Fork of the espurna firmware for `mhsw` switches
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1092 lines
32 KiB

  1. /*
  2. RELAY MODULE
  3. Copyright (C) 2016-2018 by Xose Pérez <xose dot perez at gmail dot com>
  4. */
  5. #include <EEPROM_Rotate.h>
  6. #include <Ticker.h>
  7. #include <ArduinoJson.h>
  8. #include <vector>
  9. #include <functional>
  10. typedef struct {
  11. // Configuration variables
  12. unsigned char pin; // GPIO pin for the relay
  13. unsigned char type; // RELAY_TYPE_NORMAL, RELAY_TYPE_INVERSE, RELAY_TYPE_LATCHED or RELAY_TYPE_LATCHED_INVERSE
  14. unsigned char reset_pin; // GPIO to reset the relay if RELAY_TYPE_LATCHED
  15. unsigned long delay_on; // Delay to turn relay ON
  16. unsigned long delay_off; // Delay to turn relay OFF
  17. unsigned char pulse; // RELAY_PULSE_NONE, RELAY_PULSE_OFF or RELAY_PULSE_ON
  18. unsigned long pulse_ms; // Pulse length in millis
  19. // Status variables
  20. bool current_status; // Holds the current (physical) status of the relay
  21. bool target_status; // Holds the target status
  22. unsigned long fw_start; // Flood window start time
  23. unsigned char fw_count; // Number of changes within the current flood window
  24. unsigned long change_time; // Scheduled time to change
  25. bool report; // Whether to report to own topic
  26. bool group_report; // Whether to report to group topic
  27. // Helping objects
  28. Ticker pulseTicker; // Holds the pulse back timer
  29. } relay_t;
  30. std::vector<relay_t> _relays;
  31. bool _relayRecursive = false;
  32. Ticker _relaySaveTicker;
  33. // -----------------------------------------------------------------------------
  34. // RELAY PROVIDERS
  35. // -----------------------------------------------------------------------------
  36. void _relayProviderStatus(unsigned char id, bool status) {
  37. // Check relay ID
  38. if (id >= _relays.size()) return;
  39. // Store new current status
  40. _relays[id].current_status = status;
  41. #if RELAY_PROVIDER == RELAY_PROVIDER_RFBRIDGE
  42. rfbStatus(id, status);
  43. #endif
  44. #if RELAY_PROVIDER == RELAY_PROVIDER_DUAL
  45. // Calculate mask
  46. unsigned char mask=0;
  47. for (unsigned char i=0; i<_relays.size(); i++) {
  48. if (_relays[i].current_status) mask = mask + (1 << i);
  49. }
  50. // Send it to F330
  51. Serial.flush();
  52. Serial.write(0xA0);
  53. Serial.write(0x04);
  54. Serial.write(mask);
  55. Serial.write(0xA1);
  56. Serial.flush();
  57. #endif
  58. #if RELAY_PROVIDER == RELAY_PROVIDER_STM
  59. Serial.flush();
  60. Serial.write(0xA0);
  61. Serial.write(id + 1);
  62. Serial.write(status);
  63. Serial.write(0xA1 + status + id);
  64. // The serial init are not full recognized by relais board.
  65. // References: https://github.com/xoseperez/espurna/issues/1519 , https://github.com/xoseperez/espurna/issues/1130
  66. delay(100);
  67. Serial.flush();
  68. #endif
  69. #if RELAY_PROVIDER == RELAY_PROVIDER_LIGHT
  70. // Real relays
  71. uint8_t physical = _relays.size() - DUMMY_RELAY_COUNT;
  72. // Support for a mixed of dummy and real relays
  73. // Reference: https://github.com/xoseperez/espurna/issues/1305
  74. if (id >= physical) {
  75. // If the number of dummy relays matches the number of light channels
  76. // assume each relay controls one channel.
  77. // If the number of dummy relays is the number of channels plus 1
  78. // assume the first one controls all the channels and
  79. // the rest one channel each.
  80. // Otherwise every dummy relay controls all channels.
  81. if (DUMMY_RELAY_COUNT == lightChannels()) {
  82. lightState(id-physical, status);
  83. lightState(true);
  84. } else if (DUMMY_RELAY_COUNT == (lightChannels() + 1u)) {
  85. if (id == physical) {
  86. lightState(status);
  87. } else {
  88. lightState(id-1-physical, status);
  89. }
  90. } else {
  91. lightState(status);
  92. }
  93. lightUpdate(true, true);
  94. return;
  95. }
  96. #endif
  97. #if (RELAY_PROVIDER == RELAY_PROVIDER_RELAY) || (RELAY_PROVIDER == RELAY_PROVIDER_LIGHT)
  98. // If this is a light, all dummy relays have already been processed above
  99. // we reach here if the user has toggled a physical relay
  100. if (_relays[id].type == RELAY_TYPE_NORMAL) {
  101. digitalWrite(_relays[id].pin, status);
  102. } else if (_relays[id].type == RELAY_TYPE_INVERSE) {
  103. digitalWrite(_relays[id].pin, !status);
  104. } else if (_relays[id].type == RELAY_TYPE_LATCHED || _relays[id].type == RELAY_TYPE_LATCHED_INVERSE) {
  105. bool pulse = RELAY_TYPE_LATCHED ? HIGH : LOW;
  106. digitalWrite(_relays[id].pin, !pulse);
  107. if (GPIO_NONE != _relays[id].reset_pin) digitalWrite(_relays[id].reset_pin, !pulse);
  108. if (status || (GPIO_NONE == _relays[id].reset_pin)) {
  109. digitalWrite(_relays[id].pin, pulse);
  110. } else {
  111. digitalWrite(_relays[id].reset_pin, pulse);
  112. }
  113. nice_delay(RELAY_LATCHING_PULSE);
  114. digitalWrite(_relays[id].pin, !pulse);
  115. if (GPIO_NONE != _relays[id].reset_pin) digitalWrite(_relays[id].reset_pin, !pulse);
  116. }
  117. #endif
  118. }
  119. /**
  120. * Walks the relay vector processing only those relays
  121. * that have to change to the requested mode
  122. * @bool mode Requested mode
  123. */
  124. void _relayProcess(bool mode) {
  125. unsigned long current_time = millis();
  126. for (unsigned char id = 0; id < _relays.size(); id++) {
  127. bool target = _relays[id].target_status;
  128. // Only process the relays we have to change
  129. if (target == _relays[id].current_status) continue;
  130. // Only process the relays we have to change to the requested mode
  131. if (target != mode) continue;
  132. // Only process if the change_time has arrived
  133. if (current_time < _relays[id].change_time) continue;
  134. DEBUG_MSG_P(PSTR("[RELAY] #%d set to %s\n"), id, target ? "ON" : "OFF");
  135. // Call the provider to perform the action
  136. _relayProviderStatus(id, target);
  137. // Send to Broker
  138. #if BROKER_SUPPORT
  139. brokerPublish(BROKER_MSG_TYPE_STATUS, MQTT_TOPIC_RELAY, id, target ? "1" : "0");
  140. #endif
  141. // Send MQTT
  142. #if MQTT_SUPPORT
  143. relayMQTT(id);
  144. #endif
  145. if (!_relayRecursive) {
  146. relayPulse(id);
  147. // We will trigger a commit only if
  148. // we care about current relay status on boot
  149. unsigned char boot_mode = getSetting("relayBoot", id, RELAY_BOOT_MODE).toInt();
  150. bool do_commit = ((RELAY_BOOT_SAME == boot_mode) || (RELAY_BOOT_TOGGLE == boot_mode));
  151. _relaySaveTicker.once_ms(RELAY_SAVE_DELAY, relaySave, do_commit);
  152. #if WEB_SUPPORT
  153. wsSend(_relayWebSocketUpdate);
  154. #endif
  155. }
  156. _relays[id].report = false;
  157. _relays[id].group_report = false;
  158. }
  159. }
  160. #if defined(ITEAD_SONOFF_IFAN02)
  161. unsigned char _relay_ifan02_speeds[] = {0, 1, 3, 5};
  162. unsigned char getSpeed() {
  163. unsigned char speed =
  164. (_relays[1].target_status ? 1 : 0) +
  165. (_relays[2].target_status ? 2 : 0) +
  166. (_relays[3].target_status ? 4 : 0);
  167. for (unsigned char i=0; i<4; i++) {
  168. if (_relay_ifan02_speeds[i] == speed) return i;
  169. }
  170. return 0;
  171. }
  172. void setSpeed(unsigned char speed) {
  173. if ((0 <= speed) & (speed <= 3)) {
  174. if (getSpeed() == speed) return;
  175. unsigned char states = _relay_ifan02_speeds[speed];
  176. for (unsigned char i=0; i<3; i++) {
  177. relayStatus(i+1, states & 1 == 1);
  178. states >>= 1;
  179. }
  180. }
  181. }
  182. #endif
  183. // -----------------------------------------------------------------------------
  184. // RELAY
  185. // -----------------------------------------------------------------------------
  186. void relayPulse(unsigned char id) {
  187. _relays[id].pulseTicker.detach();
  188. byte mode = _relays[id].pulse;
  189. if (mode == RELAY_PULSE_NONE) return;
  190. unsigned long ms = _relays[id].pulse_ms;
  191. if (ms == 0) return;
  192. bool status = relayStatus(id);
  193. bool pulseStatus = (mode == RELAY_PULSE_ON);
  194. if (pulseStatus != status) {
  195. DEBUG_MSG_P(PSTR("[RELAY] Scheduling relay #%d back in %lums (pulse)\n"), id, ms);
  196. _relays[id].pulseTicker.once_ms(ms, relayToggle, id);
  197. // Reconfigure after dynamic pulse
  198. _relays[id].pulse = getSetting("relayPulse", id, RELAY_PULSE_MODE).toInt();
  199. _relays[id].pulse_ms = 1000 * getSetting("relayTime", id, RELAY_PULSE_MODE).toFloat();
  200. }
  201. }
  202. bool relayStatus(unsigned char id, bool status, bool report, bool group_report) {
  203. if (id >= _relays.size()) return false;
  204. bool changed = false;
  205. if (_relays[id].current_status == status) {
  206. if (_relays[id].target_status != status) {
  207. DEBUG_MSG_P(PSTR("[RELAY] #%d scheduled change cancelled\n"), id);
  208. _relays[id].target_status = status;
  209. _relays[id].report = false;
  210. _relays[id].group_report = false;
  211. changed = true;
  212. }
  213. // For RFBridge, keep sending the message even if the status is already the required
  214. #if RELAY_PROVIDER == RELAY_PROVIDER_RFBRIDGE
  215. rfbStatus(id, status);
  216. #endif
  217. // Update the pulse counter if the relay is already in the non-normal state (#454)
  218. relayPulse(id);
  219. } else {
  220. unsigned long current_time = millis();
  221. unsigned long fw_end = _relays[id].fw_start + 1000 * RELAY_FLOOD_WINDOW;
  222. unsigned long delay = status ? _relays[id].delay_on : _relays[id].delay_off;
  223. _relays[id].fw_count++;
  224. _relays[id].change_time = current_time + delay;
  225. // If current_time is off-limits the floodWindow...
  226. if (current_time < _relays[id].fw_start || fw_end <= current_time) {
  227. // We reset the floodWindow
  228. _relays[id].fw_start = current_time;
  229. _relays[id].fw_count = 1;
  230. // If current_time is in the floodWindow and there have been too many requests...
  231. } else if (_relays[id].fw_count >= RELAY_FLOOD_CHANGES) {
  232. // We schedule the changes to the end of the floodWindow
  233. // unless it's already delayed beyond that point
  234. if (fw_end - delay > current_time) {
  235. _relays[id].change_time = fw_end;
  236. }
  237. }
  238. _relays[id].target_status = status;
  239. if (report) _relays[id].report = true;
  240. if (group_report) _relays[id].group_report = true;
  241. relaySync(id);
  242. DEBUG_MSG_P(PSTR("[RELAY] #%d scheduled %s in %u ms\n"),
  243. id, status ? "ON" : "OFF",
  244. (_relays[id].change_time - current_time));
  245. changed = true;
  246. }
  247. return changed;
  248. }
  249. bool relayStatus(unsigned char id, bool status) {
  250. return relayStatus(id, status, true, true);
  251. }
  252. bool relayStatus(unsigned char id) {
  253. // Check relay ID
  254. if (id >= _relays.size()) return false;
  255. // Get status from storage
  256. return _relays[id].current_status;
  257. }
  258. void relaySync(unsigned char id) {
  259. // No sync if none or only one relay
  260. if (_relays.size() < 2) return;
  261. // Do not go on if we are comming from a previous sync
  262. if (_relayRecursive) return;
  263. // Flag sync mode
  264. _relayRecursive = true;
  265. byte relaySync = getSetting("relaySync", RELAY_SYNC).toInt();
  266. bool status = _relays[id].target_status;
  267. // If RELAY_SYNC_SAME all relays should have the same state
  268. if (relaySync == RELAY_SYNC_SAME) {
  269. for (unsigned short i=0; i<_relays.size(); i++) {
  270. if (i != id) relayStatus(i, status);
  271. }
  272. // If NONE_OR_ONE or ONE and setting ON we should set OFF all the others
  273. } else if (status) {
  274. if (relaySync != RELAY_SYNC_ANY) {
  275. for (unsigned short i=0; i<_relays.size(); i++) {
  276. if (i != id) relayStatus(i, false);
  277. }
  278. }
  279. // If ONLY_ONE and setting OFF we should set ON the other one
  280. } else {
  281. if (relaySync == RELAY_SYNC_ONE) {
  282. unsigned char i = (id + 1) % _relays.size();
  283. relayStatus(i, true);
  284. }
  285. }
  286. // Unflag sync mode
  287. _relayRecursive = false;
  288. }
  289. void relaySave(bool do_commit) {
  290. // Relay status is stored in a single byte
  291. // This means that, atm,
  292. // we are only storing the status of the first 8 relays.
  293. unsigned char bit = 1;
  294. unsigned char mask = 0;
  295. unsigned char count = _relays.size();
  296. if (count > 8) count = 8;
  297. for (unsigned int i=0; i < count; i++) {
  298. if (relayStatus(i)) mask += bit;
  299. bit += bit;
  300. }
  301. EEPROMr.write(EEPROM_RELAY_STATUS, mask);
  302. DEBUG_MSG_P(PSTR("[RELAY] Setting relay mask: %d\n"), mask);
  303. // The 'do_commit' flag controls wether we are commiting this change or not.
  304. // It is useful to set it to 'false' if the relay change triggering the
  305. // save involves a relay whose boot mode is independent from current mode,
  306. // thus storing the last relay value is not absolutely necessary.
  307. // Nevertheless, we store the value in the EEPROM buffer so it will be written
  308. // on the next commit.
  309. if (do_commit) {
  310. // We are actually enqueuing the commit so it will be
  311. // executed on the main loop, in case this is called from a callback
  312. eepromCommit();
  313. }
  314. }
  315. void relaySave() {
  316. relaySave(true);
  317. }
  318. void relayToggle(unsigned char id, bool report, bool group_report) {
  319. if (id >= _relays.size()) return;
  320. relayStatus(id, !relayStatus(id), report, group_report);
  321. }
  322. void relayToggle(unsigned char id) {
  323. relayToggle(id, true, true);
  324. }
  325. unsigned char relayCount() {
  326. return _relays.size();
  327. }
  328. unsigned char relayParsePayload(const char * payload) {
  329. // Payload could be "OFF", "ON", "TOGGLE"
  330. // or its number equivalents: 0, 1 or 2
  331. if (payload[0] == '0') return 0;
  332. if (payload[0] == '1') return 1;
  333. if (payload[0] == '2') return 2;
  334. // trim payload
  335. char * p = ltrim((char *)payload);
  336. // to lower
  337. unsigned int l = strlen(p);
  338. if (l>6) l=6;
  339. for (unsigned char i=0; i<l; i++) {
  340. p[i] = tolower(p[i]);
  341. }
  342. unsigned int value = 0xFF;
  343. if (strcmp(p, "off") == 0) {
  344. value = 0;
  345. } else if (strcmp(p, "on") == 0) {
  346. value = 1;
  347. } else if (strcmp(p, "toggle") == 0) {
  348. value = 2;
  349. } else if (strcmp(p, "query") == 0) {
  350. value = 3;
  351. }
  352. return value;
  353. }
  354. // BACKWARDS COMPATIBILITY
  355. void _relayBackwards() {
  356. byte relayMode = getSetting("relayMode", RELAY_BOOT_MODE).toInt();
  357. byte relayPulseMode = getSetting("relayPulseMode", RELAY_PULSE_MODE).toInt();
  358. float relayPulseTime = getSetting("relayPulseTime", RELAY_PULSE_TIME).toFloat();
  359. if (relayPulseMode == RELAY_PULSE_NONE) relayPulseTime = 0;
  360. for (unsigned int i=0; i<_relays.size(); i++) {
  361. if (!hasSetting("relayBoot", i)) setSetting("relayBoot", i, relayMode);
  362. if (!hasSetting("relayPulse", i)) setSetting("relayPulse", i, relayPulseMode);
  363. if (!hasSetting("relayTime", i)) setSetting("relayTime", i, relayPulseTime);
  364. }
  365. delSetting("relayMode");
  366. delSetting("relayPulseMode");
  367. delSetting("relayPulseTime");
  368. }
  369. void _relayBoot() {
  370. _relayRecursive = true;
  371. unsigned char bit = 1;
  372. bool trigger_save = false;
  373. // Get last statuses from EEPROM
  374. unsigned char mask = EEPROMr.read(EEPROM_RELAY_STATUS);
  375. DEBUG_MSG_P(PSTR("[RELAY] Retrieving mask: %d\n"), mask);
  376. // Walk the relays
  377. bool status;
  378. for (unsigned int i=0; i<_relays.size(); i++) {
  379. unsigned char boot_mode = getSetting("relayBoot", i, RELAY_BOOT_MODE).toInt();
  380. DEBUG_MSG_P(PSTR("[RELAY] Relay #%d boot mode %d\n"), i, boot_mode);
  381. status = false;
  382. switch (boot_mode) {
  383. case RELAY_BOOT_SAME:
  384. if (i < 8) {
  385. status = ((mask & bit) == bit);
  386. }
  387. break;
  388. case RELAY_BOOT_TOGGLE:
  389. if (i < 8) {
  390. status = ((mask & bit) != bit);
  391. mask ^= bit;
  392. trigger_save = true;
  393. }
  394. break;
  395. case RELAY_BOOT_ON:
  396. status = true;
  397. break;
  398. case RELAY_BOOT_OFF:
  399. default:
  400. break;
  401. }
  402. _relays[i].current_status = !status;
  403. _relays[i].target_status = status;
  404. #if RELAY_PROVIDER == RELAY_PROVIDER_STM
  405. _relays[i].change_time = millis() + 3000 + 1000 * i;
  406. #else
  407. _relays[i].change_time = millis();
  408. #endif
  409. bit <<= 1;
  410. }
  411. // Save if there is any relay in the RELAY_BOOT_TOGGLE mode
  412. if (trigger_save) {
  413. EEPROMr.write(EEPROM_RELAY_STATUS, mask);
  414. eepromCommit();
  415. }
  416. _relayRecursive = false;
  417. }
  418. void _relayConfigure() {
  419. for (unsigned int i=0; i<_relays.size(); i++) {
  420. _relays[i].pulse = getSetting("relayPulse", i, RELAY_PULSE_MODE).toInt();
  421. _relays[i].pulse_ms = 1000 * getSetting("relayTime", i, RELAY_PULSE_MODE).toFloat();
  422. if (GPIO_NONE == _relays[i].pin) continue;
  423. pinMode(_relays[i].pin, OUTPUT);
  424. if (GPIO_NONE != _relays[i].reset_pin) {
  425. pinMode(_relays[i].reset_pin, OUTPUT);
  426. }
  427. if (_relays[i].type == RELAY_TYPE_INVERSE) {
  428. //set to high to block short opening of relay
  429. digitalWrite(_relays[i].pin, HIGH);
  430. }
  431. }
  432. }
  433. //------------------------------------------------------------------------------
  434. // WEBSOCKETS
  435. //------------------------------------------------------------------------------
  436. #if WEB_SUPPORT
  437. bool _relayWebSocketOnReceive(const char * key, JsonVariant& value) {
  438. return (strncmp(key, "relay", 5) == 0);
  439. }
  440. void _relayWebSocketUpdate(JsonObject& root) {
  441. JsonArray& relay = root.createNestedArray("relayStatus");
  442. for (unsigned char i=0; i<relayCount(); i++) {
  443. relay.add(_relays[i].target_status);
  444. }
  445. }
  446. void _relayWebSocketSendRelay(unsigned char i) {
  447. DynamicJsonBuffer jsonBuffer;
  448. JsonObject& root = jsonBuffer.createObject();
  449. JsonArray& config = root.createNestedArray("relayConfig");
  450. JsonObject& line = config.createNestedObject();
  451. line["id"] = i;
  452. if (GPIO_NONE == _relays[i].pin) {
  453. #if (RELAY_PROVIDER == RELAY_PROVIDER_LIGHT)
  454. uint8_t physical = _relays.size() - DUMMY_RELAY_COUNT;
  455. if (i >= physical) {
  456. if (DUMMY_RELAY_COUNT == lightChannels()) {
  457. line["gpio"] = String("CH") + String(i-physical);
  458. } else if (DUMMY_RELAY_COUNT == (lightChannels() + 1u)) {
  459. if (physical == i) {
  460. line["gpio"] = String("Light");
  461. } else {
  462. line["gpio"] = String("CH") + String(i-1-physical);
  463. }
  464. } else {
  465. line["gpio"] = String("Light");
  466. }
  467. } else {
  468. line["gpio"] = String("?");
  469. }
  470. #else
  471. line["gpio"] = String("SW") + String(i);
  472. #endif
  473. } else {
  474. line["gpio"] = String("GPIO") + String(_relays[i].pin);
  475. }
  476. line["type"] = _relays[i].type;
  477. line["reset"] = _relays[i].reset_pin;
  478. line["boot"] = getSetting("relayBoot", i, RELAY_BOOT_MODE).toInt();
  479. line["pulse"] = _relays[i].pulse;
  480. line["pulse_ms"] = _relays[i].pulse_ms / 1000.0;
  481. #if MQTT_SUPPORT
  482. line["group"] = getSetting("mqttGroup", i, "");
  483. line["group_inv"] = getSetting("mqttGroupInv", i, 0).toInt();
  484. line["on_disc"] = getSetting("relayOnDisc", i, 0).toInt();
  485. #endif
  486. String output;
  487. root.printTo(output);
  488. jsonBuffer.clear();
  489. wsSend((char *) output.c_str());
  490. }
  491. void _relayWebSocketSendRelays() {
  492. for (unsigned char i=0; i<relayCount(); i++) {
  493. _relayWebSocketSendRelay(i);
  494. }
  495. }
  496. void _relayWebSocketOnStart(JsonObject& root) {
  497. if (relayCount() == 0) return;
  498. // Per-relay configuration
  499. _relayWebSocketSendRelays();
  500. // Statuses
  501. _relayWebSocketUpdate(root);
  502. // Options
  503. if (relayCount() > 1) {
  504. root["multirelayVisible"] = 1;
  505. root["relaySync"] = getSetting("relaySync", RELAY_SYNC);
  506. }
  507. root["relayVisible"] = 1;
  508. }
  509. void _relayWebSocketOnAction(uint32_t client_id, const char * action, JsonObject& data) {
  510. if (strcmp(action, "relay") != 0) return;
  511. if (data.containsKey("status")) {
  512. unsigned char value = relayParsePayload(data["status"]);
  513. if (value == 3) {
  514. wsSend(_relayWebSocketUpdate);
  515. } else if (value < 3) {
  516. unsigned int relayID = 0;
  517. if (data.containsKey("id")) {
  518. String value = data["id"];
  519. relayID = value.toInt();
  520. }
  521. // Action to perform
  522. if (value == 0) {
  523. relayStatus(relayID, false);
  524. } else if (value == 1) {
  525. relayStatus(relayID, true);
  526. } else if (value == 2) {
  527. relayToggle(relayID);
  528. }
  529. }
  530. }
  531. }
  532. void relaySetupWS() {
  533. wsOnSendRegister(_relayWebSocketOnStart);
  534. wsOnActionRegister(_relayWebSocketOnAction);
  535. wsOnReceiveRegister(_relayWebSocketOnReceive);
  536. }
  537. #endif // WEB_SUPPORT
  538. //------------------------------------------------------------------------------
  539. // REST API
  540. //------------------------------------------------------------------------------
  541. #if API_SUPPORT
  542. void relaySetupAPI() {
  543. char key[20];
  544. // API entry points (protected with apikey)
  545. for (unsigned int relayID=0; relayID<relayCount(); relayID++) {
  546. snprintf_P(key, sizeof(key), PSTR("%s/%d"), MQTT_TOPIC_RELAY, relayID);
  547. apiRegister(key,
  548. [relayID](char * buffer, size_t len) {
  549. snprintf_P(buffer, len, PSTR("%d"), _relays[relayID].target_status ? 1 : 0);
  550. },
  551. [relayID](const char * payload) {
  552. unsigned char value = relayParsePayload(payload);
  553. if (value == 0xFF) {
  554. DEBUG_MSG_P(PSTR("[RELAY] Wrong payload (%s)\n"), payload);
  555. return;
  556. }
  557. if (value == 0) {
  558. relayStatus(relayID, false);
  559. } else if (value == 1) {
  560. relayStatus(relayID, true);
  561. } else if (value == 2) {
  562. relayToggle(relayID);
  563. }
  564. }
  565. );
  566. snprintf_P(key, sizeof(key), PSTR("%s/%d"), MQTT_TOPIC_PULSE, relayID);
  567. apiRegister(key,
  568. [relayID](char * buffer, size_t len) {
  569. dtostrf((double) _relays[relayID].pulse_ms / 1000, 1-len, 3, buffer);
  570. },
  571. [relayID](const char * payload) {
  572. unsigned long pulse = 1000 * String(payload).toFloat();
  573. if (0 == pulse) return;
  574. if (RELAY_PULSE_NONE != _relays[relayID].pulse) {
  575. DEBUG_MSG_P(PSTR("[RELAY] Overriding relay #%d pulse settings\n"), relayID);
  576. }
  577. _relays[relayID].pulse_ms = pulse;
  578. _relays[relayID].pulse = relayStatus(relayID) ? RELAY_PULSE_ON : RELAY_PULSE_OFF;
  579. relayToggle(relayID, true, false);
  580. }
  581. );
  582. #if defined(ITEAD_SONOFF_IFAN02)
  583. apiRegister(MQTT_TOPIC_SPEED,
  584. [relayID](char * buffer, size_t len) {
  585. snprintf(buffer, len, "%u", getSpeed());
  586. },
  587. [relayID](const char * payload) {
  588. setSpeed(atoi(payload));
  589. }
  590. );
  591. #endif
  592. }
  593. }
  594. #endif // API_SUPPORT
  595. //------------------------------------------------------------------------------
  596. // MQTT
  597. //------------------------------------------------------------------------------
  598. #if MQTT_SUPPORT
  599. void relayMQTT(unsigned char id) {
  600. if (id >= _relays.size()) return;
  601. // Send state topic
  602. if (_relays[id].report) {
  603. _relays[id].report = false;
  604. mqttSend(MQTT_TOPIC_RELAY, id, _relays[id].current_status ? RELAY_MQTT_ON : RELAY_MQTT_OFF);
  605. }
  606. // Check group topic
  607. if (_relays[id].group_report) {
  608. _relays[id].group_report = false;
  609. String t = getSetting("mqttGroup", id, "");
  610. if (t.length() > 0) {
  611. bool status = relayStatus(id);
  612. if (getSetting("mqttGroupInv", id, 0).toInt() == 1) status = !status;
  613. mqttSendRaw(t.c_str(), status ? RELAY_MQTT_ON : RELAY_MQTT_OFF);
  614. }
  615. }
  616. // Send speed for IFAN02
  617. #if defined (ITEAD_SONOFF_IFAN02)
  618. char buffer[5];
  619. snprintf(buffer, sizeof(buffer), "%u", getSpeed());
  620. mqttSend(MQTT_TOPIC_SPEED, buffer);
  621. #endif
  622. }
  623. void relayMQTT() {
  624. for (unsigned int id=0; id < _relays.size(); id++) {
  625. mqttSend(MQTT_TOPIC_RELAY, id, _relays[id].current_status ? RELAY_MQTT_ON : RELAY_MQTT_OFF);
  626. }
  627. }
  628. void relayStatusWrap(unsigned char id, unsigned char value, bool is_group_topic) {
  629. switch (value) {
  630. case 0:
  631. relayStatus(id, false, mqttForward(), !is_group_topic);
  632. break;
  633. case 1:
  634. relayStatus(id, true, mqttForward(), !is_group_topic);
  635. break;
  636. case 2:
  637. relayToggle(id, true, true);
  638. break;
  639. default:
  640. _relays[id].report = true;
  641. relayMQTT(id);
  642. break;
  643. }
  644. }
  645. void relayMQTTCallback(unsigned int type, const char * topic, const char * payload) {
  646. if (type == MQTT_CONNECT_EVENT) {
  647. // Send status on connect
  648. #if (HEARTBEAT_MODE == HEARTBEAT_NONE) or (not HEARTBEAT_REPORT_RELAY)
  649. relayMQTT();
  650. #endif
  651. // Subscribe to own /set topic
  652. char relay_topic[strlen(MQTT_TOPIC_RELAY) + 3];
  653. snprintf_P(relay_topic, sizeof(relay_topic), PSTR("%s/+"), MQTT_TOPIC_RELAY);
  654. mqttSubscribe(relay_topic);
  655. // Subscribe to pulse topic
  656. char pulse_topic[strlen(MQTT_TOPIC_PULSE) + 3];
  657. snprintf_P(pulse_topic, sizeof(pulse_topic), PSTR("%s/+"), MQTT_TOPIC_PULSE);
  658. mqttSubscribe(pulse_topic);
  659. #if defined(ITEAD_SONOFF_IFAN02)
  660. mqttSubscribe(MQTT_TOPIC_SPEED);
  661. #endif
  662. // Subscribe to group topics
  663. for (unsigned int i=0; i < _relays.size(); i++) {
  664. String t = getSetting("mqttGroup", i, "");
  665. if (t.length() > 0) mqttSubscribeRaw(t.c_str());
  666. }
  667. }
  668. if (type == MQTT_MESSAGE_EVENT) {
  669. String t = mqttMagnitude((char *) topic);
  670. // magnitude is relay/#/pulse
  671. if (t.startsWith(MQTT_TOPIC_PULSE)) {
  672. unsigned int id = t.substring(strlen(MQTT_TOPIC_PULSE)+1).toInt();
  673. if (id >= relayCount()) {
  674. DEBUG_MSG_P(PSTR("[RELAY] Wrong relayID (%d)\n"), id);
  675. return;
  676. }
  677. unsigned long pulse = 1000 * String(payload).toFloat();
  678. if (0 == pulse) return;
  679. if (RELAY_PULSE_NONE != _relays[id].pulse) {
  680. DEBUG_MSG_P(PSTR("[RELAY] Overriding relay #%d pulse settings\n"), id);
  681. }
  682. _relays[id].pulse_ms = pulse;
  683. _relays[id].pulse = relayStatus(id) ? RELAY_PULSE_ON : RELAY_PULSE_OFF;
  684. relayToggle(id, true, false);
  685. return;
  686. }
  687. // magnitude is relay/#
  688. if (t.startsWith(MQTT_TOPIC_RELAY)) {
  689. // Get relay ID
  690. unsigned int id = t.substring(strlen(MQTT_TOPIC_RELAY)+1).toInt();
  691. if (id >= relayCount()) {
  692. DEBUG_MSG_P(PSTR("[RELAY] Wrong relayID (%d)\n"), id);
  693. return;
  694. }
  695. // Get value
  696. unsigned char value = relayParsePayload(payload);
  697. if (value == 0xFF) return;
  698. relayStatusWrap(id, value, false);
  699. return;
  700. }
  701. // Check group topics
  702. for (unsigned int i=0; i < _relays.size(); i++) {
  703. String t = getSetting("mqttGroup", i, "");
  704. if ((t.length() > 0) && t.equals(topic)) {
  705. unsigned char value = relayParsePayload(payload);
  706. if (value == 0xFF) return;
  707. if (value < 2) {
  708. if (getSetting("mqttGroupInv", i, 0).toInt() == 1) {
  709. value = 1 - value;
  710. }
  711. }
  712. DEBUG_MSG_P(PSTR("[RELAY] Matched group topic for relayID %d\n"), i);
  713. relayStatusWrap(i, value, true);
  714. }
  715. }
  716. // Itead Sonoff IFAN02
  717. #if defined (ITEAD_SONOFF_IFAN02)
  718. if (t.startsWith(MQTT_TOPIC_SPEED)) {
  719. setSpeed(atoi(payload));
  720. }
  721. #endif
  722. }
  723. if (type == MQTT_DISCONNECT_EVENT) {
  724. for (unsigned int i=0; i < _relays.size(); i++){
  725. int reaction = getSetting("relayOnDisc", i, 0).toInt();
  726. if (1 == reaction) { // switch relay OFF
  727. DEBUG_MSG_P(PSTR("[RELAY] Reset relay (%d) due to MQTT disconnection\n"), i);
  728. relayStatusWrap(i, false, false);
  729. } else if(2 == reaction) { // switch relay ON
  730. DEBUG_MSG_P(PSTR("[RELAY] Set relay (%d) due to MQTT disconnection\n"), i);
  731. relayStatusWrap(i, true, false);
  732. }
  733. }
  734. }
  735. }
  736. void relaySetupMQTT() {
  737. mqttRegister(relayMQTTCallback);
  738. }
  739. #endif
  740. //------------------------------------------------------------------------------
  741. // Settings
  742. //------------------------------------------------------------------------------
  743. #if TERMINAL_SUPPORT
  744. void _relayInitCommands() {
  745. terminalRegisterCommand(F("RELAY"), [](Embedis* e) {
  746. if (e->argc < 2) {
  747. terminalError(F("Wrong arguments"));
  748. return;
  749. }
  750. int id = String(e->argv[1]).toInt();
  751. if (id >= relayCount()) {
  752. DEBUG_MSG_P(PSTR("-ERROR: Wrong relayID (%d)\n"), id);
  753. return;
  754. }
  755. if (e->argc > 2) {
  756. int value = String(e->argv[2]).toInt();
  757. if (value == 2) {
  758. relayToggle(id);
  759. } else {
  760. relayStatus(id, value == 1);
  761. }
  762. }
  763. DEBUG_MSG_P(PSTR("Status: %s\n"), _relays[id].target_status ? "true" : "false");
  764. if (_relays[id].pulse != RELAY_PULSE_NONE) {
  765. DEBUG_MSG_P(PSTR("Pulse: %s\n"), (_relays[id].pulse == RELAY_PULSE_ON) ? "ON" : "OFF");
  766. DEBUG_MSG_P(PSTR("Pulse time: %d\n"), _relays[id].pulse_ms);
  767. }
  768. terminalOK();
  769. });
  770. }
  771. #endif // TERMINAL_SUPPORT
  772. //------------------------------------------------------------------------------
  773. // Setup
  774. //------------------------------------------------------------------------------
  775. void _relayLoop() {
  776. _relayProcess(false);
  777. _relayProcess(true);
  778. }
  779. void relaySetup() {
  780. // Ad-hoc relays
  781. #if RELAY1_PIN != GPIO_NONE
  782. _relays.push_back((relay_t) { RELAY1_PIN, RELAY1_TYPE, RELAY1_RESET_PIN, RELAY1_DELAY_ON, RELAY1_DELAY_OFF });
  783. #endif
  784. #if RELAY2_PIN != GPIO_NONE
  785. _relays.push_back((relay_t) { RELAY2_PIN, RELAY2_TYPE, RELAY2_RESET_PIN, RELAY2_DELAY_ON, RELAY2_DELAY_OFF });
  786. #endif
  787. #if RELAY3_PIN != GPIO_NONE
  788. _relays.push_back((relay_t) { RELAY3_PIN, RELAY3_TYPE, RELAY3_RESET_PIN, RELAY3_DELAY_ON, RELAY3_DELAY_OFF });
  789. #endif
  790. #if RELAY4_PIN != GPIO_NONE
  791. _relays.push_back((relay_t) { RELAY4_PIN, RELAY4_TYPE, RELAY4_RESET_PIN, RELAY4_DELAY_ON, RELAY4_DELAY_OFF });
  792. #endif
  793. #if RELAY5_PIN != GPIO_NONE
  794. _relays.push_back((relay_t) { RELAY5_PIN, RELAY5_TYPE, RELAY5_RESET_PIN, RELAY5_DELAY_ON, RELAY5_DELAY_OFF });
  795. #endif
  796. #if RELAY6_PIN != GPIO_NONE
  797. _relays.push_back((relay_t) { RELAY6_PIN, RELAY6_TYPE, RELAY6_RESET_PIN, RELAY6_DELAY_ON, RELAY6_DELAY_OFF });
  798. #endif
  799. #if RELAY7_PIN != GPIO_NONE
  800. _relays.push_back((relay_t) { RELAY7_PIN, RELAY7_TYPE, RELAY7_RESET_PIN, RELAY7_DELAY_ON, RELAY7_DELAY_OFF });
  801. #endif
  802. #if RELAY8_PIN != GPIO_NONE
  803. _relays.push_back((relay_t) { RELAY8_PIN, RELAY8_TYPE, RELAY8_RESET_PIN, RELAY8_DELAY_ON, RELAY8_DELAY_OFF });
  804. #endif
  805. // Dummy relays for AI Light, Magic Home LED Controller, H801, Sonoff Dual and Sonoff RF Bridge
  806. // No delay_on or off for these devices to easily allow having more than
  807. // 8 channels. This behaviour will be recovered with v2.
  808. for (unsigned char i=0; i < DUMMY_RELAY_COUNT; i++) {
  809. _relays.push_back((relay_t) {GPIO_NONE, RELAY_TYPE_NORMAL, 0, 0, 0});
  810. }
  811. _relayBackwards();
  812. _relayConfigure();
  813. _relayBoot();
  814. _relayLoop();
  815. #if WEB_SUPPORT
  816. relaySetupWS();
  817. #endif
  818. #if API_SUPPORT
  819. relaySetupAPI();
  820. #endif
  821. #if MQTT_SUPPORT
  822. relaySetupMQTT();
  823. #endif
  824. #if TERMINAL_SUPPORT
  825. _relayInitCommands();
  826. #endif
  827. // Main callbacks
  828. espurnaRegisterLoop(_relayLoop);
  829. espurnaRegisterReload(_relayConfigure);
  830. DEBUG_MSG_P(PSTR("[RELAY] Number of relays: %d\n"), _relays.size());
  831. }