.time, transition.step);
}
// -----------------------------------------------------------------------------
// SETUP
// -----------------------------------------------------------------------------
namespace {
inline bool _lightUseGamma(size_t channels, size_t index) {
switch (_lightTag(channels, index)) {
case 'R':
case 'G':
case 'B':
return true;
}
return false;
}
void _lightConfigure() {
const auto Channels = _light_channels.size();
const auto has_color = (Channels >= 3);
_light_has_color = has_color;
const auto use_color = espurna::light::settings::color();
_light_use_color = use_color && has_color;
if (!_light_use_color) {
espurna::light::settings::color(false);
}
_light_use_rgb = espurna::light::settings::rgb();
const auto has_warm_white = (Channels >= 4) || (Channels >= 1);
_light_has_warm_white = has_warm_white;
const auto has_cold_white = (Channels == 5) || (Channels == 2);
_light_has_cold_white = has_cold_white;
const auto use_white = espurna::light::settings::white();
_light_use_white = use_white && (has_cold_white || has_warm_white);
if (!_light_use_white) {
espurna::light::settings::white(false);
}
const auto use_cct = espurna::light::settings::cct();
_light_use_cct = use_cct && has_cold_white && has_warm_white;
if (!_light_use_cct) {
espurna::light::settings::cct(false);
}
_light_temperature.range(
espurna::light::TemperatureRange{
espurna::light::settings::miredsCold(),
espurna::light::settings::miredsWarm()
});
_light_use_transitions = espurna::light::settings::transition();
_light_transition_time = espurna::light::settings::transitionTime();
_light_transition_step = espurna::light::settings::transitionStep();
_light_save = espurna::light::settings::save();
_light_save_delay = espurna::light::settings::saveDelay();
_light_use_gamma = espurna::light::settings::gamma();
for (size_t index = 0; index < Channels; ++index) {
#if LIGHT_PROVIDER == LIGHT_PROVIDER_MY92XX
_light_my92xx_channel_map[index] = espurna::light::settings::my92xxChannel(index);
#endif
_light_channels[index].inverse = espurna::light::settings::inverse(index);
_light_channels[index].gamma = (_light_has_color && _light_use_gamma) && _lightUseGamma(Channels, index);
}
const auto last_process_input_values = _light_process_input_values;
_light_process_input_values =
(_light_use_color) ? (
(_light_use_cct) ? _lightValuesWithRgbCct :
(_light_use_white) ? _lightValuesWithRgbWhite :
_lightValuesWithBrightnessExceptWhite) :
(_light_use_cct) ?
_lightValuesWithCct :
_lightValuesWithBrightness;
if (!_light_update && (last_process_input_values != _light_process_input_values)) {
lightUpdate(false);
}
}
#if RELAY_SUPPORT
void _lightRelayBoot() {
if (_light_has_controls) {
return;
}
auto next_id = relayCount();
if (relayAdd(std::make_unique<LightGlobalProvider>())) {
_light_state_listener = [next_id](bool state) {
relayStatus(next_id, state);
};
_light_has_controls = true;
}
}
#endif
void _lightBoot() {
const size_t Channels { _light_channels.size() };
if (Channels) {
DEBUG_MSG_P(PSTR("[LIGHT] Number of channels: %zu\n"), Channels);
_lightUpdateMapping(_light_channels);
_lightConfigure();
if (rtcmemStatus()) {
_lightRestoreRtcmem();
} else {
_lightRestoreSettings();
}
_light_state_changed = true;
lightUpdate(false);
}
}
} // namespace
#if LIGHT_PROVIDER == LIGHT_PROVIDER_CUSTOM
// Custom provider is expected to:
// - register a controller class via `lightSetProvider(...)`
// - use `lightAdd()` N times to create N channels that will be handled via the controller
// Once that's done, we 'boot' the provider and disable further calls to the `lightAdd()`
void lightSetProvider(std::unique_ptr<LightProvider>&& ptr) {
_light_provider = std::move(ptr);
}
bool lightAdd() {
enum class State {
None,
Scheduled,
Done
};
static State state { State::None };
if (State::Done == state) {
return false;
}
if (_light_channels.size() < espurna::light::ChannelsMax) {
_light_channels.emplace_back(LightChannel());
if (State::Scheduled != state) {
state = State::Scheduled;
espurnaRegisterOnceUnique([]() {
_lightBoot();
state = State::Done;
});
}
return true;
}
return false;
}
#else
bool lightAdd() {
return false;
}
#endif // LIGHT_PROVIDER_CUSTOM
namespace {
void _lightProviderDebug() {
DEBUG_MSG_P(PSTR("[LIGHT] Provider: "
#if LIGHT_PROVIDER == LIGHT_PROVIDER_NONE
"NONE"
#elif LIGHT_PROVIDER == LIGHT_PROVIDER_DIMMER
"DIMMER"
#elif LIGHT_PROVIDER == LIGHT_PROVIDER_MY92XX
"MY92XX"
#elif LIGHT_PROVIDER == LIGHT_PROVIDER_CUSTOM
"CUSTOM"
#endif
"\n"));
}
void _lightSettingsMigrate(int version) {
if (version < 5) {
delSettingPrefix({
"chGPIO",
"chLogic",
"myChips",
"myDCKGPIO",
"myDIGPIO"
});
delSetting("lightProvider");
delSetting("useCSS");
moveSetting("lightTime", "ltTime");
moveSetting("lightColdMired", "ltColdMired");
moveSetting("lightWarmMired", "ltWarmMired");
}
}
} // namespace
// -----------------------------------------------------------------------------
void lightSetup() {
migrateVersion(_lightSettingsMigrate);
const auto enable_pin = espurna::light::settings::enablePin();
if (enable_pin != GPIO_NONE) {
pinMode(enable_pin, OUTPUT);
digitalWrite(enable_pin, HIGH);
}
_light_channels.reserve(espurna::light::ChannelsMax);
_lightProviderDebug();
#if LIGHT_PROVIDER == LIGHT_PROVIDER_MY92XX
{
// TODO: library API specifies some hard-coded amount of channels, based off of the model and chips
// we always map channel index 1-to-1, to simplify hw config, but most of the time there are less active channels
// than the value generated by the lib (ref. `my92xx::getChannels()`)
auto channels = espurna::light::settings::my92xxChannels();
if (channels) {
_my92xx = std::make_unique<my92xx>(
espurna::light::settings::my92xxModel(),
espurna::light::settings::my92xxChips(),
espurna::light::settings::my92xxDiPin(),
espurna::light::settings::my92xxDckiPin(),
espurna::light::build::my92xxCommand());
_light_channels.resize(channels);
}
}
#elif LIGHT_PROVIDER == LIGHT_PROVIDER_DIMMER
{
// Load up until first invalid pin. Allow settings to override, but not remove values
std::vector<uint8_t> pins;
pins.reserve(espurna::light::ChannelsMax);
for (size_t index = 0; index < espurna::light::ChannelsMax; ++index) {
const auto pin = espurna::light::settings::channelPin(index);
if (!gpioValid(pin)) {
break;
}
pins.push_back(pin);
}
// The rest is handled by the PWM driver, continue *only* when it actually agrees on selected pins
if (pwmInitPins(pins)) {
const auto range = pwmRange();
_light_pwm_min = range.min;
_light_pwm_max = range.max;
_light_channels.resize(pins.size());
}
}
#endif
_lightBoot();
#if RELAY_SUPPORT
if (espurna::light::settings::relay()) {
_lightRelayBoot();
}
#endif
#if WEB_SUPPORT
wsRegister()
.onVisible(_lightWebSocketOnVisible)
.onConnected(_lightWebSocketOnConnected)
.onData(_lightWebSocketStatus)
.onAction(_lightWebSocketOnAction)
.onKeyCheck(_lightWebSocketOnKeyCheck);
#endif
#if API_SUPPORT
_lightApiSetup();
#endif
#if MQTT_SUPPORT
_lightMqttSetup();
#endif
#if TERMINAL_SUPPORT
_lightInitCommands();
#endif
espurnaRegisterReload(_lightConfigure);
espurnaRegisterLoop([]() {
_lightSequenceCheck();
_lightUpdate();
_lightProviderUpdate();
_lightPostLoop();
});
}
#endif // LIGHT_PROVIDER != LIGHT_PROVIDER_NONE