Fork of the espurna firmware for `mhsw` switches
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

430 lines
15 KiB

7 years ago
  1. // -----------------------------------------------------------------------------
  2. // BME280/BMP280 Sensor over I2C
  3. // Copyright (C) 2017-2018 by Xose Pérez <xose dot perez at gmail dot com>
  4. // -----------------------------------------------------------------------------
  5. #if SENSOR_SUPPORT && BMX280_SUPPORT
  6. #pragma once
  7. #include "Arduino.h"
  8. #include "I2CSensor.h"
  9. #define BMX280_CHIP_BMP280 0x58
  10. #define BMX280_CHIP_BME280 0x60
  11. #define BMX280_REGISTER_DIG_T1 0x88
  12. #define BMX280_REGISTER_DIG_T2 0x8A
  13. #define BMX280_REGISTER_DIG_T3 0x8C
  14. #define BMX280_REGISTER_DIG_P1 0x8E
  15. #define BMX280_REGISTER_DIG_P2 0x90
  16. #define BMX280_REGISTER_DIG_P3 0x92
  17. #define BMX280_REGISTER_DIG_P4 0x94
  18. #define BMX280_REGISTER_DIG_P5 0x96
  19. #define BMX280_REGISTER_DIG_P6 0x98
  20. #define BMX280_REGISTER_DIG_P7 0x9A
  21. #define BMX280_REGISTER_DIG_P8 0x9C
  22. #define BMX280_REGISTER_DIG_P9 0x9E
  23. #define BMX280_REGISTER_DIG_H1 0xA1
  24. #define BMX280_REGISTER_DIG_H2 0xE1
  25. #define BMX280_REGISTER_DIG_H3 0xE3
  26. #define BMX280_REGISTER_DIG_H4 0xE4
  27. #define BMX280_REGISTER_DIG_H5 0xE5
  28. #define BMX280_REGISTER_DIG_H6 0xE7
  29. #define BMX280_REGISTER_CHIPID 0xD0
  30. #define BMX280_REGISTER_VERSION 0xD1
  31. #define BMX280_REGISTER_SOFTRESET 0xE0
  32. #define BMX280_REGISTER_CAL26 0xE1
  33. #define BMX280_REGISTER_CONTROLHUMID 0xF2
  34. #define BMX280_REGISTER_CONTROL 0xF4
  35. #define BMX280_REGISTER_CONFIG 0xF5
  36. #define BMX280_REGISTER_PRESSUREDATA 0xF7
  37. #define BMX280_REGISTER_TEMPDATA 0xFA
  38. #define BMX280_REGISTER_HUMIDDATA 0xFD
  39. class BMX280Sensor : public I2CSensor {
  40. public:
  41. static unsigned char addresses[2];
  42. // ---------------------------------------------------------------------
  43. // Public
  44. // ---------------------------------------------------------------------
  45. BMX280Sensor(): I2CSensor() {
  46. _sensor_id = SENSOR_BMX280_ID;
  47. }
  48. // ---------------------------------------------------------------------
  49. // Sensor API
  50. // ---------------------------------------------------------------------
  51. // Initialization method, must be idempotent
  52. void begin() {
  53. if (!_dirty) return;
  54. _dirty = false;
  55. _chip = 0;
  56. // I2C auto-discover
  57. _address = _begin_i2c(_address, sizeof(BMX280Sensor::addresses), BMX280Sensor::addresses);
  58. if (_address == 0) return;
  59. // Init
  60. _init();
  61. }
  62. // Descriptive name of the sensor
  63. String description() {
  64. char buffer[20];
  65. snprintf(buffer, sizeof(buffer), "%s @ I2C (0x%02X)", _chip == BMX280_CHIP_BME280 ? "BME280" : "BMP280", _address);
  66. return String(buffer);
  67. }
  68. // Type for slot # index
  69. unsigned char type(unsigned char index) {
  70. unsigned char i = 0;
  71. #if BMX280_TEMPERATURE > 0
  72. if (index == i++) return MAGNITUDE_TEMPERATURE;
  73. #endif
  74. #if BMX280_PRESSURE > 0
  75. if (index == i++) return MAGNITUDE_PRESSURE;
  76. #endif
  77. #if BMX280_HUMIDITY > 0
  78. if (_chip == BMX280_CHIP_BME280) {
  79. if (index == i) return MAGNITUDE_HUMIDITY;
  80. }
  81. #endif
  82. return MAGNITUDE_NONE;
  83. }
  84. // Pre-read hook (usually to populate registers with up-to-date data)
  85. virtual void pre() {
  86. if (_run_init) {
  87. i2cClearBus();
  88. _init();
  89. }
  90. if (_chip == 0) {
  91. _error = SENSOR_ERROR_UNKNOWN_ID;
  92. return;
  93. }
  94. _error = SENSOR_ERROR_OK;
  95. #if BMX280_MODE == 1
  96. _forceRead();
  97. #endif
  98. _error = _read();
  99. if (_error != SENSOR_ERROR_OK) {
  100. _run_init = true;
  101. }
  102. }
  103. // Current value for slot # index
  104. double value(unsigned char index) {
  105. unsigned char i = 0;
  106. #if BMX280_TEMPERATURE > 0
  107. if (index == i++) return _temperature;
  108. #endif
  109. #if BMX280_PRESSURE > 0
  110. if (index == i++) return _pressure / 100;
  111. #endif
  112. #if BMX280_HUMIDITY > 0
  113. if (_chip == BMX280_CHIP_BME280) {
  114. if (index == i) return _humidity;
  115. }
  116. #endif
  117. return 0;
  118. }
  119. // Load the configuration manifest
  120. static void manifest(JsonArray& sensors) {
  121. char buffer[10];
  122. JsonObject& sensor = sensors.createNestedObject();
  123. sensor["sensor_id"] = SENSOR_BMX280_ID;
  124. JsonArray& fields = sensor.createNestedArray("fields");
  125. {
  126. JsonObject& field = fields.createNestedObject();
  127. field["tag"] = UI_TAG_SELECT;
  128. field["name"] = "address";
  129. field["label"] = "Address";
  130. JsonArray& options = field.createNestedArray("options");
  131. {
  132. JsonObject& option = options.createNestedObject();
  133. option["name"] = "auto";
  134. option["value"] = 0;
  135. }
  136. for (unsigned char i=0; i< sizeof(BMX280Sensor::addresses); i++) {
  137. JsonObject& option = options.createNestedObject();
  138. snprintf(buffer, sizeof(buffer), "0x%02X", BMX280Sensor::addresses[i]);
  139. option["name"] = String(buffer);
  140. option["value"] = BMX280Sensor::addresses[i];
  141. }
  142. }
  143. };
  144. void getConfig(JsonObject& root) {
  145. root["sensor_id"] = _sensor_id;
  146. root["address"] = _address;
  147. };
  148. void setConfig(JsonObject& root) {
  149. if (root.containsKey("address")) setAddress(root["address"]);
  150. };
  151. protected:
  152. void _init() {
  153. // Make sure sensor had enough time to turn on. BMX280 requires 2ms to start up
  154. delay(10);
  155. // Check sensor correctly initialized
  156. _chip = i2c_read_uint8(_address, BMX280_REGISTER_CHIPID);
  157. if ((_chip != BMX280_CHIP_BME280) && (_chip != BMX280_CHIP_BMP280)) {
  158. _chip = 0;
  159. i2cReleaseLock(_address);
  160. _error = SENSOR_ERROR_UNKNOWN_ID;
  161. return;
  162. }
  163. _count = 0;
  164. #if BMX280_TEMPERATURE > 0
  165. ++_count;
  166. #endif
  167. #if BMX280_PRESSURE > 0
  168. ++_count;
  169. #endif
  170. #if BMX280_HUMIDITY > 0
  171. if (_chip == BMX280_CHIP_BME280) ++_count;
  172. #endif
  173. _readCoefficients();
  174. unsigned char data = 0;
  175. i2c_write_uint8(_address, BMX280_REGISTER_CONTROL, data);
  176. data = (BMX280_STANDBY << 0x5) & 0xE0;
  177. data |= (BMX280_FILTER << 0x02) & 0x1C;
  178. i2c_write_uint8(_address, BMX280_REGISTER_CONFIG, data);
  179. data = (BMX280_HUMIDITY) & 0x07;
  180. i2c_write_uint8(_address, BMX280_REGISTER_CONTROLHUMID, data);
  181. data = (BMX280_TEMPERATURE << 5) & 0xE0;
  182. data |= (BMX280_PRESSURE << 2) & 0x1C;
  183. data |= (BMX280_MODE) & 0x03;
  184. i2c_write_uint8(_address, BMX280_REGISTER_CONTROL, data);
  185. _measurement_delay = _measurementTime();
  186. _run_init = false;
  187. }
  188. void _readCoefficients() {
  189. _bmx280_calib.dig_T1 = i2c_read_uint16_le(_address, BMX280_REGISTER_DIG_T1);
  190. _bmx280_calib.dig_T2 = i2c_read_int16_le(_address, BMX280_REGISTER_DIG_T2);
  191. _bmx280_calib.dig_T3 = i2c_read_int16_le(_address, BMX280_REGISTER_DIG_T3);
  192. _bmx280_calib.dig_P1 = i2c_read_uint16_le(_address, BMX280_REGISTER_DIG_P1);
  193. _bmx280_calib.dig_P2 = i2c_read_int16_le(_address, BMX280_REGISTER_DIG_P2);
  194. _bmx280_calib.dig_P3 = i2c_read_int16_le(_address, BMX280_REGISTER_DIG_P3);
  195. _bmx280_calib.dig_P4 = i2c_read_int16_le(_address, BMX280_REGISTER_DIG_P4);
  196. _bmx280_calib.dig_P5 = i2c_read_int16_le(_address, BMX280_REGISTER_DIG_P5);
  197. _bmx280_calib.dig_P6 = i2c_read_int16_le(_address, BMX280_REGISTER_DIG_P6);
  198. _bmx280_calib.dig_P7 = i2c_read_int16_le(_address, BMX280_REGISTER_DIG_P7);
  199. _bmx280_calib.dig_P8 = i2c_read_int16_le(_address, BMX280_REGISTER_DIG_P8);
  200. _bmx280_calib.dig_P9 = i2c_read_int16_le(_address, BMX280_REGISTER_DIG_P9);
  201. _bmx280_calib.dig_H1 = i2c_read_uint8(_address, BMX280_REGISTER_DIG_H1);
  202. _bmx280_calib.dig_H2 = i2c_read_int16_le(_address, BMX280_REGISTER_DIG_H2);
  203. _bmx280_calib.dig_H3 = i2c_read_uint8(_address, BMX280_REGISTER_DIG_H3);
  204. _bmx280_calib.dig_H4 = (i2c_read_uint8(_address, BMX280_REGISTER_DIG_H4) << 4) | (i2c_read_uint8(_address, BMX280_REGISTER_DIG_H4+1) & 0xF);
  205. _bmx280_calib.dig_H5 = (i2c_read_uint8(_address, BMX280_REGISTER_DIG_H5+1) << 4) | (i2c_read_uint8(_address, BMX280_REGISTER_DIG_H5) >> 4);
  206. _bmx280_calib.dig_H6 = (int8_t) i2c_read_uint8(_address, BMX280_REGISTER_DIG_H6);
  207. }
  208. unsigned long _measurementTime() {
  209. // Measurement Time (as per BMX280 datasheet section 9.1)
  210. // T_max(ms) = 1.25
  211. // + (2.3 * T_oversampling)
  212. // + (2.3 * P_oversampling + 0.575)
  213. // + (2.4 * H_oversampling + 0.575)
  214. // ~ 9.3ms for current settings
  215. double t = 1.25;
  216. #if BMX280_TEMPERATURE > 0
  217. t += (2.3 * BMX280_TEMPERATURE);
  218. #endif
  219. #if BMX280_PRESSURE > 0
  220. t += (2.3 * BMX280_PRESSURE + 0.575);
  221. #endif
  222. #if BMX280_HUMIDITY > 0
  223. if (_chip == BMX280_CHIP_BME280) {
  224. t += (2.4 * BMX280_HUMIDITY + 0.575);
  225. }
  226. #endif
  227. return round(t + 1); // round up
  228. }
  229. void _forceRead() {
  230. // We set the sensor in "forced mode" to force a reading.
  231. // After the reading the sensor will go back to sleep mode.
  232. uint8_t value = i2c_read_uint8(_address, BMX280_REGISTER_CONTROL);
  233. value = (value & 0xFC) + 0x01;
  234. i2c_write_uint8(_address, BMX280_REGISTER_CONTROL, value);
  235. delay(_measurement_delay);
  236. }
  237. unsigned char _read() {
  238. #if BMX280_TEMPERATURE > 0
  239. int32_t adc_T = i2c_read_uint16(_address, BMX280_REGISTER_TEMPDATA);
  240. if (0xFFFF == adc_T) return SENSOR_ERROR_I2C;
  241. adc_T <<= 8;
  242. adc_T |= i2c_read_uint8(_address, BMX280_REGISTER_TEMPDATA+2);
  243. adc_T >>= 4;
  244. int32_t var1t = ((((adc_T>>3) -
  245. ((int32_t)_bmx280_calib.dig_T1 <<1))) *
  246. ((int32_t)_bmx280_calib.dig_T2)) >> 11;
  247. int32_t var2t = (((((adc_T>>4) -
  248. ((int32_t)_bmx280_calib.dig_T1)) *
  249. ((adc_T>>4) - ((int32_t)_bmx280_calib.dig_T1))) >> 12) *
  250. ((int32_t)_bmx280_calib.dig_T3)) >> 14;
  251. int32_t t_fine = var1t + var2t;
  252. double T = (t_fine * 5 + 128) >> 8;
  253. _temperature = T / 100;
  254. #else
  255. int32_t t_fine = 102374; // ~20ºC
  256. #endif
  257. // -----------------------------------------------------------------
  258. #if BMX280_PRESSURE > 0
  259. int64_t var1, var2, p;
  260. int32_t adc_P = i2c_read_uint16(_address, BMX280_REGISTER_PRESSUREDATA);
  261. if (0xFFFF == adc_P) return SENSOR_ERROR_I2C;
  262. adc_P <<= 8;
  263. adc_P |= i2c_read_uint8(_address, BMX280_REGISTER_PRESSUREDATA+2);
  264. adc_P >>= 4;
  265. var1 = ((int64_t)t_fine) - 128000;
  266. var2 = var1 * var1 * (int64_t)_bmx280_calib.dig_P6;
  267. var2 = var2 + ((var1*(int64_t)_bmx280_calib.dig_P5)<<17);
  268. var2 = var2 + (((int64_t)_bmx280_calib.dig_P4)<<35);
  269. var1 = ((var1 * var1 * (int64_t)_bmx280_calib.dig_P3)>>8) +
  270. ((var1 * (int64_t)_bmx280_calib.dig_P2)<<12);
  271. var1 = (((((int64_t)1)<<47)+var1))*((int64_t)_bmx280_calib.dig_P1)>>33;
  272. if (var1 == 0) return; // avoid exception caused by division by zero
  273. p = 1048576 - adc_P;
  274. p = (((p<<31) - var2)*3125) / var1;
  275. var1 = (((int64_t)_bmx280_calib.dig_P9) * (p>>13) * (p>>13)) >> 25;
  276. var2 = (((int64_t)_bmx280_calib.dig_P8) * p) >> 19;
  277. p = ((p + var1 + var2) >> 8) + (((int64_t)_bmx280_calib.dig_P7)<<4);
  278. _pressure = (double) p / 256;
  279. #endif
  280. // -----------------------------------------------------------------
  281. #if BMX280_HUMIDITY > 0
  282. if (_chip == BMX280_CHIP_BME280) {
  283. int32_t adc_H = i2c_read_uint16(_address, BMX280_REGISTER_HUMIDDATA);
  284. if (0xFFFF == adc_H) return SENSOR_ERROR_I2C;
  285. int32_t v_x1_u32r;
  286. v_x1_u32r = (t_fine - ((int32_t)76800));
  287. v_x1_u32r = (((((adc_H << 14) - (((int32_t)_bmx280_calib.dig_H4) << 20) -
  288. (((int32_t)_bmx280_calib.dig_H5) * v_x1_u32r)) + ((int32_t)16384)) >> 15) *
  289. (((((((v_x1_u32r * ((int32_t)_bmx280_calib.dig_H6)) >> 10) *
  290. (((v_x1_u32r * ((int32_t)_bmx280_calib.dig_H3)) >> 11) + ((int32_t)32768))) >> 10) +
  291. ((int32_t)2097152)) * ((int32_t)_bmx280_calib.dig_H2) + 8192) >> 14));
  292. v_x1_u32r = (v_x1_u32r - (((((v_x1_u32r >> 15) * (v_x1_u32r >> 15)) >> 7) *
  293. ((int32_t)_bmx280_calib.dig_H1)) >> 4));
  294. v_x1_u32r = (v_x1_u32r < 0) ? 0 : v_x1_u32r;
  295. v_x1_u32r = (v_x1_u32r > 419430400) ? 419430400 : v_x1_u32r;
  296. double h = (v_x1_u32r >> 12);
  297. _humidity = h / 1024.0;
  298. }
  299. #endif
  300. return SENSOR_ERROR_OK;
  301. }
  302. // ---------------------------------------------------------------------
  303. unsigned char _chip;
  304. unsigned long _measurement_delay;
  305. bool _run_init = false;
  306. double _temperature = 0;
  307. double _pressure = 0;
  308. double _humidity = 0;
  309. typedef struct {
  310. uint16_t dig_T1;
  311. int16_t dig_T2;
  312. int16_t dig_T3;
  313. uint16_t dig_P1;
  314. int16_t dig_P2;
  315. int16_t dig_P3;
  316. int16_t dig_P4;
  317. int16_t dig_P5;
  318. int16_t dig_P6;
  319. int16_t dig_P7;
  320. int16_t dig_P8;
  321. int16_t dig_P9;
  322. uint8_t dig_H1;
  323. int16_t dig_H2;
  324. uint8_t dig_H3;
  325. int16_t dig_H4;
  326. int16_t dig_H5;
  327. int8_t dig_H6;
  328. } bmx280_calib_t;
  329. bmx280_calib_t _bmx280_calib;
  330. };
  331. // Static inizializations
  332. unsigned char BMX280Sensor::addresses[2] = {0x76, 0x77};
  333. #endif // SENSOR_SUPPORT && BMX280_SUPPORT