Fork of the espurna firmware for `mhsw` switches
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1104 lines
33 KiB

  1. /*
  2. RELAY MODULE
  3. Copyright (C) 2016-2018 by Xose Pérez <xose dot perez at gmail dot com>
  4. */
  5. #include <EEPROM_Rotate.h>
  6. #include <Ticker.h>
  7. #include <ArduinoJson.h>
  8. #include <vector>
  9. #include <functional>
  10. typedef struct {
  11. // Configuration variables
  12. unsigned char pin; // GPIO pin for the relay
  13. unsigned char type; // RELAY_TYPE_NORMAL, RELAY_TYPE_INVERSE, RELAY_TYPE_LATCHED or RELAY_TYPE_LATCHED_INVERSE
  14. unsigned char reset_pin; // GPIO to reset the relay if RELAY_TYPE_LATCHED
  15. unsigned long delay_on; // Delay to turn relay ON
  16. unsigned long delay_off; // Delay to turn relay OFF
  17. unsigned char pulse; // RELAY_PULSE_NONE, RELAY_PULSE_OFF or RELAY_PULSE_ON
  18. unsigned long pulse_ms; // Pulse length in millis
  19. // Status variables
  20. bool current_status; // Holds the current (physical) status of the relay
  21. bool target_status; // Holds the target status
  22. unsigned long fw_start; // Flood window start time
  23. unsigned char fw_count; // Number of changes within the current flood window
  24. unsigned long change_time; // Scheduled time to change
  25. bool report; // Whether to report to own topic
  26. bool group_report; // Whether to report to group topic
  27. // Helping objects
  28. Ticker pulseTicker; // Holds the pulse back timer
  29. } relay_t;
  30. std::vector<relay_t> _relays;
  31. bool _relayRecursive = false;
  32. Ticker _relaySaveTicker;
  33. // -----------------------------------------------------------------------------
  34. // RELAY PROVIDERS
  35. // -----------------------------------------------------------------------------
  36. void _relayProviderStatus(unsigned char id, bool status) {
  37. // Check relay ID
  38. if (id >= _relays.size()) return;
  39. // Store new current status
  40. _relays[id].current_status = status;
  41. #if RELAY_PROVIDER == RELAY_PROVIDER_RFBRIDGE
  42. rfbStatus(id, status);
  43. #endif
  44. #if RELAY_PROVIDER == RELAY_PROVIDER_DUAL
  45. // Calculate mask
  46. unsigned char mask=0;
  47. for (unsigned char i=0; i<_relays.size(); i++) {
  48. if (_relays[i].current_status) mask = mask + (1 << i);
  49. }
  50. // Send it to F330
  51. Serial.flush();
  52. Serial.write(0xA0);
  53. Serial.write(0x04);
  54. Serial.write(mask);
  55. Serial.write(0xA1);
  56. Serial.flush();
  57. #endif
  58. #if RELAY_PROVIDER == RELAY_PROVIDER_STM
  59. Serial.flush();
  60. Serial.write(0xA0);
  61. Serial.write(id + 1);
  62. Serial.write(status);
  63. Serial.write(0xA1 + status + id);
  64. Serial.flush();
  65. #endif
  66. #if RELAY_PROVIDER == RELAY_PROVIDER_LIGHT
  67. // Real relays
  68. uint8_t physical = _relays.size() - DUMMY_RELAY_COUNT;
  69. // Support for a mixed of dummy and real relays
  70. // Reference: https://github.com/xoseperez/espurna/issues/1305
  71. if (id >= physical) {
  72. // If the number of dummy relays matches the number of light channels
  73. // assume each relay controls one channel.
  74. // If the number of dummy relays is the number of channels plus 1
  75. // assume the first one controls all the channels and
  76. // the rest one channel each.
  77. // Otherwise every dummy relay controls all channels.
  78. if (DUMMY_RELAY_COUNT == lightChannels()) {
  79. lightState(id-physical, status);
  80. lightState(true);
  81. } else if (DUMMY_RELAY_COUNT == (lightChannels() + 1u)) {
  82. if (id == physical) {
  83. lightState(status);
  84. } else {
  85. lightState(id-1-physical, status);
  86. }
  87. } else {
  88. lightState(status);
  89. }
  90. lightUpdate(true, true);
  91. return;
  92. }
  93. #endif
  94. #if (RELAY_PROVIDER == RELAY_PROVIDER_RELAY) || (RELAY_PROVIDER == RELAY_PROVIDER_LIGHT)
  95. // If this is a light, all dummy relays have already been processed above
  96. // we reach here if the user has toggled a physical relay
  97. if (_relays[id].type == RELAY_TYPE_NORMAL) {
  98. digitalWrite(_relays[id].pin, status);
  99. } else if (_relays[id].type == RELAY_TYPE_INVERSE) {
  100. digitalWrite(_relays[id].pin, !status);
  101. } else if (_relays[id].type == RELAY_TYPE_LATCHED || _relays[id].type == RELAY_TYPE_LATCHED_INVERSE) {
  102. bool pulse = RELAY_TYPE_LATCHED ? HIGH : LOW;
  103. digitalWrite(_relays[id].pin, !pulse);
  104. if (GPIO_NONE != _relays[id].reset_pin) digitalWrite(_relays[id].reset_pin, !pulse);
  105. if (status || (GPIO_NONE == _relays[id].reset_pin)) {
  106. digitalWrite(_relays[id].pin, pulse);
  107. } else {
  108. digitalWrite(_relays[id].reset_pin, pulse);
  109. }
  110. nice_delay(RELAY_LATCHING_PULSE);
  111. digitalWrite(_relays[id].pin, !pulse);
  112. if (GPIO_NONE != _relays[id].reset_pin) digitalWrite(_relays[id].reset_pin, !pulse);
  113. }
  114. #endif
  115. }
  116. /**
  117. * Walks the relay vector processing only those relays
  118. * that have to change to the requested mode
  119. * @bool mode Requested mode
  120. */
  121. void _relayProcess(bool mode) {
  122. unsigned long current_time = millis();
  123. for (unsigned char id = 0; id < _relays.size(); id++) {
  124. bool target = _relays[id].target_status;
  125. // Only process the relays we have to change
  126. if (target == _relays[id].current_status) continue;
  127. // Only process the relays we have change to the requested mode
  128. if (target != mode) continue;
  129. // Only process if the change_time has arrived
  130. if (current_time < _relays[id].change_time) continue;
  131. DEBUG_MSG_P(PSTR("[RELAY] #%d set to %s\n"), id, target ? "ON" : "OFF");
  132. // Call the provider to perform the action
  133. _relayProviderStatus(id, target);
  134. // Send to Broker
  135. #if BROKER_SUPPORT
  136. brokerPublish(MQTT_TOPIC_RELAY, id, target ? "1" : "0");
  137. #endif
  138. // Send MQTT
  139. #if MQTT_SUPPORT
  140. relayMQTT(id);
  141. #endif
  142. if (!_relayRecursive) {
  143. relayPulse(id);
  144. // We will trigger a commit only if
  145. // we care about current relay status on boot
  146. unsigned char boot_mode = getSetting("relayBoot", id, RELAY_BOOT_MODE).toInt();
  147. bool do_commit = ((RELAY_BOOT_SAME == boot_mode) || (RELAY_BOOT_TOGGLE == boot_mode));
  148. _relaySaveTicker.once_ms(RELAY_SAVE_DELAY, relaySave, do_commit);
  149. #if WEB_SUPPORT
  150. wsSend(_relayWebSocketUpdate);
  151. #endif
  152. }
  153. #if DOMOTICZ_SUPPORT
  154. domoticzSendRelay(id);
  155. #endif
  156. #if INFLUXDB_SUPPORT
  157. relayInfluxDB(id);
  158. #endif
  159. #if THINGSPEAK_SUPPORT
  160. tspkEnqueueRelay(id, target);
  161. tspkFlush();
  162. #endif
  163. // Flag relay-based LEDs to update status
  164. #if LED_SUPPORT
  165. ledUpdate(true);
  166. #endif
  167. _relays[id].report = false;
  168. _relays[id].group_report = false;
  169. }
  170. }
  171. #if defined(ITEAD_SONOFF_IFAN02)
  172. unsigned char _relay_ifan02_speeds[] = {0, 1, 3, 5};
  173. unsigned char getSpeed() {
  174. unsigned char speed =
  175. (_relays[1].target_status ? 1 : 0) +
  176. (_relays[2].target_status ? 2 : 0) +
  177. (_relays[3].target_status ? 4 : 0);
  178. for (unsigned char i=0; i<4; i++) {
  179. if (_relay_ifan02_speeds[i] == speed) return i;
  180. }
  181. return 0;
  182. }
  183. void setSpeed(unsigned char speed) {
  184. if ((0 <= speed) & (speed <= 3)) {
  185. if (getSpeed() == speed) return;
  186. unsigned char states = _relay_ifan02_speeds[speed];
  187. for (unsigned char i=0; i<3; i++) {
  188. relayStatus(i+1, states & 1 == 1);
  189. states >>= 1;
  190. }
  191. }
  192. }
  193. #endif
  194. // -----------------------------------------------------------------------------
  195. // RELAY
  196. // -----------------------------------------------------------------------------
  197. void relayPulse(unsigned char id) {
  198. _relays[id].pulseTicker.detach();
  199. byte mode = _relays[id].pulse;
  200. if (mode == RELAY_PULSE_NONE) return;
  201. unsigned long ms = _relays[id].pulse_ms;
  202. if (ms == 0) return;
  203. bool status = relayStatus(id);
  204. bool pulseStatus = (mode == RELAY_PULSE_ON);
  205. if (pulseStatus != status) {
  206. DEBUG_MSG_P(PSTR("[RELAY] Scheduling relay #%d back in %lums (pulse)\n"), id, ms);
  207. _relays[id].pulseTicker.once_ms(ms, relayToggle, id);
  208. // Reconfigure after dynamic pulse
  209. _relays[id].pulse = getSetting("relayPulse", id, RELAY_PULSE_MODE).toInt();
  210. _relays[id].pulse_ms = 1000 * getSetting("relayTime", id, RELAY_PULSE_MODE).toFloat();
  211. }
  212. }
  213. bool relayStatus(unsigned char id, bool status, bool report, bool group_report) {
  214. if (id >= _relays.size()) return false;
  215. bool changed = false;
  216. if (_relays[id].current_status == status) {
  217. if (_relays[id].target_status != status) {
  218. DEBUG_MSG_P(PSTR("[RELAY] #%d scheduled change cancelled\n"), id);
  219. _relays[id].target_status = status;
  220. _relays[id].report = false;
  221. _relays[id].group_report = false;
  222. changed = true;
  223. }
  224. // For RFBridge, keep sending the message even if the status is already the required
  225. #if RELAY_PROVIDER == RELAY_PROVIDER_RFBRIDGE
  226. rfbStatus(id, status);
  227. #endif
  228. // Update the pulse counter if the relay is already in the non-normal state (#454)
  229. relayPulse(id);
  230. } else {
  231. unsigned long current_time = millis();
  232. unsigned long fw_end = _relays[id].fw_start + 1000 * RELAY_FLOOD_WINDOW;
  233. unsigned long delay = status ? _relays[id].delay_on : _relays[id].delay_off;
  234. _relays[id].fw_count++;
  235. _relays[id].change_time = current_time + delay;
  236. // If current_time is off-limits the floodWindow...
  237. if (current_time < _relays[id].fw_start || fw_end <= current_time) {
  238. // We reset the floodWindow
  239. _relays[id].fw_start = current_time;
  240. _relays[id].fw_count = 1;
  241. // If current_time is in the floodWindow and there have been too many requests...
  242. } else if (_relays[id].fw_count >= RELAY_FLOOD_CHANGES) {
  243. // We schedule the changes to the end of the floodWindow
  244. // unless it's already delayed beyond that point
  245. if (fw_end - delay > current_time) {
  246. _relays[id].change_time = fw_end;
  247. }
  248. }
  249. _relays[id].target_status = status;
  250. if (report) _relays[id].report = true;
  251. if (group_report) _relays[id].group_report = true;
  252. relaySync(id);
  253. DEBUG_MSG_P(PSTR("[RELAY] #%d scheduled %s in %u ms\n"),
  254. id, status ? "ON" : "OFF",
  255. (_relays[id].change_time - current_time));
  256. changed = true;
  257. }
  258. return changed;
  259. }
  260. bool relayStatus(unsigned char id, bool status) {
  261. return relayStatus(id, status, true, true);
  262. }
  263. bool relayStatus(unsigned char id) {
  264. // Check relay ID
  265. if (id >= _relays.size()) return false;
  266. // Get status from storage
  267. return _relays[id].current_status;
  268. }
  269. void relaySync(unsigned char id) {
  270. // No sync if none or only one relay
  271. if (_relays.size() < 2) return;
  272. // Do not go on if we are comming from a previous sync
  273. if (_relayRecursive) return;
  274. // Flag sync mode
  275. _relayRecursive = true;
  276. byte relaySync = getSetting("relaySync", RELAY_SYNC).toInt();
  277. bool status = _relays[id].target_status;
  278. // If RELAY_SYNC_SAME all relays should have the same state
  279. if (relaySync == RELAY_SYNC_SAME) {
  280. for (unsigned short i=0; i<_relays.size(); i++) {
  281. if (i != id) relayStatus(i, status);
  282. }
  283. // If NONE_OR_ONE or ONE and setting ON we should set OFF all the others
  284. } else if (status) {
  285. if (relaySync != RELAY_SYNC_ANY) {
  286. for (unsigned short i=0; i<_relays.size(); i++) {
  287. if (i != id) relayStatus(i, false);
  288. }
  289. }
  290. // If ONLY_ONE and setting OFF we should set ON the other one
  291. } else {
  292. if (relaySync == RELAY_SYNC_ONE) {
  293. unsigned char i = (id + 1) % _relays.size();
  294. relayStatus(i, true);
  295. }
  296. }
  297. // Unflag sync mode
  298. _relayRecursive = false;
  299. }
  300. void relaySave(bool do_commit) {
  301. // Relay status is stored in a single byte
  302. // This means that, atm,
  303. // we are only storing the status of the first 8 relays.
  304. unsigned char bit = 1;
  305. unsigned char mask = 0;
  306. unsigned char count = _relays.size();
  307. if (count > 8) count = 8;
  308. for (unsigned int i=0; i < count; i++) {
  309. if (relayStatus(i)) mask += bit;
  310. bit += bit;
  311. }
  312. EEPROMr.write(EEPROM_RELAY_STATUS, mask);
  313. DEBUG_MSG_P(PSTR("[RELAY] Setting relay mask: %d\n"), mask);
  314. // The 'do_commit' flag controls wether we are commiting this change or not.
  315. // It is useful to set it to 'false' if the relay change triggering the
  316. // save involves a relay whose boot mode is independent from current mode,
  317. // thus storing the last relay value is not absolutely necessary.
  318. // Nevertheless, we store the value in the EEPROM buffer so it will be written
  319. // on the next commit.
  320. if (do_commit) {
  321. // We are actually enqueuing the commit so it will be
  322. // executed on the main loop, in case this is called from a callback
  323. eepromCommit();
  324. }
  325. }
  326. void relaySave() {
  327. relaySave(true);
  328. }
  329. void relayToggle(unsigned char id, bool report, bool group_report) {
  330. if (id >= _relays.size()) return;
  331. relayStatus(id, !relayStatus(id), report, group_report);
  332. }
  333. void relayToggle(unsigned char id) {
  334. relayToggle(id, true, true);
  335. }
  336. unsigned char relayCount() {
  337. return _relays.size();
  338. }
  339. unsigned char relayParsePayload(const char * payload) {
  340. // Payload could be "OFF", "ON", "TOGGLE"
  341. // or its number equivalents: 0, 1 or 2
  342. if (payload[0] == '0') return 0;
  343. if (payload[0] == '1') return 1;
  344. if (payload[0] == '2') return 2;
  345. // trim payload
  346. char * p = ltrim((char *)payload);
  347. // to lower
  348. unsigned int l = strlen(p);
  349. if (l>6) l=6;
  350. for (unsigned char i=0; i<l; i++) {
  351. p[i] = tolower(p[i]);
  352. }
  353. unsigned int value = 0xFF;
  354. if (strcmp(p, "off") == 0) {
  355. value = 0;
  356. } else if (strcmp(p, "on") == 0) {
  357. value = 1;
  358. } else if (strcmp(p, "toggle") == 0) {
  359. value = 2;
  360. } else if (strcmp(p, "query") == 0) {
  361. value = 3;
  362. }
  363. return value;
  364. }
  365. // BACKWARDS COMPATIBILITY
  366. void _relayBackwards() {
  367. byte relayMode = getSetting("relayMode", RELAY_BOOT_MODE).toInt();
  368. byte relayPulseMode = getSetting("relayPulseMode", RELAY_PULSE_MODE).toInt();
  369. float relayPulseTime = getSetting("relayPulseTime", RELAY_PULSE_TIME).toFloat();
  370. if (relayPulseMode == RELAY_PULSE_NONE) relayPulseTime = 0;
  371. for (unsigned int i=0; i<_relays.size(); i++) {
  372. if (!hasSetting("relayBoot", i)) setSetting("relayBoot", i, relayMode);
  373. if (!hasSetting("relayPulse", i)) setSetting("relayPulse", i, relayPulseMode);
  374. if (!hasSetting("relayTime", i)) setSetting("relayTime", i, relayPulseTime);
  375. }
  376. delSetting("relayMode");
  377. delSetting("relayPulseMode");
  378. delSetting("relayPulseTime");
  379. }
  380. void _relayBoot() {
  381. _relayRecursive = true;
  382. unsigned char bit = 1;
  383. bool trigger_save = false;
  384. // Get last statuses from EEPROM
  385. unsigned char mask = EEPROMr.read(EEPROM_RELAY_STATUS);
  386. DEBUG_MSG_P(PSTR("[RELAY] Retrieving mask: %d\n"), mask);
  387. // Walk the relays
  388. bool status;
  389. for (unsigned int i=0; i<_relays.size(); i++) {
  390. unsigned char boot_mode = getSetting("relayBoot", i, RELAY_BOOT_MODE).toInt();
  391. DEBUG_MSG_P(PSTR("[RELAY] Relay #%d boot mode %d\n"), i, boot_mode);
  392. status = false;
  393. switch (boot_mode) {
  394. case RELAY_BOOT_SAME:
  395. if (i < 8) {
  396. status = ((mask & bit) == bit);
  397. }
  398. break;
  399. case RELAY_BOOT_TOGGLE:
  400. if (i < 8) {
  401. status = ((mask & bit) != bit);
  402. mask ^= bit;
  403. trigger_save = true;
  404. }
  405. break;
  406. case RELAY_BOOT_ON:
  407. status = true;
  408. break;
  409. case RELAY_BOOT_OFF:
  410. default:
  411. break;
  412. }
  413. _relays[i].current_status = !status;
  414. _relays[i].target_status = status;
  415. #if RELAY_PROVIDER == RELAY_PROVIDER_STM
  416. _relays[i].change_time = millis() + 3000 + 1000 * i;
  417. #else
  418. _relays[i].change_time = millis();
  419. #endif
  420. bit <<= 1;
  421. }
  422. // Save if there is any relay in the RELAY_BOOT_TOGGLE mode
  423. if (trigger_save) {
  424. EEPROMr.write(EEPROM_RELAY_STATUS, mask);
  425. eepromCommit();
  426. }
  427. _relayRecursive = false;
  428. }
  429. void _relayConfigure() {
  430. for (unsigned int i=0; i<_relays.size(); i++) {
  431. if (GPIO_NONE == _relays[i].pin) continue;
  432. pinMode(_relays[i].pin, OUTPUT);
  433. if (GPIO_NONE != _relays[i].reset_pin) {
  434. pinMode(_relays[i].reset_pin, OUTPUT);
  435. }
  436. if (_relays[i].type == RELAY_TYPE_INVERSE) {
  437. //set to high to block short opening of relay
  438. digitalWrite(_relays[i].pin, HIGH);
  439. }
  440. _relays[i].pulse = getSetting("relayPulse", i, RELAY_PULSE_MODE).toInt();
  441. _relays[i].pulse_ms = 1000 * getSetting("relayTime", i, RELAY_PULSE_MODE).toFloat();
  442. }
  443. }
  444. //------------------------------------------------------------------------------
  445. // WEBSOCKETS
  446. //------------------------------------------------------------------------------
  447. #if WEB_SUPPORT
  448. bool _relayWebSocketOnReceive(const char * key, JsonVariant& value) {
  449. return (strncmp(key, "relay", 5) == 0);
  450. }
  451. void _relayWebSocketUpdate(JsonObject& root) {
  452. JsonArray& relay = root.createNestedArray("relayStatus");
  453. for (unsigned char i=0; i<relayCount(); i++) {
  454. relay.add(_relays[i].target_status);
  455. }
  456. }
  457. void _relayWebSocketOnStart(JsonObject& root) {
  458. if (relayCount() == 0) return;
  459. // Statuses
  460. _relayWebSocketUpdate(root);
  461. // Number of physical relays
  462. #if (RELAY_PROVIDER == RELAY_PROVIDER_LIGHT)
  463. uint8_t physical = _relays.size() - DUMMY_RELAY_COUNT;
  464. #endif
  465. // Configuration
  466. JsonArray& config = root.createNestedArray("relayConfig");
  467. for (unsigned char i=0; i<relayCount(); i++) {
  468. JsonObject& line = config.createNestedObject();
  469. if (GPIO_NONE == _relays[i].pin) {
  470. #if (RELAY_PROVIDER == RELAY_PROVIDER_LIGHT)
  471. if (i >= physical) {
  472. if (DUMMY_RELAY_COUNT == lightChannels()) {
  473. line["gpio"] = String("CH") + String(i-physical);
  474. } else if (DUMMY_RELAY_COUNT == (lightChannels() + 1u)) {
  475. if (physical == i) {
  476. line["gpio"] = String("Light");
  477. } else {
  478. line["gpio"] = String("CH") + String(i-1-physical);
  479. }
  480. } else {
  481. line["gpio"] = String("Light");
  482. }
  483. } else {
  484. line["gpio"] = String("?");
  485. }
  486. #else
  487. line["gpio"] = String("SW") + String(i);
  488. #endif
  489. } else {
  490. line["gpio"] = String("GPIO") + String(_relays[i].pin);
  491. }
  492. line["type"] = _relays[i].type;
  493. line["reset"] = _relays[i].reset_pin;
  494. line["boot"] = getSetting("relayBoot", i, RELAY_BOOT_MODE).toInt();
  495. line["pulse"] = _relays[i].pulse;
  496. line["pulse_ms"] = _relays[i].pulse_ms / 1000.0;
  497. #if MQTT_SUPPORT
  498. line["group"] = getSetting("mqttGroup", i, "");
  499. line["group_inv"] = getSetting("mqttGroupInv", i, 0).toInt();
  500. line["on_disc"] = getSetting("relayOnDisc", i, 0).toInt();
  501. #endif
  502. }
  503. if (relayCount() > 1) {
  504. root["multirelayVisible"] = 1;
  505. root["relaySync"] = getSetting("relaySync", RELAY_SYNC);
  506. }
  507. root["relayVisible"] = 1;
  508. }
  509. void _relayWebSocketOnAction(uint32_t client_id, const char * action, JsonObject& data) {
  510. if (strcmp(action, "relay") != 0) return;
  511. if (data.containsKey("status")) {
  512. unsigned char value = relayParsePayload(data["status"]);
  513. if (value == 3) {
  514. wsSend(_relayWebSocketUpdate);
  515. } else if (value < 3) {
  516. unsigned int relayID = 0;
  517. if (data.containsKey("id")) {
  518. String value = data["id"];
  519. relayID = value.toInt();
  520. }
  521. // Action to perform
  522. if (value == 0) {
  523. relayStatus(relayID, false);
  524. } else if (value == 1) {
  525. relayStatus(relayID, true);
  526. } else if (value == 2) {
  527. relayToggle(relayID);
  528. }
  529. }
  530. }
  531. }
  532. void relaySetupWS() {
  533. wsOnSendRegister(_relayWebSocketOnStart);
  534. wsOnActionRegister(_relayWebSocketOnAction);
  535. wsOnReceiveRegister(_relayWebSocketOnReceive);
  536. }
  537. #endif // WEB_SUPPORT
  538. //------------------------------------------------------------------------------
  539. // REST API
  540. //------------------------------------------------------------------------------
  541. #if API_SUPPORT
  542. void relaySetupAPI() {
  543. char key[20];
  544. // API entry points (protected with apikey)
  545. for (unsigned int relayID=0; relayID<relayCount(); relayID++) {
  546. snprintf_P(key, sizeof(key), PSTR("%s/%d"), MQTT_TOPIC_RELAY, relayID);
  547. apiRegister(key,
  548. [relayID](char * buffer, size_t len) {
  549. snprintf_P(buffer, len, PSTR("%d"), _relays[relayID].target_status ? 1 : 0);
  550. },
  551. [relayID](const char * payload) {
  552. unsigned char value = relayParsePayload(payload);
  553. if (value == 0xFF) {
  554. DEBUG_MSG_P(PSTR("[RELAY] Wrong payload (%s)\n"), payload);
  555. return;
  556. }
  557. if (value == 0) {
  558. relayStatus(relayID, false);
  559. } else if (value == 1) {
  560. relayStatus(relayID, true);
  561. } else if (value == 2) {
  562. relayToggle(relayID);
  563. }
  564. }
  565. );
  566. snprintf_P(key, sizeof(key), PSTR("%s/%d"), MQTT_TOPIC_PULSE, relayID);
  567. apiRegister(key,
  568. [relayID](char * buffer, size_t len) {
  569. dtostrf((double) _relays[relayID].pulse_ms / 1000, 1-len, 3, buffer);
  570. },
  571. [relayID](const char * payload) {
  572. unsigned long pulse = 1000 * String(payload).toFloat();
  573. if (0 == pulse) return;
  574. if (RELAY_PULSE_NONE != _relays[relayID].pulse) {
  575. DEBUG_MSG_P(PSTR("[RELAY] Overriding relay #%d pulse settings\n"), relayID);
  576. }
  577. _relays[relayID].pulse_ms = pulse;
  578. _relays[relayID].pulse = relayStatus(relayID) ? RELAY_PULSE_ON : RELAY_PULSE_OFF;
  579. relayToggle(relayID, true, false);
  580. }
  581. );
  582. #if defined(ITEAD_SONOFF_IFAN02)
  583. apiRegister(MQTT_TOPIC_SPEED,
  584. [relayID](char * buffer, size_t len) {
  585. snprintf(buffer, len, "%u", getSpeed());
  586. },
  587. [relayID](const char * payload) {
  588. setSpeed(atoi(payload));
  589. }
  590. );
  591. #endif
  592. }
  593. }
  594. #endif // API_SUPPORT
  595. //------------------------------------------------------------------------------
  596. // MQTT
  597. //------------------------------------------------------------------------------
  598. #if MQTT_SUPPORT
  599. void relayMQTT(unsigned char id) {
  600. if (id >= _relays.size()) return;
  601. // Send state topic
  602. if (_relays[id].report) {
  603. _relays[id].report = false;
  604. mqttSend(MQTT_TOPIC_RELAY, id, _relays[id].current_status ? RELAY_MQTT_ON : RELAY_MQTT_OFF);
  605. }
  606. // Check group topic
  607. if (_relays[id].group_report) {
  608. _relays[id].group_report = false;
  609. String t = getSetting("mqttGroup", id, "");
  610. if (t.length() > 0) {
  611. bool status = relayStatus(id);
  612. if (getSetting("mqttGroupInv", id, 0).toInt() == 1) status = !status;
  613. mqttSendRaw(t.c_str(), status ? RELAY_MQTT_ON : RELAY_MQTT_OFF);
  614. }
  615. }
  616. // Send speed for IFAN02
  617. #if defined (ITEAD_SONOFF_IFAN02)
  618. char buffer[5];
  619. snprintf(buffer, sizeof(buffer), "%u", getSpeed());
  620. mqttSend(MQTT_TOPIC_SPEED, buffer);
  621. #endif
  622. }
  623. void relayMQTT() {
  624. for (unsigned int id=0; id < _relays.size(); id++) {
  625. mqttSend(MQTT_TOPIC_RELAY, id, _relays[id].current_status ? RELAY_MQTT_ON : RELAY_MQTT_OFF);
  626. }
  627. }
  628. void relayStatusWrap(unsigned char id, unsigned char value, bool is_group_topic) {
  629. switch (value) {
  630. case 0:
  631. relayStatus(id, false, mqttForward(), !is_group_topic);
  632. break;
  633. case 1:
  634. relayStatus(id, true, mqttForward(), !is_group_topic);
  635. break;
  636. case 2:
  637. relayToggle(id, true, true);
  638. break;
  639. default:
  640. _relays[id].report = true;
  641. relayMQTT(id);
  642. break;
  643. }
  644. }
  645. void relayMQTTCallback(unsigned int type, const char * topic, const char * payload) {
  646. if (type == MQTT_CONNECT_EVENT) {
  647. // Send status on connect
  648. #if (HEARTBEAT_MODE == HEARTBEAT_NONE) or (not HEARTBEAT_REPORT_RELAY)
  649. relayMQTT();
  650. #endif
  651. // Subscribe to own /set topic
  652. char relay_topic[strlen(MQTT_TOPIC_RELAY) + 3];
  653. snprintf_P(relay_topic, sizeof(relay_topic), PSTR("%s/+"), MQTT_TOPIC_RELAY);
  654. mqttSubscribe(relay_topic);
  655. // Subscribe to pulse topic
  656. char pulse_topic[strlen(MQTT_TOPIC_PULSE) + 3];
  657. snprintf_P(pulse_topic, sizeof(pulse_topic), PSTR("%s/+"), MQTT_TOPIC_PULSE);
  658. mqttSubscribe(pulse_topic);
  659. #if defined(ITEAD_SONOFF_IFAN02)
  660. mqttSubscribe(MQTT_TOPIC_SPEED);
  661. #endif
  662. // Subscribe to group topics
  663. for (unsigned int i=0; i < _relays.size(); i++) {
  664. String t = getSetting("mqttGroup", i, "");
  665. if (t.length() > 0) mqttSubscribeRaw(t.c_str());
  666. }
  667. }
  668. if (type == MQTT_MESSAGE_EVENT) {
  669. String t = mqttMagnitude((char *) topic);
  670. // magnitude is relay/#/pulse
  671. if (t.startsWith(MQTT_TOPIC_PULSE)) {
  672. unsigned int id = t.substring(strlen(MQTT_TOPIC_PULSE)+1).toInt();
  673. if (id >= relayCount()) {
  674. DEBUG_MSG_P(PSTR("[RELAY] Wrong relayID (%d)\n"), id);
  675. return;
  676. }
  677. unsigned long pulse = 1000 * String(payload).toFloat();
  678. if (0 == pulse) return;
  679. if (RELAY_PULSE_NONE != _relays[id].pulse) {
  680. DEBUG_MSG_P(PSTR("[RELAY] Overriding relay #%d pulse settings\n"), id);
  681. }
  682. _relays[id].pulse_ms = pulse;
  683. _relays[id].pulse = relayStatus(id) ? RELAY_PULSE_ON : RELAY_PULSE_OFF;
  684. relayToggle(id, true, false);
  685. return;
  686. }
  687. // magnitude is relay/#
  688. if (t.startsWith(MQTT_TOPIC_RELAY)) {
  689. // Get relay ID
  690. unsigned int id = t.substring(strlen(MQTT_TOPIC_RELAY)+1).toInt();
  691. if (id >= relayCount()) {
  692. DEBUG_MSG_P(PSTR("[RELAY] Wrong relayID (%d)\n"), id);
  693. return;
  694. }
  695. // Get value
  696. unsigned char value = relayParsePayload(payload);
  697. if (value == 0xFF) return;
  698. relayStatusWrap(id, value, false);
  699. return;
  700. }
  701. // Check group topics
  702. for (unsigned int i=0; i < _relays.size(); i++) {
  703. String t = getSetting("mqttGroup", i, "");
  704. if ((t.length() > 0) && t.equals(topic)) {
  705. unsigned char value = relayParsePayload(payload);
  706. if (value == 0xFF) return;
  707. if (value < 2) {
  708. if (getSetting("mqttGroupInv", i, 0).toInt() == 1) {
  709. value = 1 - value;
  710. }
  711. }
  712. DEBUG_MSG_P(PSTR("[RELAY] Matched group topic for relayID %d\n"), i);
  713. relayStatusWrap(i, value, true);
  714. }
  715. }
  716. // Itead Sonoff IFAN02
  717. #if defined (ITEAD_SONOFF_IFAN02)
  718. if (t.startsWith(MQTT_TOPIC_SPEED)) {
  719. setSpeed(atoi(payload));
  720. }
  721. #endif
  722. }
  723. if (type == MQTT_DISCONNECT_EVENT) {
  724. for (unsigned int i=0; i < _relays.size(); i++){
  725. int reaction = getSetting("relayOnDisc", i, 0).toInt();
  726. if (1 == reaction) { // switch relay OFF
  727. DEBUG_MSG_P(PSTR("[RELAY] Reset relay (%d) due to MQTT disconnection\n"), i);
  728. relayStatusWrap(i, false, false);
  729. } else if(2 == reaction) { // switch relay ON
  730. DEBUG_MSG_P(PSTR("[RELAY] Set relay (%d) due to MQTT disconnection\n"), i);
  731. relayStatusWrap(i, true, false);
  732. }
  733. }
  734. }
  735. }
  736. void relaySetupMQTT() {
  737. mqttRegister(relayMQTTCallback);
  738. }
  739. #endif
  740. //------------------------------------------------------------------------------
  741. // InfluxDB
  742. //------------------------------------------------------------------------------
  743. #if INFLUXDB_SUPPORT
  744. void relayInfluxDB(unsigned char id) {
  745. if (id >= _relays.size()) return;
  746. idbSend(MQTT_TOPIC_RELAY, id, relayStatus(id) ? "1" : "0");
  747. }
  748. #endif
  749. //------------------------------------------------------------------------------
  750. // Settings
  751. //------------------------------------------------------------------------------
  752. #if TERMINAL_SUPPORT
  753. void _relayInitCommands() {
  754. settingsRegisterCommand(F("RELAY"), [](Embedis* e) {
  755. if (e->argc < 2) {
  756. DEBUG_MSG_P(PSTR("-ERROR: Wrong arguments\n"));
  757. return;
  758. }
  759. int id = String(e->argv[1]).toInt();
  760. if (id >= relayCount()) {
  761. DEBUG_MSG_P(PSTR("-ERROR: Wrong relayID (%d)\n"), id);
  762. return;
  763. }
  764. if (e->argc > 2) {
  765. int value = String(e->argv[2]).toInt();
  766. if (value == 2) {
  767. relayToggle(id);
  768. } else {
  769. relayStatus(id, value == 1);
  770. }
  771. }
  772. DEBUG_MSG_P(PSTR("Status: %s\n"), _relays[id].target_status ? "true" : "false");
  773. if (_relays[id].pulse != RELAY_PULSE_NONE) {
  774. DEBUG_MSG_P(PSTR("Pulse: %s\n"), (_relays[id].pulse == RELAY_PULSE_ON) ? "ON" : "OFF");
  775. DEBUG_MSG_P(PSTR("Pulse time: %d\n"), _relays[id].pulse_ms);
  776. }
  777. DEBUG_MSG_P(PSTR("+OK\n"));
  778. });
  779. }
  780. #endif // TERMINAL_SUPPORT
  781. //------------------------------------------------------------------------------
  782. // Setup
  783. //------------------------------------------------------------------------------
  784. void _relayLoop() {
  785. _relayProcess(false);
  786. _relayProcess(true);
  787. }
  788. void relaySetup() {
  789. // Ad-hoc relays
  790. #if RELAY1_PIN != GPIO_NONE
  791. _relays.push_back((relay_t) { RELAY1_PIN, RELAY1_TYPE, RELAY1_RESET_PIN, RELAY1_DELAY_ON, RELAY1_DELAY_OFF });
  792. #endif
  793. #if RELAY2_PIN != GPIO_NONE
  794. _relays.push_back((relay_t) { RELAY2_PIN, RELAY2_TYPE, RELAY2_RESET_PIN, RELAY2_DELAY_ON, RELAY2_DELAY_OFF });
  795. #endif
  796. #if RELAY3_PIN != GPIO_NONE
  797. _relays.push_back((relay_t) { RELAY3_PIN, RELAY3_TYPE, RELAY3_RESET_PIN, RELAY3_DELAY_ON, RELAY3_DELAY_OFF });
  798. #endif
  799. #if RELAY4_PIN != GPIO_NONE
  800. _relays.push_back((relay_t) { RELAY4_PIN, RELAY4_TYPE, RELAY4_RESET_PIN, RELAY4_DELAY_ON, RELAY4_DELAY_OFF });
  801. #endif
  802. #if RELAY5_PIN != GPIO_NONE
  803. _relays.push_back((relay_t) { RELAY5_PIN, RELAY5_TYPE, RELAY5_RESET_PIN, RELAY5_DELAY_ON, RELAY5_DELAY_OFF });
  804. #endif
  805. #if RELAY6_PIN != GPIO_NONE
  806. _relays.push_back((relay_t) { RELAY6_PIN, RELAY6_TYPE, RELAY6_RESET_PIN, RELAY6_DELAY_ON, RELAY6_DELAY_OFF });
  807. #endif
  808. #if RELAY7_PIN != GPIO_NONE
  809. _relays.push_back((relay_t) { RELAY7_PIN, RELAY7_TYPE, RELAY7_RESET_PIN, RELAY7_DELAY_ON, RELAY7_DELAY_OFF });
  810. #endif
  811. #if RELAY8_PIN != GPIO_NONE
  812. _relays.push_back((relay_t) { RELAY8_PIN, RELAY8_TYPE, RELAY8_RESET_PIN, RELAY8_DELAY_ON, RELAY8_DELAY_OFF });
  813. #endif
  814. // Dummy relays for AI Light, Magic Home LED Controller, H801, Sonoff Dual and Sonoff RF Bridge
  815. // No delay_on or off for these devices to easily allow having more than
  816. // 8 channels. This behaviour will be recovered with v2.
  817. for (unsigned char i=0; i < DUMMY_RELAY_COUNT; i++) {
  818. _relays.push_back((relay_t) {GPIO_NONE, RELAY_TYPE_NORMAL, 0, 0, 0});
  819. }
  820. _relayBackwards();
  821. _relayConfigure();
  822. _relayBoot();
  823. _relayLoop();
  824. #if WEB_SUPPORT
  825. relaySetupWS();
  826. #endif
  827. #if API_SUPPORT
  828. relaySetupAPI();
  829. #endif
  830. #if MQTT_SUPPORT
  831. relaySetupMQTT();
  832. #endif
  833. #if TERMINAL_SUPPORT
  834. _relayInitCommands();
  835. #endif
  836. // Main callbacks
  837. espurnaRegisterLoop(_relayLoop);
  838. espurnaRegisterReload(_relayConfigure);
  839. DEBUG_MSG_P(PSTR("[RELAY] Number of relays: %d\n"), _relays.size());
  840. }