Fork of the espurna firmware for `mhsw` switches
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1058 lines
31 KiB

7 years ago
7 years ago
7 years ago
7 years ago
  1. /*
  2. RELAY MODULE
  3. Copyright (C) 2016-2018 by Xose Pérez <xose dot perez at gmail dot com>
  4. */
  5. #include <EEPROM_Rotate.h>
  6. #include <Ticker.h>
  7. #include <ArduinoJson.h>
  8. #include <vector>
  9. #include <functional>
  10. typedef struct {
  11. // Configuration variables
  12. unsigned char pin; // GPIO pin for the relay
  13. unsigned char type; // RELAY_TYPE_NORMAL, RELAY_TYPE_INVERSE, RELAY_TYPE_LATCHED or RELAY_TYPE_LATCHED_INVERSE
  14. unsigned char reset_pin; // GPIO to reset the relay if RELAY_TYPE_LATCHED
  15. unsigned long delay_on; // Delay to turn relay ON
  16. unsigned long delay_off; // Delay to turn relay OFF
  17. unsigned char pulse; // RELAY_PULSE_NONE, RELAY_PULSE_OFF or RELAY_PULSE_ON
  18. unsigned long pulse_ms; // Pulse length in millis
  19. // Status variables
  20. bool current_status; // Holds the current (physical) status of the relay
  21. bool target_status; // Holds the target status
  22. unsigned long fw_start; // Flood window start time
  23. unsigned char fw_count; // Number of changes within the current flood window
  24. unsigned long change_time; // Scheduled time to change
  25. bool report; // Whether to report to own topic
  26. bool group_report; // Whether to report to group topic
  27. // Helping objects
  28. Ticker pulseTicker; // Holds the pulse back timer
  29. } relay_t;
  30. std::vector<relay_t> _relays;
  31. bool _relayRecursive = false;
  32. Ticker _relaySaveTicker;
  33. // -----------------------------------------------------------------------------
  34. // RELAY PROVIDERS
  35. // -----------------------------------------------------------------------------
  36. void _relayProviderStatus(unsigned char id, bool status) {
  37. // Check relay ID
  38. if (id >= _relays.size()) return;
  39. // Store new current status
  40. _relays[id].current_status = status;
  41. #if RELAY_PROVIDER == RELAY_PROVIDER_RFBRIDGE
  42. rfbStatus(id, status);
  43. #endif
  44. #if RELAY_PROVIDER == RELAY_PROVIDER_DUAL
  45. // Calculate mask
  46. unsigned char mask=0;
  47. for (unsigned char i=0; i<_relays.size(); i++) {
  48. if (_relays[i].current_status) mask = mask + (1 << i);
  49. }
  50. // Send it to F330
  51. Serial.flush();
  52. Serial.write(0xA0);
  53. Serial.write(0x04);
  54. Serial.write(mask);
  55. Serial.write(0xA1);
  56. Serial.flush();
  57. #endif
  58. #if RELAY_PROVIDER == RELAY_PROVIDER_STM
  59. Serial.flush();
  60. Serial.write(0xA0);
  61. Serial.write(id + 1);
  62. Serial.write(status);
  63. Serial.write(0xA1 + status + id);
  64. Serial.flush();
  65. #endif
  66. #if RELAY_PROVIDER == RELAY_PROVIDER_LIGHT
  67. // If the number of relays matches the number of light channels
  68. // assume each relay controls one channel.
  69. // If the number of relays is the number of channels plus 1
  70. // assume the first one controls all the channels and
  71. // the rest one channel each.
  72. // Otherwise every relay controls all channels.
  73. // TODO: this won't work with a mixed of dummy and real relays
  74. // but this option is not allowed atm (YANGNI)
  75. if (_relays.size() == lightChannels()) {
  76. lightState(id, status);
  77. lightState(true);
  78. } else if (_relays.size() == (lightChannels() + 1u)) {
  79. if (id == 0) {
  80. lightState(status);
  81. } else {
  82. lightState(id-1, status);
  83. }
  84. } else {
  85. lightState(status);
  86. }
  87. lightUpdate(true, true);
  88. #endif
  89. #if RELAY_PROVIDER == RELAY_PROVIDER_RELAY
  90. if (_relays[id].type == RELAY_TYPE_NORMAL) {
  91. digitalWrite(_relays[id].pin, status);
  92. } else if (_relays[id].type == RELAY_TYPE_INVERSE) {
  93. digitalWrite(_relays[id].pin, !status);
  94. } else if (_relays[id].type == RELAY_TYPE_LATCHED || _relays[id].type == RELAY_TYPE_LATCHED_INVERSE) {
  95. bool pulse = RELAY_TYPE_LATCHED ? HIGH : LOW;
  96. digitalWrite(_relays[id].pin, !pulse);
  97. if (GPIO_NONE != _relays[id].reset_pin) digitalWrite(_relays[id].reset_pin, !pulse);
  98. if (status || (GPIO_NONE == _relays[id].reset_pin)) {
  99. digitalWrite(_relays[id].pin, pulse);
  100. } else {
  101. digitalWrite(_relays[id].reset_pin, pulse);
  102. }
  103. nice_delay(RELAY_LATCHING_PULSE);
  104. digitalWrite(_relays[id].pin, !pulse);
  105. if (GPIO_NONE != _relays[id].reset_pin) digitalWrite(_relays[id].reset_pin, !pulse);
  106. }
  107. #endif
  108. }
  109. /**
  110. * Walks the relay vector processing only those relays
  111. * that have to change to the requested mode
  112. * @bool mode Requested mode
  113. */
  114. void _relayProcess(bool mode) {
  115. unsigned long current_time = millis();
  116. for (unsigned char id = 0; id < _relays.size(); id++) {
  117. bool target = _relays[id].target_status;
  118. // Only process the relays we have to change
  119. if (target == _relays[id].current_status) continue;
  120. // Only process the relays we have change to the requested mode
  121. if (target != mode) continue;
  122. // Only process if the change_time has arrived
  123. if (current_time < _relays[id].change_time) continue;
  124. DEBUG_MSG_P(PSTR("[RELAY] #%d set to %s\n"), id, target ? "ON" : "OFF");
  125. // Call the provider to perform the action
  126. _relayProviderStatus(id, target);
  127. // Send to Broker
  128. #if BROKER_SUPPORT
  129. brokerPublish(MQTT_TOPIC_RELAY, id, target ? "1" : "0");
  130. #endif
  131. // Send MQTT
  132. #if MQTT_SUPPORT
  133. relayMQTT(id);
  134. #endif
  135. if (!_relayRecursive) {
  136. relayPulse(id);
  137. // We will trigger a commit only if
  138. // we care about current relay status on boot
  139. unsigned char boot_mode = getSetting("relayBoot", id, RELAY_BOOT_MODE).toInt();
  140. bool do_commit = ((RELAY_BOOT_SAME == boot_mode) || (RELAY_BOOT_TOGGLE == boot_mode));
  141. _relaySaveTicker.once_ms(RELAY_SAVE_DELAY, relaySave, do_commit);
  142. #if WEB_SUPPORT
  143. wsSend(_relayWebSocketUpdate);
  144. #endif
  145. }
  146. #if DOMOTICZ_SUPPORT
  147. domoticzSendRelay(id);
  148. #endif
  149. #if INFLUXDB_SUPPORT
  150. relayInfluxDB(id);
  151. #endif
  152. #if THINGSPEAK_SUPPORT
  153. tspkEnqueueRelay(id, target);
  154. tspkFlush();
  155. #endif
  156. // Flag relay-based LEDs to update status
  157. #if LED_SUPPORT
  158. ledUpdate(true);
  159. #endif
  160. _relays[id].report = false;
  161. _relays[id].group_report = false;
  162. }
  163. }
  164. #if defined(ITEAD_SONOFF_IFAN02)
  165. unsigned char _relay_ifan02_speeds[] = {0, 1, 3, 5};
  166. unsigned char getSpeed() {
  167. unsigned char speed =
  168. (_relays[1].target_status ? 1 : 0) +
  169. (_relays[2].target_status ? 2 : 0) +
  170. (_relays[3].target_status ? 4 : 0);
  171. for (unsigned char i=0; i<4; i++) {
  172. if (_relay_ifan02_speeds[i] == speed) return i;
  173. }
  174. return 0;
  175. }
  176. void setSpeed(unsigned char speed) {
  177. if ((0 <= speed) & (speed <= 3)) {
  178. if (getSpeed() == speed) return;
  179. unsigned char states = _relay_ifan02_speeds[speed];
  180. for (unsigned char i=0; i<3; i++) {
  181. relayStatus(i+1, states & 1 == 1);
  182. states >>= 1;
  183. }
  184. }
  185. }
  186. #endif
  187. // -----------------------------------------------------------------------------
  188. // RELAY
  189. // -----------------------------------------------------------------------------
  190. void relayPulse(unsigned char id) {
  191. _relays[id].pulseTicker.detach();
  192. byte mode = _relays[id].pulse;
  193. if (mode == RELAY_PULSE_NONE) return;
  194. unsigned long ms = _relays[id].pulse_ms;
  195. if (ms == 0) return;
  196. bool status = relayStatus(id);
  197. bool pulseStatus = (mode == RELAY_PULSE_ON);
  198. if (pulseStatus != status) {
  199. DEBUG_MSG_P(PSTR("[RELAY] Scheduling relay #%d back in %lums (pulse)\n"), id, ms);
  200. _relays[id].pulseTicker.once_ms(ms, relayToggle, id);
  201. // Reconfigure after dynamic pulse
  202. _relays[id].pulse = getSetting("relayPulse", id, RELAY_PULSE_MODE).toInt();
  203. _relays[id].pulse_ms = 1000 * getSetting("relayTime", id, RELAY_PULSE_MODE).toFloat();
  204. }
  205. }
  206. bool relayStatus(unsigned char id, bool status, bool report, bool group_report) {
  207. if (id >= _relays.size()) return false;
  208. bool changed = false;
  209. if (_relays[id].current_status == status) {
  210. if (_relays[id].target_status != status) {
  211. DEBUG_MSG_P(PSTR("[RELAY] #%d scheduled change cancelled\n"), id);
  212. _relays[id].target_status = status;
  213. _relays[id].report = false;
  214. _relays[id].group_report = false;
  215. changed = true;
  216. }
  217. // For RFBridge, keep sending the message even if the status is already the required
  218. #if RELAY_PROVIDER == RELAY_PROVIDER_RFBRIDGE
  219. rfbStatus(id, status);
  220. #endif
  221. // Update the pulse counter if the relay is already in the non-normal state (#454)
  222. relayPulse(id);
  223. } else {
  224. unsigned long current_time = millis();
  225. unsigned long fw_end = _relays[id].fw_start + 1000 * RELAY_FLOOD_WINDOW;
  226. unsigned long delay = status ? _relays[id].delay_on : _relays[id].delay_off;
  227. _relays[id].fw_count++;
  228. _relays[id].change_time = current_time + delay;
  229. // If current_time is off-limits the floodWindow...
  230. if (current_time < _relays[id].fw_start || fw_end <= current_time) {
  231. // We reset the floodWindow
  232. _relays[id].fw_start = current_time;
  233. _relays[id].fw_count = 1;
  234. // If current_time is in the floodWindow and there have been too many requests...
  235. } else if (_relays[id].fw_count >= RELAY_FLOOD_CHANGES) {
  236. // We schedule the changes to the end of the floodWindow
  237. // unless it's already delayed beyond that point
  238. if (fw_end - delay > current_time) {
  239. _relays[id].change_time = fw_end;
  240. }
  241. }
  242. _relays[id].target_status = status;
  243. if (report) _relays[id].report = true;
  244. if (group_report) _relays[id].group_report = true;
  245. relaySync(id);
  246. DEBUG_MSG_P(PSTR("[RELAY] #%d scheduled %s in %u ms\n"),
  247. id, status ? "ON" : "OFF",
  248. (_relays[id].change_time - current_time));
  249. changed = true;
  250. }
  251. return changed;
  252. }
  253. bool relayStatus(unsigned char id, bool status) {
  254. return relayStatus(id, status, true, true);
  255. }
  256. bool relayStatus(unsigned char id) {
  257. // Check relay ID
  258. if (id >= _relays.size()) return false;
  259. // Get status from storage
  260. return _relays[id].current_status;
  261. }
  262. void relaySync(unsigned char id) {
  263. // No sync if none or only one relay
  264. if (_relays.size() < 2) return;
  265. // Do not go on if we are comming from a previous sync
  266. if (_relayRecursive) return;
  267. // Flag sync mode
  268. _relayRecursive = true;
  269. byte relaySync = getSetting("relaySync", RELAY_SYNC).toInt();
  270. bool status = _relays[id].target_status;
  271. // If RELAY_SYNC_SAME all relays should have the same state
  272. if (relaySync == RELAY_SYNC_SAME) {
  273. for (unsigned short i=0; i<_relays.size(); i++) {
  274. if (i != id) relayStatus(i, status);
  275. }
  276. // If NONE_OR_ONE or ONE and setting ON we should set OFF all the others
  277. } else if (status) {
  278. if (relaySync != RELAY_SYNC_ANY) {
  279. for (unsigned short i=0; i<_relays.size(); i++) {
  280. if (i != id) relayStatus(i, false);
  281. }
  282. }
  283. // If ONLY_ONE and setting OFF we should set ON the other one
  284. } else {
  285. if (relaySync == RELAY_SYNC_ONE) {
  286. unsigned char i = (id + 1) % _relays.size();
  287. relayStatus(i, true);
  288. }
  289. }
  290. // Unflag sync mode
  291. _relayRecursive = false;
  292. }
  293. void relaySave(bool do_commit) {
  294. // Relay status is stored in a single byte
  295. // This means that, atm,
  296. // we are only storing the status of the first 8 relays.
  297. unsigned char bit = 1;
  298. unsigned char mask = 0;
  299. unsigned char count = _relays.size();
  300. if (count > 8) count = 8;
  301. for (unsigned int i=0; i < count; i++) {
  302. if (relayStatus(i)) mask += bit;
  303. bit += bit;
  304. }
  305. EEPROMr.write(EEPROM_RELAY_STATUS, mask);
  306. DEBUG_MSG_P(PSTR("[RELAY] Setting relay mask: %d\n"), mask);
  307. // The 'do_commit' flag controls wether we are commiting this change or not.
  308. // It is useful to set it to 'false' if the relay change triggering the
  309. // save involves a relay whose boot mode is independent from current mode,
  310. // thus storing the last relay value is not absolutely necessary.
  311. // Nevertheless, we store the value in the EEPROM buffer so it will be written
  312. // on the next commit.
  313. if (do_commit) {
  314. // We are actually enqueuing the commit so it will be
  315. // executed on the main loop, in case this is called from a callback
  316. saveSettings();
  317. }
  318. }
  319. void relaySave() {
  320. relaySave(true);
  321. }
  322. void relayToggle(unsigned char id, bool report, bool group_report) {
  323. if (id >= _relays.size()) return;
  324. relayStatus(id, !relayStatus(id), report, group_report);
  325. }
  326. void relayToggle(unsigned char id) {
  327. relayToggle(id, true, true);
  328. }
  329. unsigned char relayCount() {
  330. return _relays.size();
  331. }
  332. unsigned char relayParsePayload(const char * payload) {
  333. // Payload could be "OFF", "ON", "TOGGLE"
  334. // or its number equivalents: 0, 1 or 2
  335. if (payload[0] == '0') return 0;
  336. if (payload[0] == '1') return 1;
  337. if (payload[0] == '2') return 2;
  338. // trim payload
  339. char * p = ltrim((char *)payload);
  340. // to lower
  341. unsigned int l = strlen(p);
  342. if (l>6) l=6;
  343. for (unsigned char i=0; i<l; i++) {
  344. p[i] = tolower(p[i]);
  345. }
  346. unsigned int value = 0xFF;
  347. if (strcmp(p, "off") == 0) {
  348. value = 0;
  349. } else if (strcmp(p, "on") == 0) {
  350. value = 1;
  351. } else if (strcmp(p, "toggle") == 0) {
  352. value = 2;
  353. } else if (strcmp(p, "query") == 0) {
  354. value = 3;
  355. }
  356. return value;
  357. }
  358. // BACKWARDS COMPATIBILITY
  359. void _relayBackwards() {
  360. byte relayMode = getSetting("relayMode", RELAY_BOOT_MODE).toInt();
  361. byte relayPulseMode = getSetting("relayPulseMode", RELAY_PULSE_MODE).toInt();
  362. float relayPulseTime = getSetting("relayPulseTime", RELAY_PULSE_TIME).toFloat();
  363. if (relayPulseMode == RELAY_PULSE_NONE) relayPulseTime = 0;
  364. for (unsigned int i=0; i<_relays.size(); i++) {
  365. if (!hasSetting("relayBoot", i)) setSetting("relayBoot", i, relayMode);
  366. if (!hasSetting("relayPulse", i)) setSetting("relayPulse", i, relayPulseMode);
  367. if (!hasSetting("relayTime", i)) setSetting("relayTime", i, relayPulseTime);
  368. }
  369. delSetting("relayMode");
  370. delSetting("relayPulseMode");
  371. delSetting("relayPulseTime");
  372. }
  373. void _relayBoot() {
  374. _relayRecursive = true;
  375. unsigned char bit = 1;
  376. bool trigger_save = false;
  377. // Get last statuses from EEPROM
  378. unsigned char mask = EEPROMr.read(EEPROM_RELAY_STATUS);
  379. DEBUG_MSG_P(PSTR("[RELAY] Retrieving mask: %d\n"), mask);
  380. // Walk the relays
  381. bool status = false;
  382. for (unsigned int i=0; i<_relays.size(); i++) {
  383. unsigned char boot_mode = getSetting("relayBoot", i, RELAY_BOOT_MODE).toInt();
  384. DEBUG_MSG_P(PSTR("[RELAY] Relay #%d boot mode %d\n"), i, boot_mode);
  385. switch (boot_mode) {
  386. case RELAY_BOOT_SAME:
  387. status = ((mask & bit) == bit);
  388. break;
  389. case RELAY_BOOT_TOGGLE:
  390. status = ((mask & bit) != bit);
  391. mask ^= bit;
  392. trigger_save = true;
  393. break;
  394. case RELAY_BOOT_ON:
  395. status = true;
  396. break;
  397. case RELAY_BOOT_OFF:
  398. default:
  399. status = false;
  400. break;
  401. }
  402. _relays[i].current_status = !status;
  403. _relays[i].target_status = status;
  404. #if RELAY_PROVIDER == RELAY_PROVIDER_STM
  405. _relays[i].change_time = millis() + 3000 + 1000 * i;
  406. #else
  407. _relays[i].change_time = millis();
  408. #endif
  409. bit <<= 1;
  410. }
  411. // Save if there is any relay in the RELAY_BOOT_TOGGLE mode
  412. if (trigger_save) {
  413. EEPROMr.write(EEPROM_RELAY_STATUS, mask);
  414. saveSettings();
  415. }
  416. _relayRecursive = false;
  417. }
  418. void _relayConfigure() {
  419. for (unsigned int i=0; i<_relays.size(); i++) {
  420. pinMode(_relays[i].pin, OUTPUT);
  421. if (GPIO_NONE != _relays[i].reset_pin) {
  422. pinMode(_relays[i].reset_pin, OUTPUT);
  423. }
  424. if (_relays[i].type == RELAY_TYPE_INVERSE) {
  425. //set to high to block short opening of relay
  426. digitalWrite(_relays[i].pin, HIGH);
  427. }
  428. _relays[i].pulse = getSetting("relayPulse", i, RELAY_PULSE_MODE).toInt();
  429. _relays[i].pulse_ms = 1000 * getSetting("relayTime", i, RELAY_PULSE_MODE).toFloat();
  430. }
  431. }
  432. //------------------------------------------------------------------------------
  433. // WEBSOCKETS
  434. //------------------------------------------------------------------------------
  435. #if WEB_SUPPORT
  436. bool _relayWebSocketOnReceive(const char * key, JsonVariant& value) {
  437. return (strncmp(key, "relay", 5) == 0);
  438. }
  439. void _relayWebSocketUpdate(JsonObject& root) {
  440. JsonArray& relay = root.createNestedArray("relayStatus");
  441. for (unsigned char i=0; i<relayCount(); i++) {
  442. relay.add(_relays[i].target_status);
  443. }
  444. }
  445. void _relayWebSocketOnStart(JsonObject& root) {
  446. if (relayCount() == 0) return;
  447. // Statuses
  448. _relayWebSocketUpdate(root);
  449. // Configuration
  450. JsonArray& config = root.createNestedArray("relayConfig");
  451. for (unsigned char i=0; i<relayCount(); i++) {
  452. JsonObject& line = config.createNestedObject();
  453. line["gpio"] = _relays[i].pin;
  454. line["type"] = _relays[i].type;
  455. line["reset"] = _relays[i].reset_pin;
  456. line["boot"] = getSetting("relayBoot", i, RELAY_BOOT_MODE).toInt();
  457. line["pulse"] = _relays[i].pulse;
  458. line["pulse_ms"] = _relays[i].pulse_ms / 1000.0;
  459. #if MQTT_SUPPORT
  460. line["group"] = getSetting("mqttGroup", i, "");
  461. line["group_inv"] = getSetting("mqttGroupInv", i, 0).toInt();
  462. line["on_disc"] = getSetting("relayOnDisc", i, 0).toInt();
  463. #endif
  464. }
  465. if (relayCount() > 1) {
  466. root["multirelayVisible"] = 1;
  467. root["relaySync"] = getSetting("relaySync", RELAY_SYNC);
  468. }
  469. root["relayVisible"] = 1;
  470. }
  471. void _relayWebSocketOnAction(uint32_t client_id, const char * action, JsonObject& data) {
  472. if (strcmp(action, "relay") != 0) return;
  473. if (data.containsKey("status")) {
  474. unsigned char value = relayParsePayload(data["status"]);
  475. if (value == 3) {
  476. wsSend(_relayWebSocketUpdate);
  477. } else if (value < 3) {
  478. unsigned int relayID = 0;
  479. if (data.containsKey("id")) {
  480. String value = data["id"];
  481. relayID = value.toInt();
  482. }
  483. // Action to perform
  484. if (value == 0) {
  485. relayStatus(relayID, false);
  486. } else if (value == 1) {
  487. relayStatus(relayID, true);
  488. } else if (value == 2) {
  489. relayToggle(relayID);
  490. }
  491. }
  492. }
  493. }
  494. void relaySetupWS() {
  495. wsOnSendRegister(_relayWebSocketOnStart);
  496. wsOnActionRegister(_relayWebSocketOnAction);
  497. wsOnReceiveRegister(_relayWebSocketOnReceive);
  498. }
  499. #endif // WEB_SUPPORT
  500. //------------------------------------------------------------------------------
  501. // REST API
  502. //------------------------------------------------------------------------------
  503. #if API_SUPPORT
  504. void relaySetupAPI() {
  505. char key[20];
  506. // API entry points (protected with apikey)
  507. for (unsigned int relayID=0; relayID<relayCount(); relayID++) {
  508. snprintf_P(key, sizeof(key), PSTR("%s/%d"), MQTT_TOPIC_RELAY, relayID);
  509. apiRegister(key,
  510. [relayID](char * buffer, size_t len) {
  511. snprintf_P(buffer, len, PSTR("%d"), _relays[relayID].target_status ? 1 : 0);
  512. },
  513. [relayID](const char * payload) {
  514. unsigned char value = relayParsePayload(payload);
  515. if (value == 0xFF) {
  516. DEBUG_MSG_P(PSTR("[RELAY] Wrong payload (%s)\n"), payload);
  517. return;
  518. }
  519. if (value == 0) {
  520. relayStatus(relayID, false);
  521. } else if (value == 1) {
  522. relayStatus(relayID, true);
  523. } else if (value == 2) {
  524. relayToggle(relayID);
  525. }
  526. }
  527. );
  528. snprintf_P(key, sizeof(key), PSTR("%s/%d"), MQTT_TOPIC_PULSE, relayID);
  529. apiRegister(key,
  530. [relayID](char * buffer, size_t len) {
  531. dtostrf((double) _relays[relayID].pulse_ms / 1000, 1-len, 3, buffer);
  532. },
  533. [relayID](const char * payload) {
  534. unsigned long pulse = 1000 * String(payload).toFloat();
  535. if (0 == pulse) return;
  536. if (RELAY_PULSE_NONE != _relays[relayID].pulse) {
  537. DEBUG_MSG_P(PSTR("[RELAY] Overriding relay #%d pulse settings\n"), relayID);
  538. }
  539. _relays[relayID].pulse_ms = pulse;
  540. _relays[relayID].pulse = relayStatus(relayID) ? RELAY_PULSE_ON : RELAY_PULSE_OFF;
  541. relayToggle(relayID, true, false);
  542. }
  543. );
  544. #if defined(ITEAD_SONOFF_IFAN02)
  545. apiRegister(MQTT_TOPIC_SPEED,
  546. [relayID](char * buffer, size_t len) {
  547. snprintf(buffer, len, "%u", getSpeed());
  548. },
  549. [relayID](const char * payload) {
  550. setSpeed(atoi(payload));
  551. }
  552. );
  553. #endif
  554. }
  555. }
  556. #endif // API_SUPPORT
  557. //------------------------------------------------------------------------------
  558. // MQTT
  559. //------------------------------------------------------------------------------
  560. #if MQTT_SUPPORT
  561. void relayMQTT(unsigned char id) {
  562. if (id >= _relays.size()) return;
  563. // Send state topic
  564. if (_relays[id].report) {
  565. _relays[id].report = false;
  566. mqttSend(MQTT_TOPIC_RELAY, id, _relays[id].current_status ? RELAY_MQTT_ON : RELAY_MQTT_OFF);
  567. }
  568. // Check group topic
  569. if (_relays[id].group_report) {
  570. _relays[id].group_report = false;
  571. String t = getSetting("mqttGroup", id, "");
  572. if (t.length() > 0) {
  573. bool status = relayStatus(id);
  574. if (getSetting("mqttGroupInv", id, 0).toInt() == 1) status = !status;
  575. mqttSendRaw(t.c_str(), status ? RELAY_MQTT_ON : RELAY_MQTT_OFF);
  576. }
  577. }
  578. // Send speed for IFAN02
  579. #if defined (ITEAD_SONOFF_IFAN02)
  580. char buffer[5];
  581. snprintf(buffer, sizeof(buffer), "%u", getSpeed());
  582. mqttSend(MQTT_TOPIC_SPEED, buffer);
  583. #endif
  584. }
  585. void relayMQTT() {
  586. for (unsigned int id=0; id < _relays.size(); id++) {
  587. mqttSend(MQTT_TOPIC_RELAY, id, _relays[id].current_status ? RELAY_MQTT_ON : RELAY_MQTT_OFF);
  588. }
  589. }
  590. void relayStatusWrap(unsigned char id, unsigned char value, bool is_group_topic) {
  591. switch (value) {
  592. case 0:
  593. relayStatus(id, false, mqttForward(), !is_group_topic);
  594. break;
  595. case 1:
  596. relayStatus(id, true, mqttForward(), !is_group_topic);
  597. break;
  598. case 2:
  599. relayToggle(id, true, true);
  600. break;
  601. default:
  602. _relays[id].report = true;
  603. relayMQTT(id);
  604. break;
  605. }
  606. }
  607. void relayMQTTCallback(unsigned int type, const char * topic, const char * payload) {
  608. if (type == MQTT_CONNECT_EVENT) {
  609. // Send status on connect
  610. #if (HEARTBEAT_MODE == HEARTBEAT_NONE) or (not HEARTBEAT_REPORT_RELAY)
  611. relayMQTT();
  612. #endif
  613. // Subscribe to own /set topic
  614. char relay_topic[strlen(MQTT_TOPIC_RELAY) + 3];
  615. snprintf_P(relay_topic, sizeof(relay_topic), PSTR("%s/+"), MQTT_TOPIC_RELAY);
  616. mqttSubscribe(relay_topic);
  617. // Subscribe to pulse topic
  618. char pulse_topic[strlen(MQTT_TOPIC_PULSE) + 3];
  619. snprintf_P(pulse_topic, sizeof(pulse_topic), PSTR("%s/+"), MQTT_TOPIC_PULSE);
  620. mqttSubscribe(pulse_topic);
  621. #if defined(ITEAD_SONOFF_IFAN02)
  622. mqttSubscribe(MQTT_TOPIC_SPEED);
  623. #endif
  624. // Subscribe to group topics
  625. for (unsigned int i=0; i < _relays.size(); i++) {
  626. String t = getSetting("mqttGroup", i, "");
  627. if (t.length() > 0) mqttSubscribeRaw(t.c_str());
  628. }
  629. }
  630. if (type == MQTT_MESSAGE_EVENT) {
  631. String t = mqttMagnitude((char *) topic);
  632. // magnitude is relay/#/pulse
  633. if (t.startsWith(MQTT_TOPIC_PULSE)) {
  634. unsigned int id = t.substring(strlen(MQTT_TOPIC_PULSE)+1).toInt();
  635. if (id >= relayCount()) {
  636. DEBUG_MSG_P(PSTR("[RELAY] Wrong relayID (%d)\n"), id);
  637. return;
  638. }
  639. unsigned long pulse = 1000 * String(payload).toFloat();
  640. if (0 == pulse) return;
  641. if (RELAY_PULSE_NONE != _relays[id].pulse) {
  642. DEBUG_MSG_P(PSTR("[RELAY] Overriding relay #%d pulse settings\n"), id);
  643. }
  644. _relays[id].pulse_ms = pulse;
  645. _relays[id].pulse = relayStatus(id) ? RELAY_PULSE_ON : RELAY_PULSE_OFF;
  646. relayToggle(id, true, false);
  647. return;
  648. }
  649. // magnitude is relay/#
  650. if (t.startsWith(MQTT_TOPIC_RELAY)) {
  651. // Get relay ID
  652. unsigned int id = t.substring(strlen(MQTT_TOPIC_RELAY)+1).toInt();
  653. if (id >= relayCount()) {
  654. DEBUG_MSG_P(PSTR("[RELAY] Wrong relayID (%d)\n"), id);
  655. return;
  656. }
  657. // Get value
  658. unsigned char value = relayParsePayload(payload);
  659. if (value == 0xFF) return;
  660. relayStatusWrap(id, value, false);
  661. return;
  662. }
  663. // Check group topics
  664. for (unsigned int i=0; i < _relays.size(); i++) {
  665. String t = getSetting("mqttGroup", i, "");
  666. if ((t.length() > 0) && t.equals(topic)) {
  667. unsigned char value = relayParsePayload(payload);
  668. if (value == 0xFF) return;
  669. if (value < 2) {
  670. if (getSetting("mqttGroupInv", i, 0).toInt() == 1) {
  671. value = 1 - value;
  672. }
  673. }
  674. DEBUG_MSG_P(PSTR("[RELAY] Matched group topic for relayID %d\n"), i);
  675. relayStatusWrap(i, value, true);
  676. }
  677. }
  678. // Itead Sonoff IFAN02
  679. #if defined (ITEAD_SONOFF_IFAN02)
  680. if (t.startsWith(MQTT_TOPIC_SPEED)) {
  681. setSpeed(atoi(payload));
  682. }
  683. #endif
  684. }
  685. if (type == MQTT_DISCONNECT_EVENT) {
  686. for (unsigned int i=0; i < _relays.size(); i++){
  687. int reaction = getSetting("relayOnDisc", i, 0).toInt();
  688. if (1 == reaction) { // switch relay OFF
  689. DEBUG_MSG_P(PSTR("[RELAY] Reset relay (%d) due to MQTT disconnection\n"), i);
  690. relayStatusWrap(i, false, false);
  691. } else if(2 == reaction) { // switch relay ON
  692. DEBUG_MSG_P(PSTR("[RELAY] Set relay (%d) due to MQTT disconnection\n"), i);
  693. relayStatusWrap(i, true, false);
  694. }
  695. }
  696. }
  697. }
  698. void relaySetupMQTT() {
  699. mqttRegister(relayMQTTCallback);
  700. }
  701. #endif
  702. //------------------------------------------------------------------------------
  703. // InfluxDB
  704. //------------------------------------------------------------------------------
  705. #if INFLUXDB_SUPPORT
  706. void relayInfluxDB(unsigned char id) {
  707. if (id >= _relays.size()) return;
  708. idbSend(MQTT_TOPIC_RELAY, id, relayStatus(id) ? "1" : "0");
  709. }
  710. #endif
  711. //------------------------------------------------------------------------------
  712. // Settings
  713. //------------------------------------------------------------------------------
  714. #if TERMINAL_SUPPORT
  715. void _relayInitCommands() {
  716. settingsRegisterCommand(F("RELAY"), [](Embedis* e) {
  717. if (e->argc < 2) {
  718. DEBUG_MSG_P(PSTR("-ERROR: Wrong arguments\n"));
  719. return;
  720. }
  721. int id = String(e->argv[1]).toInt();
  722. if (id >= relayCount()) {
  723. DEBUG_MSG_P(PSTR("-ERROR: Wrong relayID (%d)\n"), id);
  724. return;
  725. }
  726. if (e->argc > 2) {
  727. int value = String(e->argv[2]).toInt();
  728. if (value == 2) {
  729. relayToggle(id);
  730. } else {
  731. relayStatus(id, value == 1);
  732. }
  733. }
  734. DEBUG_MSG_P(PSTR("Status: %s\n"), _relays[id].target_status ? "true" : "false");
  735. if (_relays[id].pulse != RELAY_PULSE_NONE) {
  736. DEBUG_MSG_P(PSTR("Pulse: %s\n"), (_relays[id].pulse == RELAY_PULSE_ON) ? "ON" : "OFF");
  737. DEBUG_MSG_P(PSTR("Pulse time: %d\n"), _relays[id].pulse_ms);
  738. }
  739. DEBUG_MSG_P(PSTR("+OK\n"));
  740. });
  741. }
  742. #endif // TERMINAL_SUPPORT
  743. //------------------------------------------------------------------------------
  744. // Setup
  745. //------------------------------------------------------------------------------
  746. void _relayLoop() {
  747. _relayProcess(false);
  748. _relayProcess(true);
  749. }
  750. void relaySetup() {
  751. // Dummy relays for AI Light, Magic Home LED Controller, H801,
  752. // Sonoff Dual and Sonoff RF Bridge
  753. #if DUMMY_RELAY_COUNT > 0
  754. // No delay_on or off for these devices to easily allow having more than
  755. // 8 channels. This behaviour will be recovered with v2.
  756. for (unsigned char i=0; i < DUMMY_RELAY_COUNT; i++) {
  757. _relays.push_back((relay_t) {0, RELAY_TYPE_NORMAL, 0, 0, 0});
  758. }
  759. #else
  760. #if RELAY1_PIN != GPIO_NONE
  761. _relays.push_back((relay_t) { RELAY1_PIN, RELAY1_TYPE, RELAY1_RESET_PIN, RELAY1_DELAY_ON, RELAY1_DELAY_OFF });
  762. #endif
  763. #if RELAY2_PIN != GPIO_NONE
  764. _relays.push_back((relay_t) { RELAY2_PIN, RELAY2_TYPE, RELAY2_RESET_PIN, RELAY2_DELAY_ON, RELAY2_DELAY_OFF });
  765. #endif
  766. #if RELAY3_PIN != GPIO_NONE
  767. _relays.push_back((relay_t) { RELAY3_PIN, RELAY3_TYPE, RELAY3_RESET_PIN, RELAY3_DELAY_ON, RELAY3_DELAY_OFF });
  768. #endif
  769. #if RELAY4_PIN != GPIO_NONE
  770. _relays.push_back((relay_t) { RELAY4_PIN, RELAY4_TYPE, RELAY4_RESET_PIN, RELAY4_DELAY_ON, RELAY4_DELAY_OFF });
  771. #endif
  772. #if RELAY5_PIN != GPIO_NONE
  773. _relays.push_back((relay_t) { RELAY5_PIN, RELAY5_TYPE, RELAY5_RESET_PIN, RELAY5_DELAY_ON, RELAY5_DELAY_OFF });
  774. #endif
  775. #if RELAY6_PIN != GPIO_NONE
  776. _relays.push_back((relay_t) { RELAY6_PIN, RELAY6_TYPE, RELAY6_RESET_PIN, RELAY6_DELAY_ON, RELAY6_DELAY_OFF });
  777. #endif
  778. #if RELAY7_PIN != GPIO_NONE
  779. _relays.push_back((relay_t) { RELAY7_PIN, RELAY7_TYPE, RELAY7_RESET_PIN, RELAY7_DELAY_ON, RELAY7_DELAY_OFF });
  780. #endif
  781. #if RELAY8_PIN != GPIO_NONE
  782. _relays.push_back((relay_t) { RELAY8_PIN, RELAY8_TYPE, RELAY8_RESET_PIN, RELAY8_DELAY_ON, RELAY8_DELAY_OFF });
  783. #endif
  784. #endif
  785. _relayBackwards();
  786. _relayConfigure();
  787. _relayBoot();
  788. _relayLoop();
  789. #if WEB_SUPPORT
  790. relaySetupWS();
  791. #endif
  792. #if API_SUPPORT
  793. relaySetupAPI();
  794. #endif
  795. #if MQTT_SUPPORT
  796. relaySetupMQTT();
  797. #endif
  798. #if TERMINAL_SUPPORT
  799. _relayInitCommands();
  800. #endif
  801. // Main callbacks
  802. espurnaRegisterLoop(_relayLoop);
  803. espurnaRegisterReload(_relayConfigure);
  804. DEBUG_MSG_P(PSTR("[RELAY] Number of relays: %d\n"), _relays.size());
  805. }