Fork of the espurna firmware for `mhsw` switches
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1133 lines
34 KiB

6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
7 years ago
7 years ago
7 years ago
7 years ago
7 years ago
  1. /*
  2. LIGHT MODULE
  3. Copyright (C) 2016-2018 by Xose Pérez <xose dot perez at gmail dot com>
  4. */
  5. #if LIGHT_PROVIDER != LIGHT_PROVIDER_NONE
  6. #include <Ticker.h>
  7. #include <ArduinoJson.h>
  8. #include <vector>
  9. extern "C" {
  10. #include "libs/fs_math.h"
  11. }
  12. #if LIGHT_PROVIDER == LIGHT_PROVIDER_DIMMER
  13. #define PWM_CHANNEL_NUM_MAX LIGHT_CHANNELS
  14. extern "C" {
  15. #include "libs/pwm.h"
  16. }
  17. #endif
  18. // -----------------------------------------------------------------------------
  19. Ticker _light_save_ticker;
  20. Ticker _light_transition_ticker;
  21. typedef struct {
  22. unsigned char pin;
  23. bool reverse;
  24. bool state;
  25. unsigned char inputValue; // value that has been inputted
  26. unsigned char value; // normalized value including brightness
  27. unsigned char target; // target value
  28. double current; // transition value
  29. } channel_t;
  30. std::vector<channel_t> _light_channel;
  31. bool _light_state = false;
  32. bool _light_use_transitions = false;
  33. unsigned int _light_transition_time = LIGHT_TRANSITION_TIME;
  34. bool _light_has_color = false;
  35. bool _light_use_white = false;
  36. bool _light_use_cct = false;
  37. bool _light_use_gamma = false;
  38. unsigned long _light_steps_left = 1;
  39. unsigned char _light_brightness = LIGHT_MAX_BRIGHTNESS;
  40. unsigned int _light_mireds = round((LIGHT_COLDWHITE_MIRED+LIGHT_WARMWHITE_MIRED)/2);
  41. #if LIGHT_PROVIDER == LIGHT_PROVIDER_MY92XX
  42. #include <my92xx.h>
  43. my92xx * _my92xx;
  44. ARRAYINIT(unsigned char, _light_channel_map, MY92XX_MAPPING);
  45. #endif
  46. // Gamma Correction lookup table (8 bit)
  47. // TODO: move to PROGMEM
  48. const unsigned char _light_gamma_table[] = {
  49. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  50. 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2,
  51. 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 6, 6,
  52. 6, 7, 7, 7, 7, 8, 8, 8, 9, 9, 9, 10, 10, 11, 11, 11,
  53. 12, 12, 13, 13, 14, 14, 14, 15, 15, 16, 16, 17, 17, 18, 18, 19,
  54. 19, 20, 20, 21, 22, 22, 23, 23, 24, 25, 25, 26, 26, 27, 28, 28,
  55. 29, 30, 30, 31, 32, 33, 33, 34, 35, 35, 36, 37, 38, 39, 39, 40,
  56. 41, 42, 43, 43, 44, 45, 46, 47, 48, 49, 50, 50, 51, 52, 53, 54,
  57. 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 71,
  58. 72, 73, 74, 75, 76, 77, 78, 80, 81, 82, 83, 84, 86, 87, 88, 89,
  59. 91, 92, 93, 94, 96, 97, 98, 100, 101, 102, 104, 105, 106, 108, 109, 110,
  60. 112, 113, 115, 116, 118, 119, 121, 122, 123, 125, 126, 128, 130, 131, 133, 134,
  61. 136, 137, 139, 140, 142, 144, 145, 147, 149, 150, 152, 154, 155, 157, 159, 160,
  62. 162, 164, 166, 167, 169, 171, 173, 175, 176, 178, 180, 182, 184, 186, 187, 189,
  63. 191, 193, 195, 197, 199, 201, 203, 205, 207, 209, 211, 213, 215, 217, 219, 221,
  64. 223, 225, 227, 229, 231, 233, 235, 238, 240, 242, 244, 246, 248, 251, 253, 255
  65. };
  66. // -----------------------------------------------------------------------------
  67. // UTILS
  68. // -----------------------------------------------------------------------------
  69. void _setRGBInputValue(unsigned char red, unsigned char green, unsigned char blue) {
  70. _light_channel[0].inputValue = constrain(red, 0, LIGHT_MAX_VALUE);
  71. _light_channel[1].inputValue = constrain(green, 0, LIGHT_MAX_VALUE);;
  72. _light_channel[2].inputValue = constrain(blue, 0, LIGHT_MAX_VALUE);;
  73. }
  74. void _generateBrightness() {
  75. double brightness = (double) _light_brightness / LIGHT_MAX_BRIGHTNESS;
  76. // Convert RGB to RGBW(W)
  77. if (_light_has_color && _light_use_white) {
  78. // Substract the common part from RGB channels and add it to white channel. So [250,150,50] -> [200,100,0,50]
  79. unsigned char white = std::min(_light_channel[0].inputValue, std::min(_light_channel[1].inputValue, _light_channel[2].inputValue));
  80. for (unsigned int i=0; i < 3; i++) {
  81. _light_channel[i].value = _light_channel[i].inputValue - white;
  82. }
  83. // Split the White Value across 2 White LED Strips.
  84. if (_light_use_cct) {
  85. // This change the range from 153-500 to 0-347 so we get a value between 0 and 1 in the end.
  86. double miredFactor = ((double) _light_mireds - (double) LIGHT_COLDWHITE_MIRED)/((double) LIGHT_WARMWHITE_MIRED - (double) LIGHT_COLDWHITE_MIRED);
  87. // set cold white
  88. _light_channel[3].inputValue = 0;
  89. _light_channel[3].value = round(((double) 1.0 - miredFactor) * white);
  90. // set warm white
  91. _light_channel[4].inputValue = 0;
  92. _light_channel[4].value = round(miredFactor * white);
  93. } else {
  94. _light_channel[3].inputValue = 0;
  95. _light_channel[3].value = white;
  96. }
  97. // Scale up to equal input values. So [250,150,50] -> [200,100,0,50] -> [250, 125, 0, 63]
  98. unsigned char max_in = std::max(_light_channel[0].inputValue, std::max(_light_channel[1].inputValue, _light_channel[2].inputValue));
  99. unsigned char max_out = std::max(std::max(_light_channel[0].value, _light_channel[1].value), std::max(_light_channel[2].value, _light_channel[3].value));
  100. unsigned char channelSize = _light_use_cct ? 5 : 4;
  101. if (_light_use_cct) {
  102. max_out = std::max(max_out, _light_channel[4].value);
  103. }
  104. double factor = (max_out > 0) ? (double) (max_in / max_out) : 0;
  105. for (unsigned char i=0; i < channelSize; i++) {
  106. _light_channel[i].value = round((double) _light_channel[i].value * factor * brightness);
  107. }
  108. // Scale white channel to match brightness
  109. for (unsigned char i=3; i < channelSize; i++) {
  110. _light_channel[i].value = constrain(_light_channel[i].value * LIGHT_WHITE_FACTOR, 0, LIGHT_MAX_BRIGHTNESS);
  111. }
  112. // For the rest of channels, don't apply brightness, it is already in the inputValue
  113. // i should be 4 when RGBW and 5 when RGBWW
  114. for (unsigned char i=channelSize; i < _light_channel.size(); i++) {
  115. _light_channel[i].value = _light_channel[i].inputValue;
  116. }
  117. } else {
  118. // Apply brightness equally to all channels
  119. for (unsigned char i=0; i < _light_channel.size(); i++) {
  120. _light_channel[i].value = _light_channel[i].inputValue * brightness;
  121. }
  122. }
  123. }
  124. // -----------------------------------------------------------------------------
  125. // Input Values
  126. // -----------------------------------------------------------------------------
  127. void _fromLong(unsigned long value, bool brightness) {
  128. if (brightness) {
  129. _setRGBInputValue((value >> 24) & 0xFF, (value >> 16) & 0xFF, (value >> 8) & 0xFF);
  130. _light_brightness = (value & 0xFF) * LIGHT_MAX_BRIGHTNESS / 255;
  131. } else {
  132. _setRGBInputValue((value >> 16) & 0xFF, (value >> 8) & 0xFF, (value) & 0xFF);
  133. }
  134. }
  135. void _fromRGB(const char * rgb) {
  136. char * p = (char *) rgb;
  137. if (strlen(p) == 0) return;
  138. switch (p[0]) {
  139. case '#': // HEX Value
  140. if (_light_has_color) {
  141. ++p;
  142. unsigned long value = strtoul(p, NULL, 16);
  143. // RGBA values are interpreted like RGB + brightness
  144. _fromLong(value, strlen(p) > 7);
  145. }
  146. break;
  147. case 'M': // Mired Value
  148. _fromMireds(atol(p + 1));
  149. break;
  150. case 'K': // Kelvin Value
  151. _fromKelvin(atol(p + 1));
  152. break;
  153. default: // assume decimal values separated by commas
  154. char * tok;
  155. unsigned char count = 0;
  156. unsigned char channels = _light_channel.size();
  157. tok = strtok(p, ",");
  158. while (tok != NULL) {
  159. _light_channel[count].inputValue = atoi(tok);
  160. if (++count == channels) break;
  161. tok = strtok(NULL, ",");
  162. }
  163. // RGB but less than 3 values received, assume it is 0
  164. if (_light_has_color && (count < 3)) {
  165. // check channel 1 and 2:
  166. for (int i = 1; i <= 2; i++) {
  167. if (count < (i+1)) {
  168. _light_channel[i].inputValue = 0;
  169. }
  170. }
  171. }
  172. break;
  173. }
  174. }
  175. // HSV string is expected to be "H,S,V", where:
  176. // 0 <= H <= 360
  177. // 0 <= S <= 100
  178. // 0 <= V <= 100
  179. void _fromHSV(const char * hsv) {
  180. char * ptr = (char *) hsv;
  181. if (strlen(ptr) == 0) return;
  182. if (!_light_has_color) return;
  183. char * tok;
  184. unsigned char count = 0;
  185. unsigned int value[3] = {0};
  186. tok = strtok(ptr, ",");
  187. while (tok != NULL) {
  188. value[count] = atoi(tok);
  189. if (++count == 3) break;
  190. tok = strtok(NULL, ",");
  191. }
  192. if (count != 3) return;
  193. // HSV to RGB transformation -----------------------------------------------
  194. //INPUT: [0,100,57]
  195. //IS: [145,0,0]
  196. //SHOULD: [255,0,0]
  197. double h = (value[0] == 360) ? 0 : (double) value[0] / 60.0;
  198. double f = (h - floor(h));
  199. double s = (double) value[1] / 100.0;
  200. _light_brightness = round((double) value[2] * 2.55); // (255/100)
  201. unsigned char p = round(255 * (1.0 - s));
  202. unsigned char q = round(255 * (1.0 - s * f));
  203. unsigned char t = round(255 * (1.0 - s * (1.0 - f)));
  204. switch (int(h)) {
  205. case 0:
  206. _setRGBInputValue(255, t, p);
  207. break;
  208. case 1:
  209. _setRGBInputValue(q, 255, p);
  210. break;
  211. case 2:
  212. _setRGBInputValue(p, 255, t);
  213. break;
  214. case 3:
  215. _setRGBInputValue(p, q, 255);
  216. break;
  217. case 4:
  218. _setRGBInputValue(t, p, 255);
  219. break;
  220. case 5:
  221. _setRGBInputValue(255, p, q);
  222. break;
  223. default:
  224. _setRGBInputValue(0, 0, 0);
  225. break;
  226. }
  227. }
  228. // Thanks to Sacha Telgenhof for sharing this code in his AiLight library
  229. // https://github.com/stelgenhof/AiLight
  230. void _fromKelvin(unsigned long kelvin) {
  231. if (!_light_has_color) return;
  232. _light_mireds = constrain(round(1000000UL / kelvin), LIGHT_MIN_MIREDS, LIGHT_MAX_MIREDS);
  233. if (_light_use_cct) {
  234. _setRGBInputValue(LIGHT_MAX_VALUE, LIGHT_MAX_VALUE, LIGHT_MAX_VALUE);
  235. return;
  236. }
  237. // Calculate colors
  238. kelvin /= 100;
  239. unsigned int red = (kelvin <= 66)
  240. ? LIGHT_MAX_VALUE
  241. : 329.698727446 * fs_pow((double) (kelvin - 60), -0.1332047592);
  242. unsigned int green = (kelvin <= 66)
  243. ? 99.4708025861 * fs_log(kelvin) - 161.1195681661
  244. : 288.1221695283 * fs_pow((double) kelvin, -0.0755148492);
  245. unsigned int blue = (kelvin >= 66)
  246. ? LIGHT_MAX_VALUE
  247. : ((kelvin <= 19)
  248. ? 0
  249. : 138.5177312231 * fs_log(kelvin - 10) - 305.0447927307);
  250. _setRGBInputValue(red, green, blue);
  251. }
  252. // Color temperature is measured in mireds (kelvin = 1e6/mired)
  253. void _fromMireds(unsigned long mireds) {
  254. unsigned long kelvin = constrain(1000000UL / mireds, 1000, 40000);
  255. _fromKelvin(kelvin);
  256. }
  257. // -----------------------------------------------------------------------------
  258. // Output Values
  259. // -----------------------------------------------------------------------------
  260. void _toRGB(char * rgb, size_t len, bool target) {
  261. unsigned long value = 0;
  262. value += target ? _light_channel[0].target : _light_channel[0].inputValue;
  263. value <<= 8;
  264. value += target ? _light_channel[1].target : _light_channel[1].inputValue;
  265. value <<= 8;
  266. value += target ? _light_channel[2].target : _light_channel[2].inputValue;
  267. snprintf_P(rgb, len, PSTR("#%06X"), value);
  268. }
  269. void _toRGB(char * rgb, size_t len) {
  270. _toRGB(rgb, len, false);
  271. }
  272. void _toHSV(char * hsv, size_t len, bool target) {
  273. double h, s, v;
  274. double brightness = (double) _light_brightness / LIGHT_MAX_BRIGHTNESS;
  275. double r = (double) ((target ? _light_channel[0].target : _light_channel[0].inputValue) * brightness) / 255.0;
  276. double g = (double) ((target ? _light_channel[1].target : _light_channel[1].inputValue) * brightness) / 255.0;
  277. double b = (double) ((target ? _light_channel[2].target : _light_channel[2].inputValue) * brightness) / 255.0;
  278. double min = std::min(r, std::min(g, b));
  279. double max = std::max(r, std::max(g, b));
  280. v = 100.0 * max;
  281. if (v == 0) {
  282. h = s = 0;
  283. } else {
  284. s = 100.0 * (max - min) / max;
  285. if (s == 0) {
  286. h = 0;
  287. } else {
  288. if (max == r) {
  289. if (g >= b) {
  290. h = 0.0 + 60.0 * (g - b) / (max - min);
  291. } else {
  292. h = 360.0 + 60.0 * (g - b) / (max - min);
  293. }
  294. } else if (max == g) {
  295. h = 120.0 + 60.0 * (b - r) / (max - min);
  296. } else {
  297. h = 240.0 + 60.0 * (r - g) / (max - min);
  298. }
  299. }
  300. }
  301. // String
  302. snprintf_P(hsv, len, PSTR("%d,%d,%d"), round(h), round(s), round(v));
  303. }
  304. void _toHSV(char * hsv, size_t len) {
  305. _toHSV(hsv, len, false);
  306. }
  307. void _toLong(char * color, size_t len, bool target) {
  308. if (!_light_has_color) return;
  309. snprintf_P(color, len, PSTR("%d,%d,%d"),
  310. (int) (target ? _light_channel[0].target : _light_channel[0].inputValue),
  311. (int) (target ? _light_channel[1].target : _light_channel[1].inputValue),
  312. (int) (target ? _light_channel[2].target : _light_channel[2].inputValue)
  313. );
  314. }
  315. void _toLong(char * color, size_t len) {
  316. _toLong(color, len, false);
  317. }
  318. void _toCSV(char * buffer, size_t len, bool applyBrightness, bool target) {
  319. char num[10];
  320. float b = applyBrightness ? (float) _light_brightness / LIGHT_MAX_BRIGHTNESS : 1;
  321. for (unsigned char i=0; i<_light_channel.size(); i++) {
  322. itoa((target ? _light_channel[i].target : _light_channel[i].inputValue) * b, num, 10);
  323. if (i>0) strncat(buffer, ",", len--);
  324. strncat(buffer, num, len);
  325. len = len - strlen(num);
  326. }
  327. }
  328. void _toCSV(char * buffer, size_t len, bool applyBrightness) {
  329. _toCSV(buffer, len, applyBrightness, false);
  330. }
  331. // -----------------------------------------------------------------------------
  332. // PROVIDER
  333. // -----------------------------------------------------------------------------
  334. unsigned int _toPWM(unsigned long value, bool gamma, bool reverse) {
  335. value = constrain(value, 0, LIGHT_MAX_VALUE);
  336. if (gamma) value = _light_gamma_table[value];
  337. if (LIGHT_MAX_VALUE != LIGHT_LIMIT_PWM) value = map(value, 0, LIGHT_MAX_VALUE, 0, LIGHT_LIMIT_PWM);
  338. if (reverse) value = LIGHT_LIMIT_PWM - value;
  339. return value;
  340. }
  341. // Returns a PWM value for the given channel ID
  342. unsigned int _toPWM(unsigned char id) {
  343. bool useGamma = _light_use_gamma && _light_has_color && (id < 3);
  344. return _toPWM(_light_channel[id].current, useGamma, _light_channel[id].reverse);
  345. }
  346. void _transition() {
  347. // Update transition ticker
  348. _light_steps_left--;
  349. if (_light_steps_left == 0) _light_transition_ticker.detach();
  350. // Transitions
  351. for (unsigned int i=0; i < _light_channel.size(); i++) {
  352. if (_light_steps_left == 0) {
  353. _light_channel[i].current = _light_channel[i].target;
  354. } else {
  355. double difference = (double) (_light_channel[i].target - _light_channel[i].current) / (_light_steps_left + 1);
  356. _light_channel[i].current = _light_channel[i].current + difference;
  357. }
  358. }
  359. }
  360. void _lightProviderUpdate() {
  361. _transition();
  362. #if LIGHT_PROVIDER == LIGHT_PROVIDER_MY92XX
  363. for (unsigned char i=0; i<_light_channel.size(); i++) {
  364. _my92xx->setChannel(_light_channel_map[i], _toPWM(i));
  365. }
  366. _my92xx->setState(true);
  367. _my92xx->update();
  368. #endif
  369. #if LIGHT_PROVIDER == LIGHT_PROVIDER_DIMMER
  370. for (unsigned int i=0; i < _light_channel.size(); i++) {
  371. pwm_set_duty(_toPWM(i), i);
  372. }
  373. pwm_start();
  374. #endif
  375. }
  376. // -----------------------------------------------------------------------------
  377. // PERSISTANCE
  378. // -----------------------------------------------------------------------------
  379. void _lightColorSave() {
  380. for (unsigned int i=0; i < _light_channel.size(); i++) {
  381. setSetting("ch", i, _light_channel[i].inputValue);
  382. }
  383. setSetting("brightness", _light_brightness);
  384. setSetting("mireds", _light_mireds);
  385. saveSettings();
  386. }
  387. void _lightColorRestore() {
  388. for (unsigned int i=0; i < _light_channel.size(); i++) {
  389. _light_channel[i].inputValue = getSetting("ch", i, i==0 ? 255 : 0).toInt();
  390. }
  391. _light_brightness = getSetting("brightness", LIGHT_MAX_BRIGHTNESS).toInt();
  392. _light_mireds = getSetting("mireds", _light_mireds).toInt();
  393. lightUpdate(false, false);
  394. }
  395. // -----------------------------------------------------------------------------
  396. // MQTT
  397. // -----------------------------------------------------------------------------
  398. #if MQTT_SUPPORT
  399. void _lightMQTTCallback(unsigned int type, const char * topic, const char * payload) {
  400. String mqtt_group_color = getSetting("mqttGroupColor");
  401. if (type == MQTT_CONNECT_EVENT) {
  402. if (_light_has_color) {
  403. mqttSubscribe(MQTT_TOPIC_BRIGHTNESS);
  404. mqttSubscribe(MQTT_TOPIC_MIRED);
  405. mqttSubscribe(MQTT_TOPIC_KELVIN);
  406. mqttSubscribe(MQTT_TOPIC_COLOR_RGB);
  407. mqttSubscribe(MQTT_TOPIC_COLOR_HSV);
  408. }
  409. // Group color
  410. if (mqtt_group_color.length() > 0) mqttSubscribeRaw(mqtt_group_color.c_str());
  411. // Channels
  412. char buffer[strlen(MQTT_TOPIC_CHANNEL) + 3];
  413. snprintf_P(buffer, sizeof(buffer), PSTR("%s/+"), MQTT_TOPIC_CHANNEL);
  414. mqttSubscribe(buffer);
  415. }
  416. if (type == MQTT_MESSAGE_EVENT) {
  417. // Group color
  418. if ((mqtt_group_color.length() > 0) & (mqtt_group_color.equals(topic))) {
  419. lightColor(payload, true);
  420. lightUpdate(true, mqttForward(), false);
  421. return;
  422. }
  423. // Match topic
  424. String t = mqttMagnitude((char *) topic);
  425. // Color temperature in mireds
  426. if (t.equals(MQTT_TOPIC_MIRED)) {
  427. _fromMireds(atol(payload));
  428. lightUpdate(true, mqttForward());
  429. return;
  430. }
  431. // Color temperature in kelvins
  432. if (t.equals(MQTT_TOPIC_KELVIN)) {
  433. _fromKelvin(atol(payload));
  434. lightUpdate(true, mqttForward());
  435. return;
  436. }
  437. // Color
  438. if (t.equals(MQTT_TOPIC_COLOR_RGB)) {
  439. lightColor(payload, true);
  440. lightUpdate(true, mqttForward());
  441. return;
  442. }
  443. if (t.equals(MQTT_TOPIC_COLOR_HSV)) {
  444. lightColor(payload, false);
  445. lightUpdate(true, mqttForward());
  446. return;
  447. }
  448. // Brightness
  449. if (t.equals(MQTT_TOPIC_BRIGHTNESS)) {
  450. _light_brightness = constrain(atoi(payload), 0, LIGHT_MAX_BRIGHTNESS);
  451. lightUpdate(true, mqttForward());
  452. return;
  453. }
  454. // Channel
  455. if (t.startsWith(MQTT_TOPIC_CHANNEL)) {
  456. unsigned int channelID = t.substring(strlen(MQTT_TOPIC_CHANNEL)+1).toInt();
  457. if (channelID >= _light_channel.size()) {
  458. DEBUG_MSG_P(PSTR("[LIGHT] Wrong channelID (%d)\n"), channelID);
  459. return;
  460. }
  461. lightChannel(channelID, atoi(payload));
  462. lightUpdate(true, mqttForward());
  463. return;
  464. }
  465. }
  466. }
  467. void lightMQTT() {
  468. char buffer[20];
  469. if (_light_has_color) {
  470. // Color
  471. if (getSetting("useCSS", LIGHT_USE_CSS).toInt() == 1) {
  472. _toRGB(buffer, sizeof(buffer), true);
  473. } else {
  474. _toLong(buffer, sizeof(buffer), true);
  475. }
  476. mqttSend(MQTT_TOPIC_COLOR_RGB, buffer);
  477. _toHSV(buffer, sizeof(buffer), true);
  478. mqttSend(MQTT_TOPIC_COLOR_HSV, buffer);
  479. // Mireds
  480. snprintf_P(buffer, sizeof(buffer), PSTR("%d"), _light_mireds);
  481. mqttSend(MQTT_TOPIC_MIRED, buffer);
  482. }
  483. // Channels
  484. for (unsigned int i=0; i < _light_channel.size(); i++) {
  485. itoa(_light_channel[i].target, buffer, 10);
  486. mqttSend(MQTT_TOPIC_CHANNEL, i, buffer);
  487. }
  488. // Brightness
  489. snprintf_P(buffer, sizeof(buffer), PSTR("%d"), _light_brightness);
  490. mqttSend(MQTT_TOPIC_BRIGHTNESS, buffer);
  491. }
  492. void lightMQTTGroup() {
  493. String mqtt_group_color = getSetting("mqttGroupColor");
  494. if (mqtt_group_color.length()>0) {
  495. char buffer[20];
  496. _toCSV(buffer, sizeof(buffer), true);
  497. mqttSendRaw(mqtt_group_color.c_str(), buffer);
  498. }
  499. }
  500. #endif
  501. // -----------------------------------------------------------------------------
  502. // Broker
  503. // -----------------------------------------------------------------------------
  504. #if BROKER_SUPPORT
  505. void lightBroker() {
  506. char buffer[10];
  507. for (unsigned int i=0; i < _light_channel.size(); i++) {
  508. itoa(_light_channel[i].inputValue, buffer, 10);
  509. brokerPublish(MQTT_TOPIC_CHANNEL, i, buffer);
  510. }
  511. }
  512. #endif
  513. // -----------------------------------------------------------------------------
  514. // API
  515. // -----------------------------------------------------------------------------
  516. unsigned char lightChannels() {
  517. return _light_channel.size();
  518. }
  519. bool lightHasColor() {
  520. return _light_has_color;
  521. }
  522. void lightUpdate(bool save, bool forward, bool group_forward) {
  523. _generateBrightness();
  524. // Update channels
  525. for (unsigned int i=0; i < _light_channel.size(); i++) {
  526. _light_channel[i].target = _light_state && _light_channel[i].state ? _light_channel[i].value : 0;
  527. DEBUG_MSG_P("[LIGHT] Channel #%u target value: %u\n", i, _light_channel[i].target);
  528. }
  529. // Configure color transition
  530. _light_steps_left = _light_use_transitions ? _light_transition_time / LIGHT_TRANSITION_STEP : 1;
  531. _light_transition_ticker.attach_ms(LIGHT_TRANSITION_STEP, _lightProviderUpdate);
  532. // Report channels to local broker
  533. #if BROKER_SUPPORT
  534. lightBroker();
  535. #endif
  536. // Report color & brightness to MQTT broker
  537. #if MQTT_SUPPORT
  538. if (forward) lightMQTT();
  539. if (group_forward) lightMQTTGroup();
  540. #endif
  541. // Report color to WS clients (using current brightness setting)
  542. #if WEB_SUPPORT
  543. wsSend(_lightWebSocketOnSend);
  544. #endif
  545. #if LIGHT_SAVE_ENABLED
  546. // Delay saving to EEPROM 5 seconds to avoid wearing it out unnecessarily
  547. if (save) _light_save_ticker.once(LIGHT_SAVE_DELAY, _lightColorSave);
  548. #endif
  549. };
  550. void lightUpdate(bool save, bool forward) {
  551. lightUpdate(save, forward, true);
  552. }
  553. #if LIGHT_SAVE_ENABLED == 0
  554. void lightSave() {
  555. _lightColorSave();
  556. }
  557. #endif
  558. void lightState(unsigned char i, bool state) {
  559. _light_channel[i].state = state;
  560. }
  561. bool lightState(unsigned char i) {
  562. return _light_channel[i].state;
  563. }
  564. void lightState(bool state) {
  565. _light_state = state;
  566. }
  567. bool lightState() {
  568. return _light_state;
  569. }
  570. void lightColor(const char * color, bool rgb) {
  571. DEBUG_MSG_P(PSTR("[LIGHT] %s: %s\n"), rgb ? "RGB" : "HSV", color);
  572. if (rgb) {
  573. _fromRGB(color);
  574. } else {
  575. _fromHSV(color);
  576. }
  577. }
  578. void lightColor(const char * color) {
  579. lightColor(color, true);
  580. }
  581. void lightColor(unsigned long color) {
  582. _fromLong(color, false);
  583. }
  584. String lightColor(bool rgb) {
  585. char str[12];
  586. if (rgb) {
  587. _toRGB(str, sizeof(str));
  588. } else {
  589. _toHSV(str, sizeof(str));
  590. }
  591. return String(str);
  592. }
  593. String lightColor() {
  594. return lightColor(true);
  595. }
  596. unsigned int lightChannel(unsigned char id) {
  597. if (id <= _light_channel.size()) {
  598. return _light_channel[id].inputValue;
  599. }
  600. return 0;
  601. }
  602. void lightChannel(unsigned char id, int value) {
  603. if (id <= _light_channel.size()) {
  604. _light_channel[id].inputValue = constrain(value, 0, LIGHT_MAX_VALUE);
  605. }
  606. }
  607. void lightChannelStep(unsigned char id, int steps) {
  608. lightChannel(id, lightChannel(id) + steps * LIGHT_STEP);
  609. }
  610. unsigned int lightBrightness() {
  611. return _light_brightness;
  612. }
  613. void lightBrightness(int b) {
  614. _light_brightness = constrain(b, 0, LIGHT_MAX_BRIGHTNESS);
  615. }
  616. void lightBrightnessStep(int steps) {
  617. lightBrightness(_light_brightness + steps * LIGHT_STEP);
  618. }
  619. // -----------------------------------------------------------------------------
  620. // SETUP
  621. // -----------------------------------------------------------------------------
  622. #if WEB_SUPPORT
  623. bool _lightWebSocketOnReceive(const char * key, JsonVariant& value) {
  624. if (strncmp(key, "light", 5) == 0) return true;
  625. if (strncmp(key, "use", 3) == 0) return true;
  626. return false;
  627. }
  628. void _lightWebSocketOnSend(JsonObject& root) {
  629. root["colorVisible"] = 1;
  630. root["mqttGroupColor"] = getSetting("mqttGroupColor");
  631. root["useColor"] = _light_has_color;
  632. root["useWhite"] = _light_use_white;
  633. root["useGamma"] = _light_use_gamma;
  634. root["useTransitions"] = _light_use_transitions;
  635. root["lightTime"] = _light_transition_time;
  636. root["useCSS"] = getSetting("useCSS", LIGHT_USE_CSS).toInt() == 1;
  637. bool useRGB = getSetting("useRGB", LIGHT_USE_RGB).toInt() == 1;
  638. root["useRGB"] = useRGB;
  639. if (_light_has_color) {
  640. if (_light_use_cct) {
  641. root["useCCT"] = _light_use_cct;
  642. root["mireds"] = _light_mireds;
  643. }
  644. if (useRGB) {
  645. root["rgb"] = lightColor(true);
  646. } else {
  647. root["hsv"] = lightColor(false);
  648. }
  649. }
  650. JsonArray& channels = root.createNestedArray("channels");
  651. for (unsigned char id=0; id < _light_channel.size(); id++) {
  652. channels.add(lightChannel(id));
  653. }
  654. root["brightness"] = lightBrightness();
  655. }
  656. void _lightWebSocketOnAction(uint32_t client_id, const char * action, JsonObject& data) {
  657. if (_light_has_color) {
  658. if (strcmp(action, "color") == 0) {
  659. if (data.containsKey("rgb")) {
  660. lightColor(data["rgb"], true);
  661. lightUpdate(true, true);
  662. }
  663. if (data.containsKey("hsv")) {
  664. lightColor(data["hsv"], false);
  665. lightUpdate(true, true);
  666. }
  667. }
  668. if (_light_use_cct) {
  669. if (strcmp(action, "mireds") == 0) {
  670. _fromMireds(data["mireds"]);
  671. lightUpdate(true, true);
  672. }
  673. }
  674. }
  675. if (strcmp(action, "channel") == 0) {
  676. if (data.containsKey("id") && data.containsKey("value")) {
  677. lightChannel(data["id"], data["value"]);
  678. lightUpdate(true, true);
  679. }
  680. }
  681. if (strcmp(action, "brightness") == 0) {
  682. if (data.containsKey("value")) {
  683. lightBrightness(data["value"]);
  684. lightUpdate(true, true);
  685. }
  686. }
  687. }
  688. #endif
  689. #if API_SUPPORT
  690. void _lightAPISetup() {
  691. if (_light_has_color) {
  692. apiRegister(MQTT_TOPIC_COLOR_RGB,
  693. [](char * buffer, size_t len) {
  694. if (getSetting("useCSS", LIGHT_USE_CSS).toInt() == 1) {
  695. _toRGB(buffer, len, true);
  696. } else {
  697. _toLong(buffer, len, true);
  698. }
  699. },
  700. [](const char * payload) {
  701. lightColor(payload, true);
  702. lightUpdate(true, true);
  703. }
  704. );
  705. apiRegister(MQTT_TOPIC_COLOR_HSV,
  706. [](char * buffer, size_t len) {
  707. _toHSV(buffer, len, true);
  708. },
  709. [](const char * payload) {
  710. lightColor(payload, false);
  711. lightUpdate(true, true);
  712. }
  713. );
  714. apiRegister(MQTT_TOPIC_KELVIN,
  715. [](char * buffer, size_t len) {},
  716. [](const char * payload) {
  717. _fromKelvin(atol(payload));
  718. lightUpdate(true, true);
  719. }
  720. );
  721. apiRegister(MQTT_TOPIC_MIRED,
  722. [](char * buffer, size_t len) {},
  723. [](const char * payload) {
  724. _fromMireds(atol(payload));
  725. lightUpdate(true, true);
  726. }
  727. );
  728. }
  729. for (unsigned int id=0; id<_light_channel.size(); id++) {
  730. char key[15];
  731. snprintf_P(key, sizeof(key), PSTR("%s/%d"), MQTT_TOPIC_CHANNEL, id);
  732. apiRegister(key,
  733. [id](char * buffer, size_t len) {
  734. snprintf_P(buffer, len, PSTR("%d"), _light_channel[id].target);
  735. },
  736. [id](const char * payload) {
  737. lightChannel(id, atoi(payload));
  738. lightUpdate(true, true);
  739. }
  740. );
  741. }
  742. apiRegister(MQTT_TOPIC_BRIGHTNESS,
  743. [](char * buffer, size_t len) {
  744. snprintf_P(buffer, len, PSTR("%d"), _light_brightness);
  745. },
  746. [](const char * payload) {
  747. lightBrightness(atoi(payload));
  748. lightUpdate(true, true);
  749. }
  750. );
  751. }
  752. #endif // API_SUPPORT
  753. #if TERMINAL_SUPPORT
  754. void _lightInitCommands() {
  755. settingsRegisterCommand(F("BRIGHTNESS"), [](Embedis* e) {
  756. if (e->argc > 1) {
  757. lightBrightness(String(e->argv[1]).toInt());
  758. lightUpdate(true, true);
  759. }
  760. DEBUG_MSG_P(PSTR("Brightness: %d\n"), lightBrightness());
  761. DEBUG_MSG_P(PSTR("+OK\n"));
  762. });
  763. settingsRegisterCommand(F("CHANNEL"), [](Embedis* e) {
  764. if (e->argc < 2) {
  765. DEBUG_MSG_P(PSTR("-ERROR: Wrong arguments\n"));
  766. }
  767. int id = String(e->argv[1]).toInt();
  768. if (e->argc > 2) {
  769. int value = String(e->argv[2]).toInt();
  770. lightChannel(id, value);
  771. lightUpdate(true, true);
  772. }
  773. DEBUG_MSG_P(PSTR("Channel #%d: %d\n"), id, lightChannel(id));
  774. DEBUG_MSG_P(PSTR("+OK\n"));
  775. });
  776. settingsRegisterCommand(F("COLOR"), [](Embedis* e) {
  777. if (e->argc > 1) {
  778. String color = String(e->argv[1]);
  779. lightColor(color.c_str());
  780. lightUpdate(true, true);
  781. }
  782. DEBUG_MSG_P(PSTR("Color: %s\n"), lightColor().c_str());
  783. DEBUG_MSG_P(PSTR("+OK\n"));
  784. });
  785. settingsRegisterCommand(F("KELVIN"), [](Embedis* e) {
  786. if (e->argc > 1) {
  787. String color = String("K") + String(e->argv[1]);
  788. lightColor(color.c_str());
  789. lightUpdate(true, true);
  790. }
  791. DEBUG_MSG_P(PSTR("Color: %s\n"), lightColor().c_str());
  792. DEBUG_MSG_P(PSTR("+OK\n"));
  793. });
  794. settingsRegisterCommand(F("MIRED"), [](Embedis* e) {
  795. if (e->argc > 1) {
  796. String color = String("M") + String(e->argv[1]);
  797. lightColor(color.c_str());
  798. lightUpdate(true, true);
  799. }
  800. DEBUG_MSG_P(PSTR("Color: %s\n"), lightColor().c_str());
  801. DEBUG_MSG_P(PSTR("+OK\n"));
  802. });
  803. }
  804. #endif // TERMINAL_SUPPORT
  805. #if LIGHT_PROVIDER == LIGHT_PROVIDER_DIMMER
  806. unsigned long getIOMux(unsigned long gpio) {
  807. unsigned long muxes[16] = {
  808. PERIPHS_IO_MUX_GPIO0_U, PERIPHS_IO_MUX_U0TXD_U, PERIPHS_IO_MUX_GPIO2_U, PERIPHS_IO_MUX_U0RXD_U,
  809. PERIPHS_IO_MUX_GPIO4_U, PERIPHS_IO_MUX_GPIO5_U, PERIPHS_IO_MUX_SD_CLK_U, PERIPHS_IO_MUX_SD_DATA0_U,
  810. PERIPHS_IO_MUX_SD_DATA1_U, PERIPHS_IO_MUX_SD_DATA2_U, PERIPHS_IO_MUX_SD_DATA3_U, PERIPHS_IO_MUX_SD_CMD_U,
  811. PERIPHS_IO_MUX_MTDI_U, PERIPHS_IO_MUX_MTCK_U, PERIPHS_IO_MUX_MTMS_U, PERIPHS_IO_MUX_MTDO_U
  812. };
  813. return muxes[gpio];
  814. }
  815. unsigned long getIOFunc(unsigned long gpio) {
  816. unsigned long funcs[16] = {
  817. FUNC_GPIO0, FUNC_GPIO1, FUNC_GPIO2, FUNC_GPIO3,
  818. FUNC_GPIO4, FUNC_GPIO5, FUNC_GPIO6, FUNC_GPIO7,
  819. FUNC_GPIO8, FUNC_GPIO9, FUNC_GPIO10, FUNC_GPIO11,
  820. FUNC_GPIO12, FUNC_GPIO13, FUNC_GPIO14, FUNC_GPIO15
  821. };
  822. return funcs[gpio];
  823. }
  824. #endif
  825. void _lightConfigure() {
  826. _light_has_color = getSetting("useColor", LIGHT_USE_COLOR).toInt() == 1;
  827. if (_light_has_color && (_light_channel.size() < 3)) {
  828. _light_has_color = false;
  829. setSetting("useColor", _light_has_color);
  830. }
  831. _light_use_white = getSetting("useWhite", LIGHT_USE_WHITE).toInt() == 1;
  832. if (_light_use_white && (_light_channel.size() < 4)) {
  833. _light_use_white = false;
  834. setSetting("useWhite", _light_use_white);
  835. }
  836. _light_use_cct = getSetting("useCCT", LIGHT_USE_CCT).toInt() == 1;
  837. if (_light_use_cct && ((_light_channel.size() < 5) || !_light_use_white)) {
  838. _light_use_cct = false;
  839. setSetting("useCCT", _light_use_cct);
  840. }
  841. _light_use_gamma = getSetting("useGamma", LIGHT_USE_GAMMA).toInt() == 1;
  842. _light_use_transitions = getSetting("useTransitions", LIGHT_USE_TRANSITIONS).toInt() == 1;
  843. _light_transition_time = getSetting("lightTime", LIGHT_TRANSITION_TIME).toInt();
  844. }
  845. void lightSetup() {
  846. #ifdef LIGHT_ENABLE_PIN
  847. pinMode(LIGHT_ENABLE_PIN, OUTPUT);
  848. digitalWrite(LIGHT_ENABLE_PIN, HIGH);
  849. #endif
  850. #if LIGHT_PROVIDER == LIGHT_PROVIDER_MY92XX
  851. _my92xx = new my92xx(MY92XX_MODEL, MY92XX_CHIPS, MY92XX_DI_PIN, MY92XX_DCKI_PIN, MY92XX_COMMAND);
  852. for (unsigned char i=0; i<LIGHT_CHANNELS; i++) {
  853. _light_channel.push_back((channel_t) {0, false, true, 0, 0, 0});
  854. }
  855. #endif
  856. #if LIGHT_PROVIDER == LIGHT_PROVIDER_DIMMER
  857. #ifdef LIGHT_CH1_PIN
  858. _light_channel.push_back((channel_t) {LIGHT_CH1_PIN, LIGHT_CH1_INVERSE, true, 0, 0, 0});
  859. #endif
  860. #ifdef LIGHT_CH2_PIN
  861. _light_channel.push_back((channel_t) {LIGHT_CH2_PIN, LIGHT_CH2_INVERSE, true, 0, 0, 0});
  862. #endif
  863. #ifdef LIGHT_CH3_PIN
  864. _light_channel.push_back((channel_t) {LIGHT_CH3_PIN, LIGHT_CH3_INVERSE, true, 0, 0, 0});
  865. #endif
  866. #ifdef LIGHT_CH4_PIN
  867. _light_channel.push_back((channel_t) {LIGHT_CH4_PIN, LIGHT_CH4_INVERSE, true, 0, 0, 0});
  868. #endif
  869. #ifdef LIGHT_CH5_PIN
  870. _light_channel.push_back((channel_t) {LIGHT_CH5_PIN, LIGHT_CH5_INVERSE, true, 0, 0, 0});
  871. #endif
  872. uint32 pwm_duty_init[PWM_CHANNEL_NUM_MAX];
  873. uint32 io_info[PWM_CHANNEL_NUM_MAX][3];
  874. for (unsigned int i=0; i < _light_channel.size(); i++) {
  875. pwm_duty_init[i] = 0;
  876. io_info[i][0] = getIOMux(_light_channel[i].pin);
  877. io_info[i][1] = getIOFunc(_light_channel[i].pin);
  878. io_info[i][2] = _light_channel[i].pin;
  879. pinMode(_light_channel[i].pin, OUTPUT);
  880. }
  881. pwm_init(LIGHT_MAX_PWM, pwm_duty_init, PWM_CHANNEL_NUM_MAX, io_info);
  882. pwm_start();
  883. #endif
  884. DEBUG_MSG_P(PSTR("[LIGHT] LIGHT_PROVIDER = %d\n"), LIGHT_PROVIDER);
  885. DEBUG_MSG_P(PSTR("[LIGHT] Number of channels: %d\n"), _light_channel.size());
  886. _lightConfigure();
  887. _lightColorRestore();
  888. #if WEB_SUPPORT
  889. wsOnSendRegister(_lightWebSocketOnSend);
  890. wsOnActionRegister(_lightWebSocketOnAction);
  891. wsOnReceiveRegister(_lightWebSocketOnReceive);
  892. #endif
  893. #if API_SUPPORT
  894. _lightAPISetup();
  895. #endif
  896. #if MQTT_SUPPORT
  897. mqttRegister(_lightMQTTCallback);
  898. #endif
  899. #if TERMINAL_SUPPORT
  900. _lightInitCommands();
  901. #endif
  902. // Main callbacks
  903. espurnaRegisterReload([]() {
  904. #if LIGHT_SAVE_ENABLED == 0
  905. lightSave();
  906. #endif
  907. _lightConfigure();
  908. });
  909. }
  910. #endif // LIGHT_PROVIDER != LIGHT_PROVIDER_NONE