# coreboot-x230 pre-built [coreboot](https://www.coreboot.org/) images and documentation on how to flash them for the [Thinkpad X230](https://pcsupport.lenovo.com/en/products/laptops-and-netbooks/thinkpad-x-series-laptops/thinkpad-x230). SeaBIOS is used as coreboot payload to be compatible with Windows and Linux systems. ## Latest release (config overview and version info) * coreboot-x230 0.0.5 - see our [release page](https://github.com/merge/coreboot-x230/releases) * Lenovo's proprietary VGA BIOS ROM is executed in "secure" mode ### coreboot * We simply take coreboot's current state in it's master branch at the time we build a release image. That's the preferred way to use coreboot. The git revision we use is always included in the release. ### Intel microcode * revision `1f` from 2018-02-07 (Intel package [20180312](https://downloadcenter.intel.com/download/27591) not yet in coreboot upstream) under [Intel's license](LICENSE.microcode) ### SeaBIOS * version [1.11.1](https://seabios.org/Releases) from 2018-03-19 (part of coreboot upstream) ## table of contents * [TL;DR](#tl-dr) * [Flashing for the first time](#flashing-for-the-first-time) * [How to update](#how-to-update) * [When do we do a release?](#when-do-we-do-a-release) * [How we build](#how-we-build) * [Why does this work](#why-does-this-work) * [Alternatives](#alternatives) ## TL;DR Download a released image, connect your hardware SPI flasher to the "upper" 4MB chip in your X230, and do flashrom -p linux_spi:dev=/dev/spidev0.0,spispeed=128 -c "MX25L3206E" -w x230_coreboot_seabios_example_top.rom where `linux_spi:` is the example of using your SPI pins of, for example, a Raspberry Pi. A [Bus Pirate](http://dangerousprototypes.com/docs/Bus_Pirate) with `buspirate_spi` or others connected to the host directly should be fine too. ## Flashing for the first time Especially for the first time, you must flash externally. See below for the details for using a Rapberry Pi, for example. ### flashrom chip config We use [flashrom](https://flashrom.org/) for flashing. Run `flashrom -p ` (for [example](#how-to-flash) `flashrom -p linux_spi:dev=/dev/spidev0.0,spispeed=128` for the Raspberry Pi) to let flashrom detect the chip. It will probably list a few you need to choose from when flashing (by adding `-c ""`). While there might be specific examples in the commands below, please review the chip model for your device. In case you are unsure what to specify, here's some examples we find out there: #### 4MB chip * `MX25L3206E` seems to mostly be in use #### 8MB chip * `MX25L3206E/MX25L3208E` is seen working with various X230 models. * `MX25L6406E/MX25L6408E` is used in [this guide](https://github.com/mfc/flashing-docs/blob/master/walkthrough%20for%20flashing%20heads%20on%20an%20x230.md#neutering-me) * `EN25QH64` is used sometimes ### EC firmware (optional) Enter Lenovo's BIOS with __F1__ and check the embedded controller (EC) version to be __1.14__ and upgrade using [the latest bootable CD](https://support.lenovo.com/at/en/downloads/ds029188) if it isn't. The EC cannot be upgraded when coreboot is installed. (In case a newer version should ever be available (I doubt it), you could temporarily flash back your original Lenovo BIOS image) ### ifd unlock and me_cleaner: the 8MB chip The Intel Management Engine resides on the 8MB chip (at the bottom, closer to you). We don't need to touch it for coreboot-upgrades in the future, but to enable internal flashing, we need to unlock it once. We run [ifdtool](https://github.com/coreboot/coreboot/tree/master/util/ifdtool) and, while we are at it, [me_cleaner](https://github.com/corna/me_cleaner) on it: We support using a RPi, see below for the connection details. Move the release-tarball to the RPi (USB Stick or however) and unpack it (to the current directory and change into it): mkdir tarball_extracted tar -xf .tar.xz -C tarball_extracted cd tarball_extracted And finally unlock the 8M chip by using the included script (be patient): sudo ./flashrom_rpi_bottom_unlock.sh -m -c -k That's it. Keep the backup safe. when updating to a new release, you don't have to disasseble your Thinkpad and can flash internally (at your own risk), see below. #### background (just so you know) The `-m` option above also runs `me_cleaner -S` before flashing back. If you don't use a RPi, change the flashrom programmer to your needs: flashrom -p linux_spi:dev=/dev/spidev0.0,spispeed=128 -c "MX25L6406E/MX25L6408E" -r ifdmegbe.rom flashrom -p linux_spi:dev=/dev/spidev0.0,spispeed=128 -c "MX25L6406E/MX25L6408E" -r ifdmegbe2.rom diff ifdmegbe.rom ifdmegbe2.rom git clone https://github.com/corna/me_cleaner.git && cd me_cleaner ./me_cleaner.py -S -O ifdmegbe_meclean.rom ifdmegbe.rom ifdtool -u ifdmegbe_meclean.rom flashrom -p linux_spi:dev=/dev/spidev0.0,spispeed=128 -c "MX25L6406E/MX25L6408E" -w ifdmegbe_meclean.rom.new ### BIOS: the 4MB chip (internally, memory of the two chips is mapped together, the 8MB being the lower part, but we can essientially ignore that). Again, using a RPi is supported here. We assume you have the unpacked release tarball ready, see above. Use the following included script: sudo ./flashrom_rpi_top_write.sh -i x230_coreboot_seabios__top.rom -c -k That's it. Keep the backup safe. ## How to update When __upgrading__ to a new release, only the "upper" 4MB chip has to be written. Download the latest release image we provide and flash it: ### Example: Raspberry Pi 3 Here you'll flash externally, using a "Pomona 5250 8-pin SOIC test clip". You'll find one easily. This is how the X230's SPI connection looks on both chips: Screen (furthest from you) __ MOSI 5 --| |-- 4 GND CLK 6 --| |-- 3 N/C N/C 7 --| |-- 2 MISO VCC 8 --|__|-- 1 CS Edge (closest to you) and with our release tarball unpacked, the command you need looks like so: flashrom_rpi_top_write.sh -i x230_coreboot_seabios__top.rom -c We run [Raspbian](https://www.raspberrypi.org/downloads/raspbian/) and have the following setup * [Serial connection](https://elinux.org/RPi_Serial_Connection) using a "USB to Serial" UART Adapter and picocom or minicom * Yes, in this case you need a second PC connected to the RPi over UART * in the SD Cards's `/boot/config.txt` file `enable_uart=1` and `dtparam=spi=on` * [For flashrom](https://www.flashrom.org/RaspberryPi) we put `spi_bcm2835` and `spidev` in /etc/modules * [Connect to a wifi](https://www.raspberrypi.org/documentation/configuration/wireless/wireless-cli.md) or to network over ethernet to install `flashrom` * only use the ...top.rom release file * connect the Clip to the Raspberry Pi 3 (there are [prettier images](https://github.com/splitbrain/rpibplusleaf) too: Edge of pi (furthest from you) (UART) L GND TX RX CS E | | | | F +---------------------------------------------------------------------------------+ T | x x x x x x x x x x x x x x x x x x x x | | x x x x x x x x x x x x x x x x x x x x | E +----------------------------------^---^---^---^-------------------------------^--+ D | | | | | G 3.3V MOSIMISO| GND E (VCC) CLK Body of Pi (closest to you) Now you should be able to copy the image over to your Rasperry Pi and run the mentioned `flashrom` commands. One way to copy, is convertig it to ascii using `uuencode` (part of Debian's sharutils package) described below. This is a very direct, shady and slow way to copy file. Another way is of course using a USB Stick or scp :) (but you need even more hardware or a network). (convert) host$ uuencode coreboot.rom coreboot.rom.ascii > coreboot.rom.ascii (transfer) rpi$ cat > coreboot.rom.ascii host$ pv coreboot.rom.ascii > /dev/ttyUSBX (wait) rpi$ (CTRL-D) (convert back) rpi$ uudecode -o coreboot.rom coreboot.rom.ascii (verify) host$ sha1sum coreboot.rom rpi$ sha1sum coreboot.rom ![Raspberry Pi at work](rpi_clip.jpg) ### Example: internal CAUTION: THIS IS NOT ENCOURAGED * Only for updating! You have to have your 8MB chip flashed externally using our `flashrom_rpi_bottom_unlock.sh` script (`ifdtool -u`) before this, once * very convenient, but according to the [flashrom manpage](https://manpages.debian.org/stretch/flashrom/flashrom.8.en.html) this is very dangerous! * Boot Linux with the `iomem=relaxed` boot parameter (for example set in /etc/default/grub) * download the latest release tarball (4MB "top" BIOS image is included) and extract it * run `prepare_internal_flashing.sh` for generating all necessary files and instructions ## When do we do a release? Either when * There is a new SeaBIOS release, * There is a new Intel microcode release (for our CPU model), * There is a coreboot issue that affects us, or * We change the config ## How we build * Everything necessary to build coreboot (while only the top 4MB are usable of course) is included here * The task of [building coreboot](https://www.coreboot.org/Build_HOWTO) is not too difficult * When doing a release here, we always try to upload to coreboot's [board status project](https://www.coreboot.org/Supported_Motherboards) * If we add out-of-tree patches, we always [post them for review](http://review.coreboot.org/) upstream ## Why does this work? On the X230, there are 2 physical "BIOS" chips. The "upper" 4MB one holds the actual bios we can generate using coreboot, and the "lower" 8MB one holds the rest that you can [modify yourself once](#flashing-for-the-first-time), if you like, but strictly speaking, you [don't need to touch it at all](https://www.coreboot.org/Board:lenovo/x230#Building_Firmware). What's this "rest"? Mainly a tiny binary used by the Ethernet card and the Intel Management Engine. ## Alternatives * [Heads](https://github.com/osresearch/heads/releases) also releases pre-built flash images for the X230 - with __way__ more sophisticated functionality.