Mirror of espurna firmware for wireless switches and more
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

1142 lines
36 KiB

/*
SENSOR MODULE
Copyright (C) 2016-2018 by Xose Pérez <xose dot perez at gmail dot com>
*/
#if SENSOR_SUPPORT
#include <vector>
#include "filters/MaxFilter.h"
#include "filters/MedianFilter.h"
#include "filters/MovingAverageFilter.h"
#include "sensors/BaseSensor.h"
typedef struct {
BaseSensor * sensor; // Sensor object
BaseFilter * filter; // Filter object
unsigned char local; // Local index in its provider
unsigned char type; // Type of measurement
unsigned char global; // Global index in its type
double current; // Current (last) value, unfiltered
double filtered; // Filtered (averaged) value
double reported; // Last reported value
double min_change; // Minimum value change to report
} sensor_magnitude_t;
std::vector<BaseSensor *> _sensors;
std::vector<sensor_magnitude_t> _magnitudes;
bool _sensors_ready = false;
unsigned char _counts[MAGNITUDE_MAX];
bool _sensor_realtime = API_REAL_TIME_VALUES;
unsigned long _sensor_read_interval = 1000 * SENSOR_READ_INTERVAL;
unsigned char _sensor_report_every = SENSOR_REPORT_EVERY;
unsigned char _sensor_power_units = SENSOR_POWER_UNITS;
unsigned char _sensor_energy_units = SENSOR_ENERGY_UNITS;
unsigned char _sensor_temperature_units = SENSOR_TEMPERATURE_UNITS;
double _sensor_temperature_correction = SENSOR_TEMPERATURE_CORRECTION;
double _sensor_humidity_correction = SENSOR_HUMIDITY_CORRECTION;
String _sensor_energy_reset_ts = String();
// -----------------------------------------------------------------------------
// Private
// -----------------------------------------------------------------------------
unsigned char _magnitudeDecimals(unsigned char type) {
// Hardcoded decimals (these should be linked to the unit, instead of the magnitude)
if (type == MAGNITUDE_ENERGY ||
type == MAGNITUDE_ENERGY_DELTA) {
if (_sensor_energy_units == ENERGY_KWH) return 3;
}
if (type == MAGNITUDE_POWER_ACTIVE ||
type == MAGNITUDE_POWER_APPARENT ||
type == MAGNITUDE_POWER_REACTIVE) {
if (_sensor_power_units == POWER_KILOWATTS) return 3;
}
if (type < MAGNITUDE_MAX) return pgm_read_byte(magnitude_decimals + type);
return 0;
}
double _magnitudeProcess(unsigned char type, double value) {
// Hardcoded conversions (these should be linked to the unit, instead of the magnitude)
if (type == MAGNITUDE_TEMPERATURE) {
if (_sensor_temperature_units == TMP_FAHRENHEIT) value = value * 1.8 + 32;
value = value + _sensor_temperature_correction;
}
if (type == MAGNITUDE_HUMIDITY) {
value = constrain(value + _sensor_humidity_correction, 0, 100);
}
if (type == MAGNITUDE_ENERGY ||
type == MAGNITUDE_ENERGY_DELTA) {
if (_sensor_energy_units == ENERGY_KWH) value = value / 3600000;
}
if (type == MAGNITUDE_POWER_ACTIVE ||
type == MAGNITUDE_POWER_APPARENT ||
type == MAGNITUDE_POWER_REACTIVE) {
if (_sensor_power_units == POWER_KILOWATTS) value = value / 1000;
}
return roundTo(value, _magnitudeDecimals(type));
}
// -----------------------------------------------------------------------------
#if WEB_SUPPORT
bool _sensorWebSocketOnReceive(const char * key, JsonVariant& value) {
if (strncmp(key, "pwr", 3) == 0) return true;
if (strncmp(key, "sns", 3) == 0) return true;
if (strncmp(key, "tmp", 3) == 0) return true;
if (strncmp(key, "hum", 3) == 0) return true;
if (strncmp(key, "energy", 6) == 0) return true;
return false;
}
void _sensorWebSocketSendData(JsonObject& root) {
char buffer[10];
bool hasTemperature = false;
bool hasHumidity = false;
JsonArray& list = root.createNestedArray("magnitudes");
for (unsigned char i=0; i<_magnitudes.size(); i++) {
sensor_magnitude_t magnitude = _magnitudes[i];
unsigned char decimals = _magnitudeDecimals(magnitude.type);
dtostrf(magnitude.current, 1-sizeof(buffer), decimals, buffer);
JsonObject& element = list.createNestedObject();
element["index"] = int(magnitude.global);
element["type"] = int(magnitude.type);
element["value"] = String(buffer);
element["units"] = magnitudeUnits(magnitude.type);
element["error"] = magnitude.sensor->error();
if (magnitude.type == MAGNITUDE_ENERGY) {
if (_sensor_energy_reset_ts.length() == 0) _sensorReset();
element["description"] = magnitude.sensor->slot(magnitude.local) + _sensor_energy_reset_ts;
} else {
element["description"] = magnitude.sensor->slot(magnitude.local);
}
if (magnitude.type == MAGNITUDE_TEMPERATURE) hasTemperature = true;
if (magnitude.type == MAGNITUDE_HUMIDITY) hasHumidity = true;
}
if (hasTemperature) root["temperatureVisible"] = 1;
if (hasHumidity) root["humidityVisible"] = 1;
}
void _sensorWebSocketStart(JsonObject& root) {
for (unsigned char i=0; i<_sensors.size(); i++) {
BaseSensor * sensor = _sensors[i];
#if EMON_ANALOG_SUPPORT
if (sensor->getID() == SENSOR_EMON_ANALOG_ID) {
root["emonVisible"] = 1;
root["pwrVisible"] = 1;
root["pwrVoltage"] = ((EmonAnalogSensor *) sensor)->getVoltage();
}
#endif
#if HLW8012_SUPPORT
if (sensor->getID() == SENSOR_HLW8012_ID) {
root["hlwVisible"] = 1;
root["pwrVisible"] = 1;
}
#endif
#if CSE7766_SUPPORT
if (sensor->getID() == SENSOR_CSE7766_ID) {
root["cseVisible"] = 1;
root["pwrVisible"] = 1;
}
#endif
#if V9261F_SUPPORT
if (sensor->getID() == SENSOR_V9261F_ID) {
root["pwrVisible"] = 1;
}
#endif
#if ECH1560_SUPPORT
if (sensor->getID() == SENSOR_ECH1560_ID) {
root["pwrVisible"] = 1;
}
#endif
#if PZEM004T_SUPPORT
if (sensor->getID() == SENSOR_PZEM004T_ID) {
root["pzemVisible"] = 1;
root["pwrVisible"] = 1;
}
#endif
}
if (_magnitudes.size() > 0) {
root["sensorsVisible"] = 1;
//root["apiRealTime"] = _sensor_realtime;
root["pwrUnits"] = _sensor_power_units;
root["energyUnits"] = _sensor_energy_units;
root["tmpUnits"] = _sensor_temperature_units;
root["tmpCorrection"] = _sensor_temperature_correction;
root["humCorrection"] = _sensor_humidity_correction;
root["snsRead"] = _sensor_read_interval / 1000;
root["snsReport"] = _sensor_report_every;
}
/*
// Sensors manifest
JsonArray& manifest = root.createNestedArray("manifest");
#if BMX280_SUPPORT
BMX280Sensor::manifest(manifest);
#endif
// Sensors configuration
JsonArray& sensors = root.createNestedArray("sensors");
for (unsigned char i; i<_sensors.size(); i++) {
JsonObject& sensor = sensors.createNestedObject();
sensor["index"] = i;
sensor["id"] = _sensors[i]->getID();
_sensors[i]->getConfig(sensor);
}
*/
}
void _sensorAPISetup() {
for (unsigned char magnitude_id=0; magnitude_id<_magnitudes.size(); magnitude_id++) {
sensor_magnitude_t magnitude = _magnitudes[magnitude_id];
String topic = magnitudeTopic(magnitude.type);
if (SENSOR_USE_INDEX || (_counts[magnitude.type] > 1)) topic = topic + "/" + String(magnitude.global);
apiRegister(topic.c_str(), [magnitude_id](char * buffer, size_t len) {
sensor_magnitude_t magnitude = _magnitudes[magnitude_id];
unsigned char decimals = _magnitudeDecimals(magnitude.type);
double value = _sensor_realtime ? magnitude.current : magnitude.filtered;
dtostrf(value, 1-len, decimals, buffer);
});
}
}
#endif
#if TERMINAL_SUPPORT
void _sensorInitCommands() {
settingsRegisterCommand(F("MAGNITUDES"), [](Embedis* e) {
for (unsigned char i=0; i<_magnitudes.size(); i++) {
sensor_magnitude_t magnitude = _magnitudes[i];
DEBUG_MSG_P(PSTR("[SENSOR] * %2d: %s @ %s (%s/%d)\n"),
i,
magnitudeTopic(magnitude.type).c_str(),
magnitude.sensor->slot(magnitude.local).c_str(),
magnitudeTopic(magnitude.type).c_str(),
magnitude.global
);
}
DEBUG_MSG_P(PSTR("+OK\n"));
});
}
#endif
void _sensorTick() {
for (unsigned char i=0; i<_sensors.size(); i++) {
_sensors[i]->tick();
}
}
void _sensorPre() {
for (unsigned char i=0; i<_sensors.size(); i++) {
_sensors[i]->pre();
if (!_sensors[i]->status()) {
DEBUG_MSG_P(PSTR("[SENSOR] Error reading data from %s (error: %d)\n"),
_sensors[i]->description().c_str(),
_sensors[i]->error()
);
}
}
}
void _sensorPost() {
for (unsigned char i=0; i<_sensors.size(); i++) {
_sensors[i]->post();
}
}
void _sensorReset() {
#if NTP_SUPPORT
if (ntpSynced()) {
_sensor_energy_reset_ts = String(" (since ") + ntpDateTime() + String(")");
}
#endif
}
// -----------------------------------------------------------------------------
// Sensor initialization
// -----------------------------------------------------------------------------
void _sensorLoad() {
/*
This is temporal, in the future sensors will be initialized based on
soft configuration (data stored in EEPROM config) so you will be able
to define and configure new sensors on the fly
At the time being, only enabled sensors (those with *_SUPPORT to 1) are being
loaded and initialized here. If you want to add new sensors of the same type
just duplicate the block and change the arguments for the set* methods.
Check the DHT block below for an example
*/
#if AM2320_SUPPORT
{
AM2320Sensor * sensor = new AM2320Sensor();
sensor->setAddress(AM2320_ADDRESS);
_sensors.push_back(sensor);
}
#endif
#if ANALOG_SUPPORT
{
AnalogSensor * sensor = new AnalogSensor();
sensor->setSamples(ANALOG_SAMPLES);
sensor->setDelay(ANALOG_DELAY);
_sensors.push_back(sensor);
}
#endif
#if BH1750_SUPPORT
{
BH1750Sensor * sensor = new BH1750Sensor();
sensor->setAddress(BH1750_ADDRESS);
sensor->setMode(BH1750_MODE);
_sensors.push_back(sensor);
}
#endif
#if BMX280_SUPPORT
{
BMX280Sensor * sensor = new BMX280Sensor();
sensor->setAddress(BMX280_ADDRESS);
_sensors.push_back(sensor);
}
#endif
#if CSE7766_SUPPORT
{
CSE7766Sensor * sensor = new CSE7766Sensor();
sensor->setRX(CSE7766_PIN);
_sensors.push_back(sensor);
}
#endif
#if DALLAS_SUPPORT
{
DallasSensor * sensor = new DallasSensor();
sensor->setGPIO(DALLAS_PIN);
_sensors.push_back(sensor);
}
#endif
#if DHT_SUPPORT
{
DHTSensor * sensor = new DHTSensor();
sensor->setGPIO(DHT_PIN);
sensor->setType(DHT_TYPE);
_sensors.push_back(sensor);
}
#endif
/*
// Example on how to add a second DHT sensor
// DHT2_PIN and DHT2_TYPE should be defined in sensors.h file
#if DHT_SUPPORT
{
DHTSensor * sensor = new DHTSensor();
sensor->setGPIO(DHT2_PIN);
sensor->setType(DHT2_TYPE);
_sensors.push_back(sensor);
}
#endif
*/
#if DIGITAL_SUPPORT
{
DigitalSensor * sensor = new DigitalSensor();
sensor->setGPIO(DIGITAL_PIN);
sensor->setMode(DIGITAL_PIN_MODE);
sensor->setDefault(DIGITAL_DEFAULT_STATE);
_sensors.push_back(sensor);
}
#endif
#if ECH1560_SUPPORT
{
ECH1560Sensor * sensor = new ECH1560Sensor();
sensor->setCLK(ECH1560_CLK_PIN);
sensor->setMISO(ECH1560_MISO_PIN);
sensor->setInverted(ECH1560_INVERTED);
_sensors.push_back(sensor);
}
#endif
#if EMON_ADC121_SUPPORT
{
EmonADC121Sensor * sensor = new EmonADC121Sensor();
sensor->setAddress(EMON_ADC121_I2C_ADDRESS);
sensor->setVoltage(EMON_MAINS_VOLTAGE);
sensor->setReference(EMON_REFERENCE_VOLTAGE);
sensor->setCurrentRatio(0, EMON_CURRENT_RATIO);
_sensors.push_back(sensor);
}
#endif
#if EMON_ADS1X15_SUPPORT
{
EmonADS1X15Sensor * sensor = new EmonADS1X15Sensor();
sensor->setAddress(EMON_ADS1X15_I2C_ADDRESS);
sensor->setType(EMON_ADS1X15_TYPE);
sensor->setMask(EMON_ADS1X15_MASK);
sensor->setGain(EMON_ADS1X15_GAIN);
sensor->setVoltage(EMON_MAINS_VOLTAGE);
sensor->setCurrentRatio(0, EMON_CURRENT_RATIO);
sensor->setCurrentRatio(1, EMON_CURRENT_RATIO);
sensor->setCurrentRatio(2, EMON_CURRENT_RATIO);
sensor->setCurrentRatio(3, EMON_CURRENT_RATIO);
_sensors.push_back(sensor);
}
#endif
#if EMON_ANALOG_SUPPORT
{
EmonAnalogSensor * sensor = new EmonAnalogSensor();
sensor->setVoltage(EMON_MAINS_VOLTAGE);
sensor->setReference(EMON_REFERENCE_VOLTAGE);
sensor->setCurrentRatio(0, EMON_CURRENT_RATIO);
_sensors.push_back(sensor);
}
#endif
#if EVENTS_SUPPORT
{
EventSensor * sensor = new EventSensor();
sensor->setGPIO(EVENTS_PIN);
sensor->setMode(EVENTS_PIN_MODE);
sensor->setDebounceTime(EVENTS_DEBOUNCE);
sensor->setInterruptMode(EVENTS_INTERRUPT_MODE);
_sensors.push_back(sensor);
}
#endif
#if GEIGER_SUPPORT
{
GeigerSensor * sensor = new GeigerSensor(); // Create instance of thr Geiger module.
sensor->setGPIO(GEIGER_PIN); // Interrupt pin of the attached geiger counter board.
sensor->setMode(GEIGER_PIN_MODE); // This pin is an input.
sensor->setDebounceTime(GEIGER_DEBOUNCE); // Debounce time 25ms, because https://github.com/Trickx/espurna/wiki/Geiger-counter
sensor->setInterruptMode(GEIGER_INTERRUPT_MODE); // Interrupt triggering: edge detection rising.
sensor->setCPM2SievertFactor(GEIGER_CPM2SIEVERT); // Conversion factor from counts per minute to µSv/h
_sensors.push_back(sensor);
}
#endif
#if GUVAS12SD_SUPPORT
{
GUVAS12SDSensor * sensor = new GUVAS12SDSensor();
sensor->setGPIO(GUVAS12SD_PIN);
_sensors.push_back(sensor);
}
#endif
#if HCSR04_SUPPORT
{
HCSR04Sensor * sensor = new HCSR04Sensor();
sensor->setTrigger(HCSR04_TRIGGER);
sensor->setEcho(HCSR04_ECHO);
_sensors.push_back(sensor);
}
#endif
#if HLW8012_SUPPORT
{
HLW8012Sensor * sensor = new HLW8012Sensor();
sensor->setSEL(HLW8012_SEL_PIN);
sensor->setCF(HLW8012_CF_PIN);
sensor->setCF1(HLW8012_CF1_PIN);
sensor->setSELCurrent(HLW8012_SEL_CURRENT);
_sensors.push_back(sensor);
}
#endif
#if MHZ19_SUPPORT
{
MHZ19Sensor * sensor = new MHZ19Sensor();
sensor->setRX(MHZ19_RX_PIN);
sensor->setTX(MHZ19_TX_PIN);
_sensors.push_back(sensor);
}
#endif
#if NTC_SUPPORT
{
NTCSensor * sensor = new NTCSensor();
sensor->setSamples(NTC_SAMPLES);
sensor->setDelay(NTC_DELAY);
sensor->setUpstreamResistor(NTC_R_UP);
sensor->setDownstreamResistor(NTC_R_DOWN);
sensor->setBeta(NTC_BETA);
sensor->setR0(NTC_R0);
sensor->setT0(NTC_T0);
_sensors.push_back(sensor);
}
#endif
#if SENSEAIR_SUPPORT
{
SenseAirSensor * sensor = new SenseAirSensor();
sensor->setRX(SENSEAIR_RX_PIN);
sensor->setTX(SENSEAIR_TX_PIN);
_sensors.push_back(sensor);
}
#endif
#if PMSX003_SUPPORT
{
PMSX003Sensor * sensor = new PMSX003Sensor();
sensor->setRX(PMS_RX_PIN);
sensor->setTX(PMS_TX_PIN);
sensor->setType(PMS_TYPE);
_sensors.push_back(sensor);
}
#endif
#if PZEM004T_SUPPORT
{
PZEM004TSensor * sensor = new PZEM004TSensor();
#if PZEM004T_USE_SOFT
sensor->setRX(PZEM004T_RX_PIN);
sensor->setTX(PZEM004T_TX_PIN);
#else
sensor->setSerial(& PZEM004T_HW_PORT);
#endif
_sensors.push_back(sensor);
}
#endif
#if SHT3X_I2C_SUPPORT
{
SHT3XI2CSensor * sensor = new SHT3XI2CSensor();
sensor->setAddress(SHT3X_I2C_ADDRESS);
_sensors.push_back(sensor);
}
#endif
#if SI7021_SUPPORT
{
SI7021Sensor * sensor = new SI7021Sensor();
sensor->setAddress(SI7021_ADDRESS);
_sensors.push_back(sensor);
}
#endif
#if TMP3X_SUPPORT
{
TMP3XSensor * sensor = new TMP3XSensor();
sensor->setType(TMP3X_TYPE);
_sensors.push_back(sensor);
}
#endif
#if V9261F_SUPPORT
{
V9261FSensor * sensor = new V9261FSensor();
sensor->setRX(V9261F_PIN);
sensor->setInverted(V9261F_PIN_INVERSE);
_sensors.push_back(sensor);
}
#endif
}
void _sensorCallback(unsigned char i, unsigned char type, const char * payload) {
DEBUG_MSG_P(PSTR("[SENSOR] Sensor #%u callback, type %u, payload: '%s'\n"), i, type, payload);
}
void _sensorInit() {
_sensors_ready = true;
for (unsigned char i=0; i<_sensors.size(); i++) {
// Do not process an already initialized sensor
if (_sensors[i]->ready()) continue;
DEBUG_MSG_P(PSTR("[SENSOR] Initializing %s\n"), _sensors[i]->description().c_str());
// Force sensor to reload config
_sensors[i]->begin();
if (!_sensors[i]->ready()) {
if (_sensors[i]->error() != 0) DEBUG_MSG_P(PSTR("[SENSOR] -> ERROR %d\n"), _sensors[i]->error());
_sensors_ready = false;
continue;
}
// Initialize magnitudes
for (unsigned char k=0; k<_sensors[i]->count(); k++) {
unsigned char type = _sensors[i]->type(k);
sensor_magnitude_t new_magnitude;
new_magnitude.sensor = _sensors[i];
new_magnitude.local = k;
new_magnitude.type = type;
new_magnitude.global = _counts[type];
new_magnitude.current = 0;
new_magnitude.filtered = 0;
new_magnitude.reported = 0;
new_magnitude.min_change = 0;
if (type == MAGNITUDE_DIGITAL) {
new_magnitude.filter = new MaxFilter();
} else if (type == MAGNITUDE_EVENTS || type == MAGNITUDE_GEIGER_CPM|| type == MAGNITUDE_GEIGER_SIEVERT) { // For geiger counting moving average filter is the most appropriate if needed at all.
new_magnitude.filter = new MovingAverageFilter();
} else {
new_magnitude.filter = new MedianFilter();
}
new_magnitude.filter->resize(_sensor_report_every);
_magnitudes.push_back(new_magnitude);
DEBUG_MSG_P(PSTR("[SENSOR] -> %s:%d\n"), magnitudeTopic(type).c_str(), _counts[type]);
_counts[type] = _counts[type] + 1;
}
// Hook callback
_sensors[i]->onEvent([i](unsigned char type, const char * payload) {
_sensorCallback(i, type, payload);
});
// Custom initializations
#if EMON_ANALOG_SUPPORT
if (_sensors[i]->getID() == SENSOR_EMON_ANALOG_ID) {
EmonAnalogSensor * sensor = (EmonAnalogSensor *) _sensors[i];
sensor->setCurrentRatio(0, getSetting("pwrRatioC", EMON_CURRENT_RATIO).toFloat());
sensor->setVoltage(getSetting("pwrVoltage", EMON_MAINS_VOLTAGE).toInt());
}
#endif // EMON_ANALOG_SUPPORT
#if HLW8012_SUPPORT
if (_sensors[i]->getID() == SENSOR_HLW8012_ID) {
HLW8012Sensor * sensor = (HLW8012Sensor *) _sensors[i];
double value;
value = getSetting("pwrRatioC", HLW8012_CURRENT_RATIO).toFloat();
if (value > 0) sensor->setCurrentRatio(value);
value = getSetting("pwrRatioV", HLW8012_VOLTAGE_RATIO).toFloat();
if (value > 0) sensor->setVoltageRatio(value);
value = getSetting("pwrRatioP", HLW8012_POWER_RATIO).toFloat();
if (value > 0) sensor->setPowerRatio(value);
}
#endif // HLW8012_SUPPORT
#if CSE7766_SUPPORT
if (_sensors[i]->getID() == SENSOR_CSE7766_ID) {
CSE7766Sensor * sensor = (CSE7766Sensor *) _sensors[i];
double value;
value = getSetting("pwrRatioC", 0).toFloat();
if (value > 0) sensor->setCurrentRatio(value);
value = getSetting("pwrRatioV", 0).toFloat();
if (value > 0) sensor->setVoltageRatio(value);
value = getSetting("pwrRatioP", 0).toFloat();
if (value > 0) sensor->setPowerRatio(value);
}
#endif // CSE7766_SUPPORT
}
}
void _sensorConfigure() {
// General sensor settings
_sensor_read_interval = 1000 * constrain(getSetting("snsRead", SENSOR_READ_INTERVAL).toInt(), SENSOR_READ_MIN_INTERVAL, SENSOR_READ_MAX_INTERVAL);
_sensor_report_every = constrain(getSetting("snsReport", SENSOR_REPORT_EVERY).toInt(), SENSOR_REPORT_MIN_EVERY, SENSOR_REPORT_MAX_EVERY);
_sensor_realtime = getSetting("apiRealTime", API_REAL_TIME_VALUES).toInt() == 1;
_sensor_power_units = getSetting("pwrUnits", SENSOR_POWER_UNITS).toInt();
_sensor_energy_units = getSetting("energyUnits", SENSOR_ENERGY_UNITS).toInt();
_sensor_temperature_units = getSetting("tmpUnits", SENSOR_TEMPERATURE_UNITS).toInt();
_sensor_temperature_correction = getSetting("tmpCorrection", SENSOR_TEMPERATURE_CORRECTION).toFloat();
_sensor_humidity_correction = getSetting("humCorrection", SENSOR_HUMIDITY_CORRECTION).toFloat();
// Specific sensor settings
for (unsigned char i=0; i<_sensors.size(); i++) {
#if EMON_ANALOG_SUPPORT
if (_sensors[i]->getID() == SENSOR_EMON_ANALOG_ID) {
double value;
EmonAnalogSensor * sensor = (EmonAnalogSensor *) _sensors[i];
if (value = getSetting("pwrExpectedP", 0).toInt()) {
sensor->expectedPower(0, value);
setSetting("pwrRatioC", sensor->getCurrentRatio(0));
}
if (getSetting("pwrResetCalibration", 0).toInt() == 1) {
sensor->setCurrentRatio(0, EMON_CURRENT_RATIO);
delSetting("pwrRatioC");
}
if (getSetting("pwrResetE", 0).toInt() == 1) {
sensor->resetEnergy();
_sensorReset();
}
sensor->setVoltage(getSetting("pwrVoltage", EMON_MAINS_VOLTAGE).toInt());
}
#endif // EMON_ANALOG_SUPPORT
#if EMON_ADC121_SUPPORT
if (_sensors[i]->getID() == SENSOR_EMON_ADC121_ID) {
EmonADC121Sensor * sensor = (EmonADC121Sensor *) _sensors[i];
if (getSetting("pwrResetE", 0).toInt() == 1) {
sensor->resetEnergy();
_sensorReset();
}
}
#endif
#if EMON_ADS1X15_SUPPORT
if (_sensors[i]->getID() == SENSOR_EMON_ADS1X15_ID) {
EmonADS1X15Sensor * sensor = (EmonADS1X15Sensor *) _sensors[i];
if (getSetting("pwrResetE", 0).toInt() == 1) {
sensor->resetEnergy();
_sensorReset();
}
}
#endif
#if HLW8012_SUPPORT
if (_sensors[i]->getID() == SENSOR_HLW8012_ID) {
double value;
HLW8012Sensor * sensor = (HLW8012Sensor *) _sensors[i];
if (value = getSetting("pwrExpectedC", 0).toFloat()) {
sensor->expectedCurrent(value);
setSetting("pwrRatioC", sensor->getCurrentRatio());
}
if (value = getSetting("pwrExpectedV", 0).toInt()) {
sensor->expectedVoltage(value);
setSetting("pwrRatioV", sensor->getVoltageRatio());
}
if (value = getSetting("pwrExpectedP", 0).toInt()) {
sensor->expectedPower(value);
setSetting("pwrRatioP", sensor->getPowerRatio());
}
if (getSetting("pwrResetE", 0).toInt() == 1) {
sensor->resetEnergy();
_sensorReset();
}
if (getSetting("pwrResetCalibration", 0).toInt() == 1) {
sensor->resetRatios();
delSetting("pwrRatioC");
delSetting("pwrRatioV");
delSetting("pwrRatioP");
}
}
#endif // HLW8012_SUPPORT
#if CSE7766_SUPPORT
if (_sensors[i]->getID() == SENSOR_CSE7766_ID) {
double value;
CSE7766Sensor * sensor = (CSE7766Sensor *) _sensors[i];
if (value = getSetting("pwrExpectedC", 0).toFloat()) {
sensor->expectedCurrent(value);
setSetting("pwrRatioC", sensor->getCurrentRatio());
}
if (value = getSetting("pwrExpectedV", 0).toInt()) {
sensor->expectedVoltage(value);
setSetting("pwrRatioV", sensor->getVoltageRatio());
}
if (value = getSetting("pwrExpectedP", 0).toInt()) {
sensor->expectedPower(value);
setSetting("pwrRatioP", sensor->getPowerRatio());
}
if (getSetting("pwrResetE", 0).toInt() == 1) {
sensor->resetEnergy();
_sensorReset();
}
if (getSetting("pwrResetCalibration", 0).toInt() == 1) {
sensor->resetRatios();
delSetting("pwrRatioC");
delSetting("pwrRatioV");
delSetting("pwrRatioP");
}
}
#endif // CSE7766_SUPPORT
}
// Update filter sizes
for (unsigned char i=0; i<_magnitudes.size(); i++) {
_magnitudes[i].filter->resize(_sensor_report_every);
}
// Save settings
delSetting("pwrExpectedP");
delSetting("pwrExpectedC");
delSetting("pwrExpectedV");
delSetting("pwrResetCalibration");
delSetting("pwrResetE");
saveSettings();
}
// -----------------------------------------------------------------------------
// Public
// -----------------------------------------------------------------------------
unsigned char sensorCount() {
return _sensors.size();
}
unsigned char magnitudeCount() {
return _magnitudes.size();
}
String magnitudeName(unsigned char index) {
if (index < _magnitudes.size()) {
sensor_magnitude_t magnitude = _magnitudes[index];
return magnitude.sensor->slot(magnitude.local);
}
return String();
}
unsigned char magnitudeType(unsigned char index) {
if (index < _magnitudes.size()) {
return int(_magnitudes[index].type);
}
return MAGNITUDE_NONE;
}
unsigned char magnitudeIndex(unsigned char index) {
if (index < _magnitudes.size()) {
return int(_magnitudes[index].global);
}
return 0;
}
String magnitudeTopic(unsigned char type) {
char buffer[16] = {0};
if (type < MAGNITUDE_MAX) strncpy_P(buffer, magnitude_topics[type], sizeof(buffer));
return String(buffer);
}
String magnitudeTopicIndex(unsigned char index) {
char topic[32] = {0};
if (index < _magnitudes.size()) {
sensor_magnitude_t magnitude = _magnitudes[index];
if (SENSOR_USE_INDEX || (_counts[magnitude.type] > 1)) {
snprintf(topic, sizeof(topic), "%s/%u", magnitudeTopic(magnitude.type).c_str(), magnitude.global);
} else {
snprintf(topic, sizeof(topic), "%s", magnitudeTopic(magnitude.type).c_str());
}
}
return String(topic);
}
String magnitudeUnits(unsigned char type) {
char buffer[8] = {0};
if (type < MAGNITUDE_MAX) {
if ((type == MAGNITUDE_TEMPERATURE) && (_sensor_temperature_units == TMP_FAHRENHEIT)) {
strncpy_P(buffer, magnitude_fahrenheit, sizeof(buffer));
} else if (
(type == MAGNITUDE_ENERGY || type == MAGNITUDE_ENERGY_DELTA) &&
(_sensor_energy_units == ENERGY_KWH)) {
strncpy_P(buffer, magnitude_kwh, sizeof(buffer));
} else if (
(type == MAGNITUDE_POWER_ACTIVE || type == MAGNITUDE_POWER_APPARENT || type == MAGNITUDE_POWER_REACTIVE) &&
(_sensor_power_units == POWER_KILOWATTS)) {
strncpy_P(buffer, magnitude_kw, sizeof(buffer));
} else {
strncpy_P(buffer, magnitude_units[type], sizeof(buffer));
}
}
return String(buffer);
}
// -----------------------------------------------------------------------------
void sensorSetup() {
// Backwards compatibility
moveSetting("powerUnits", "pwrUnits");
// Load sensors
_sensorLoad();
_sensorInit();
// Configure stored values
_sensorConfigure();
#if WEB_SUPPORT
// Websockets
wsOnSendRegister(_sensorWebSocketStart);
wsOnReceiveRegister(_sensorWebSocketOnReceive);
wsOnSendRegister(_sensorWebSocketSendData);
wsOnAfterParseRegister(_sensorConfigure);
// API
_sensorAPISetup();
#endif
#if TERMINAL_SUPPORT
_sensorInitCommands();
#endif
// Register loop
espurnaRegisterLoop(sensorLoop);
}
void sensorLoop() {
// Check if we still have uninitialized sensors
static unsigned long last_init = 0;
if (!_sensors_ready) {
if (millis() - last_init > SENSOR_INIT_INTERVAL) {
last_init = millis();
_sensorInit();
}
}
if (_magnitudes.size() == 0) return;
// Tick hook
_sensorTick();
// Check if we should read new data
static unsigned long last_update = 0;
static unsigned long report_count = 0;
if (millis() - last_update > _sensor_read_interval) {
last_update = millis();
report_count = (report_count + 1) % _sensor_report_every;
double current;
double filtered;
char buffer[64];
// Pre-read hook
_sensorPre();
// Get the first relay state
#if SENSOR_POWER_CHECK_STATUS
bool relay_off = (relayCount() > 0) && (relayStatus(0) == 0);
#endif
// Get readings
for (unsigned char i=0; i<_magnitudes.size(); i++) {
sensor_magnitude_t magnitude = _magnitudes[i];
if (magnitude.sensor->status()) {
current = magnitude.sensor->value(magnitude.local);
// Completely remove spurious values if relay is OFF
#if SENSOR_POWER_CHECK_STATUS
if (relay_off) {
if (magnitude.type == MAGNITUDE_POWER_ACTIVE ||
magnitude.type == MAGNITUDE_POWER_REACTIVE ||
magnitude.type == MAGNITUDE_POWER_APPARENT ||
magnitude.type == MAGNITUDE_CURRENT ||
magnitude.type == MAGNITUDE_ENERGY_DELTA
) {
current = 0;
}
}
#endif
magnitude.filter->add(current);
// Special case
if (magnitude.type == MAGNITUDE_EVENTS) {
current = magnitude.filter->result();
}
current = _magnitudeProcess(magnitude.type, current);
_magnitudes[i].current = current;
unsigned char decimals = _magnitudeDecimals(magnitude.type);
// Debug
#if SENSOR_DEBUG
{
dtostrf(current, 1-sizeof(buffer), decimals, buffer);
DEBUG_MSG_P(PSTR("[SENSOR] %s - %s: %s%s\n"),
magnitude.sensor->slot(magnitude.local).c_str(),
magnitudeTopic(magnitude.type).c_str(),
buffer,
magnitudeUnits(magnitude.type).c_str()
);
}
#endif // SENSOR_DEBUG
// Time to report (we do it every _sensor_report_every readings)
if (report_count == 0) {
filtered = magnitude.filter->result();
magnitude.filter->reset();
filtered = _magnitudeProcess(magnitude.type, filtered);
_magnitudes[i].filtered = filtered;
// Check if there is a minimum change threshold to report
if (fabs(filtered - magnitude.reported) >= magnitude.min_change) {
_magnitudes[i].reported = filtered;
dtostrf(filtered, 1-sizeof(buffer), decimals, buffer);
#if BROKER_SUPPORT
brokerPublish(magnitudeTopic(magnitude.type).c_str(), magnitude.local, buffer);
#endif
#if MQTT_SUPPORT
mqttSend(magnitudeTopicIndex(i).c_str(), buffer);
#if SENSOR_PUBLISH_ADDRESSES
char topic[32];
snprintf(topic, sizeof(topic), "%s/%s", SENSOR_ADDRESS_TOPIC, magnitudeTopic(magnitude.type).c_str());
if (SENSOR_USE_INDEX || (_counts[magnitude.type] > 1)) {
mqttSend(topic, magnitude.global, magnitude.sensor->address(magnitude.local).c_str());
} else {
mqttSend(topic, magnitude.sensor->address(magnitude.local).c_str());
}
#endif // SENSOR_PUBLISH_ADDRESSES
#endif // MQTT_SUPPORT
#if INFLUXDB_SUPPORT
if (SENSOR_USE_INDEX || (_counts[magnitude.type] > 1)) {
idbSend(magnitudeTopic(magnitude.type).c_str(), magnitude.global, buffer);
} else {
idbSend(magnitudeTopic(magnitude.type).c_str(), buffer);
}
#endif // INFLUXDB_SUPPORT
#if THINGSPEAK_SUPPORT
tspkEnqueueMeasurement(i, buffer);
#endif
#if DOMOTICZ_SUPPORT
{
char key[15];
snprintf_P(key, sizeof(key), PSTR("dczMagnitude%d"), i);
if (magnitude.type == MAGNITUDE_HUMIDITY) {
int status;
if (filtered > 70) {
status = HUMIDITY_WET;
} else if (filtered > 45) {
status = HUMIDITY_COMFORTABLE;
} else if (filtered > 30) {
status = HUMIDITY_NORMAL;
} else {
status = HUMIDITY_DRY;
}
char status_buf[5];
itoa(status, status_buf, 10);
domoticzSend(key, buffer, status_buf);
} else {
domoticzSend(key, 0, buffer);
}
}
#endif // DOMOTICZ_SUPPORT
} // if (fabs(filtered - magnitude.reported) >= magnitude.min_change)
} // if (report_count == 0)
} // if (magnitude.sensor->status())
} // for (unsigned char i=0; i<_magnitudes.size(); i++)
// Post-read hook
_sensorPost();
#if WEB_SUPPORT
wsSend(_sensorWebSocketSendData);
#endif
#if THINGSPEAK_SUPPORT
if (report_count == 0) tspkFlush();
#endif
}
}
#endif // SENSOR_SUPPORT