# Skulls - [Thinkpad X230](https://pcsupport.lenovo.com/en/products/laptops-and-netbooks/thinkpad-x-series-laptops/thinkpad-x230) and X230T ![seabios_bootmenu](front.jpg) ## Latest release Get it from our [release page](https://github.com/merge/coreboot-x230/releases) * __coreboot__: We take coreboot's master branch at the time we build a release image. * __microcode update__: revision `20` from 2018-04-10 (includes mitigations for Spectre Variant 3a and 4) * __SeaBIOS__: version [1.12.0](https://seabios.org/Releases) from 2018-11-17 ### release images to choose from We release multiple different, but _very similar_ images you can choose from. They all should work on all versions of the X230/X230T. These are the differences; (xxxxxxxxxx stands for random characters in the filename): * `x230_coreboot_seabios_xxxxxxxxxx_top.rom` includes the _proprietary_ [VGA BIOS](https://en.wikipedia.org/wiki/Video_BIOS) from [Intel](https://www.intel.com/content/www/us/en/intelligent-systems/intel-embedded-graphics-drivers/faq-bios-firmware.html) which is non-free software. It is executed in "secure" mode. * `x230_coreboot_seabios_free_xxxxxxxxxx_top.rom` includes the [VGA BIOS](https://en.wikipedia.org/wiki/Video_BIOS) [SeaVGABIOS](https://www.seabios.org/SeaVGABIOS) which is free software. While technically more interesting, visually this is currently not as beautiful: * The [bootspash image is not shown](https://github.com/merge/skulls/issues/59). * Early boot console messages (after your HDD's bootloader has started a kernel) might be [missing](https://github.com/merge/skulls/issues/46). ## table of contents * [TL;DR](#tldr) * [First-time installation](#first-time-installation) * [Updating](#updating) * [Moving to Heads](#moving-to-heads) * [Why does this work](#why-does-this-work) * [How to rebuild](#how-to-reproduce-the-release-images) ## TL;DR 1. run `sudo ./x230_before_first_install.sh` on your current X230 Linux system 2. Power down, remove the battery. Remove the keyboard and palmrest. Connect a hardware flasher to an external PC (or a Raspberry Pi with a SPI 8-pin chip clip can directly be used), and run `sudo ./external_install_bottom.sh` on the lower chip and `sudo ./external_install_top.sh` on the top chip of the two. 3. For updating later, run `./x230_skulls.sh`. No need to disassemble. And always use the latest [released](https://github.com/merge/coreboot-x230/releases) package. This will be tested. The git master branch is _not_ meant to be stable. Use it for testing only. ## First-time installation #### before you begin Before starting, run Linux on your X230, install `dmidecode` and run `sudo ./x230_before_first_install.sh`. It simply prints system information and helps you to be up to date. Also make sure you have the latest skulls-x230 package release by running `./upgrade.sh`. #### original BIOS update / EC firmware (optional) Before flashing coreboot, consider doing one original Lenovo upgrade process in case you're not running the latest version. This is not supported anymore, once you're running coreboot (You'd have to manually flash back your backup images first, see later chapters). Also, this updates the BIOS _and_ Embedded Controller (EC) firmware. The EC is not updated anymore, when running coreboot. The latest EC version is 1.14 and that's unlikely to change. In case you're not running the latest BIOS version, either * use [the latest original CD](https://support.lenovo.com/at/en/downloads/ds029188) and burn it, or * use the same, only with a patched EC firmware that allows using any aftermarket-battery: By default, only original Lenovo batteries are allowed. Thanks to [this](http://zmatt.net/unlocking-my-lenovo-laptop-part-3/) [project](https://github.com/eigenmatt/mec-tools) we can use Lenovo's bootable upgrade image, change it and create a bootable _USB_ image (even with EC updates that allows to use 3rd party aftermarket batteries). For this, follow instructions at [github.com/hamishcoleman/thinkpad-ec](https://github.com/hamishcoleman/thinkpad-ec). #### preparation: required hardware * An 8 Pin SOIC Clip, for example from [Pomona electronics](https://www.pomonaelectronics.com/products/test-clips/soic-clip-8-pin) (for availability, check [aliexpress](https://de.aliexpress.com/item/POMONA-SOIC-CLIP-5250-8pin-eeprom-for-tacho-8pin-cable-for-pomana-soic-8pin/32814247676.html) or [elsewhere](https://geizhals.eu/?fs=pomona+test+clip+5250)) or alternatively hooks like [E-Z-Hook](http://catalog.e-z-hook.com/viewitems/test-hooks/e-z-micro-hooks-single-hook-style) * 6 [female](https://electronics.stackexchange.com/questions/37783/how-can-i-create-a-female-jumper-wire-connector) [jumper wires](https://en.wikipedia.org/wiki/Jump_wire) like [these](https://geizhals.eu/jumper-cable-female-female-20cm-a1471094.html) to connect the clip to a hardware flasher (if not included with the clip) * a hardware flasher [supported by flashrom](https://www.flashrom.org/Flashrom/0.9.9/Supported_Hardware#USB_Devices), see below for the examples we support #### open up the X230 Remove the 7 screws of your X230 to remove the keyboard (by pushing it towards the screen before lifting) and the palmrest. You'll find the chips using the photo below. This is how the SPI connection looks like on both of the X230's chips: Screen (furthest from you) ______ MOSI 5 --| |-- 4 GND CLK 6 --| |-- 3 N/C N/C 7 --| |-- 2 MISO VCC 8 --|______|-- 1 CS Edge (closest to you) ... choose __one of the following__ supported flashing hardware examples: #### Hardware Example: Raspberry Pi 3 A Raspberry Pi can directly be a flasher through it's I/O pins, see below. Use a test clip or hooks, see [required hardware](#preparation-required-hardware). On the RPi we run [Raspbian](https://www.raspberrypi.org/downloads/raspbian/) and have the following setup: * Connect to the console: Either * connect a screen and a keyboard, or * Use the [Serial connection](https://elinux.org/RPi_Serial_Connection) using a USB-to-serial cable (like [Adafruit 954](http://www.adafruit.com/products/954), [FTDI TTL-232R-RPI](http://www.ftdichip.com/Products/Cables/RPi.htm) or [others](https://geizhals.eu/usb-to-ttl-serial-adapter-cable-a1461312.html)) and picocom (`picocom -b 115200 /dev/ttyUSB0`) or minicom * in the SD Cards's `/boot/config.txt` file `enable_uart=1` and `dtparam=spi=on` * [For flashrom](https://www.flashrom.org/RaspberryPi) we put `spi_bcm2835` and `spidev` in /etc/modules * [Connect to a wifi](https://www.raspberrypi.org/documentation/configuration/wireless/wireless-cli.md) or ethernet to `sudo apt-get install flashrom` * connect the Clip to the Raspberry Pi 3 (there are [prettier images](https://github.com/splitbrain/rpibplusleaf) too): Edge of pi (furthest from you) (UART) L GND TX RX CS E | | | | F +---------------------------------------------------------------------------------+ T | x x x x x x x x x x x x x x x x x x x x | | x x x x x x x x x x x x x x x x x x x x | E +----------------------------------^---^---^---^-------------------------------^--+ D | | | | | G 3.3V MOSIMISO| GND E (VCC) CLK Body of Pi (closest to you) ![Raspberry Pi at work](rpi_clip.jpg) Now copy the Skulls release tarball over to the Rasperry Pi and [continue](#unpack-the-skulls-release-archive) on the Pi. We flash at low speeds. Unlocking the bottom chip with its two reads, one write and one verify step usually takes approximately one hour in total. #### Hardware Example: CH341A based The CH341A from [Winchiphead](http://www.wch.cn/), a USB interface chip, is used by some cheap memory programmers. The one we describe can be bought at [aliexpress](http://www.aliexpress.com/item/Free-Shipping-CH341A-24-25-Series-EEPROM-Flash-BIOS-DVD-USB-Programmer-DVD-programmer-router-Nine/32583059603.html), but it's available [elsewhere](https://geizhals.eu/?fs=ch341a) too. Also, we don't use the included 3,3V power output (provides too little power), but a separate power supply. If you don't have any, consider getting a AMS1117 based supply for a second USB port (like [this](https://de.aliexpress.com/item/1PCS-AMS1117-3-3V-Mini-USB-5V-3-3V-DC-Perfect-Power-Supply-Module/32785334595.html) or [this](https://www.ebay.com/sch/i.html?_nkw=ams1117+usb)). * Leave the P/S Jumper connected (programmer mode, 1a86:5512 USB device) * Connect 3,3V from your external supply to the Pomona clip's (or hook) VCC * Connect GND from your external supply to GND on your CH341A programmer * Connect your clip or hooks to the rest of the programmer's SPI pins * Connect the programmer (and power supply, if USB) to your PC's USB port ![ch341a programmer with extra USB power supply](ch341a.jpg) #### unpack the Skulls release archive tar -xf skulls-x230-.tar.xz cd skulls-x230- #### ifd unlock and me_cleaner: the 8MB chip Flashing the bottom chip (closer to you) is optional. It has the same pinout than the upper chip. This allows you to enable/disable in-system flashing (without disassembling the Thinkpad) and/or to neuter the the [Intel Management Engine](https://en.wikipedia.org/wiki/Intel_Management_Engine) for [security reasons](https://en.wikipedia.org/wiki/Intel_Management_Engine#Security_vulnerabilities). sudo ./external_install_bottom.sh -m -k That's it. Keep the backup safe. Here are the options (just so you know): * The `-m` option applies `me_cleaner -S` before flashing back, see [me_cleaner](https://github.com/corna/me_cleaner). * The `-l` option will (re-)lock your flash ROM, in case you want to force yourself (and others) to hardware-flashing, see [updating](#updating). #### BIOS: the 4MB chip sudo ./external_install_top.sh -k Select the image to flash and that's it. Keep the backup safe, assemble and turn on the X230. coreboot will do hardware init and start SeaBIOS. ## Updating If you have locked your flash (i.e. `./external_install_bottom -l`) you can flash externally using `external_install_top.sh` just like the first time, see above. Only the "upper" 4MB chip has to be written. It is recommended to do the the update directly on your X230 using Linux though. This is considered more safe for your hardware and is very convenient - just install the "flashrom" program and run `./x230_skulls.sh`, see below. 1. boot Linux with the `iomem=relaxed` boot parameter (for example in /etc/default/grub `GRUB_CMDLINE_LINUX_DEFAULT`) 2. [download](https://github.com/merge/skulls/releases) the latest Skulls release tarball and unpack it 3. run `sudo ./x230_skulls.sh` and choose the image to flash. Hint: In case your Linux distribution's GRUB bootloader doesn't use the full screen, put the line `GRUB_GFXMODE=1366x768x32` in your `/etc/default/grub` file (and run `update_grub`). ## Moving to Heads [Heads](http://osresearch.net/) is an alternative BIOS system with advanced security features. It's more complicated to use though. When having Skulls installed, installing Heads is as easy as updating Skulls. You can directly start using it: * [build Heads](https://github.com/osresearch/heads) * boot Linux with the `iomem=relaxed` boot parameter * copy Heads' 12M image file `build/x230/coreboot.rom` to Skulls' x230 directory * run `sudo ./x230_heads.sh` That's it. Heads is a completely different project. Please read the [documentation](http://osresearch.net/) for how to use it and report bugs [over there](https://github.com/osresearch/heads/issues) Switching back to Skulls is the same as [updating](#updating). Just run `./x230_skulls.sh`. ## Why does this work? On the X230, there are 2 physical "BIOS" chips. The "upper" 4MB one holds the actual bios we can generate using coreboot, and the "lower" 8MB one holds the rest that you can [modify yourself once](#first-time-installation), if you like, but strictly speaking, you [don't need to touch it at all](https://www.coreboot.org/Board:lenovo/x230#Building_Firmware). What's this "rest"? Mainly a tiny binary used by the Ethernet card and the Intel Management Engine. Read the [coreboot documentation](https://doc.coreboot.org/mainboard/lenovo/xx30_series.html) for more details. ## how to reproduce the release images * `git clone https://github.com/merge/skulls` * `git checkout ` for the release you want to build * `cd skulls/x230` * `./build.sh` and choose the configuration you want to build