Fork of the espurna firmware for `mhsw` switches
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

489 lines
13 KiB

  1. /*
  2. ITEAD RF BRIDGE MODULE
  3. Copyright (C) 2017 by Xose Pérez <xose dot perez at gmail dot com>
  4. */
  5. #ifdef ITEAD_SONOFF_RFBRIDGE
  6. #include <vector>
  7. #include <Ticker.h>
  8. // -----------------------------------------------------------------------------
  9. // DEFINITIONS
  10. // -----------------------------------------------------------------------------
  11. #define RF_MESSAGE_SIZE 9
  12. #define RF_MAX_MESSAGE_SIZE (112+4)
  13. #define RF_CODE_START 0xAA
  14. #define RF_CODE_ACK 0xA0
  15. #define RF_CODE_LEARN 0xA1
  16. #define RF_CODE_LEARN_KO 0xA2
  17. #define RF_CODE_LEARN_OK 0xA3
  18. #define RF_CODE_RFIN 0xA4
  19. #define RF_CODE_RFOUT 0xA5
  20. #define RF_CODE_SNIFFING_ON 0xA6
  21. #define RF_CODE_SNIFFING_OFF 0xA7
  22. #define RF_CODE_RFOUT_NEW 0xA8
  23. #define RF_CODE_LEARN_NEW 0xA9
  24. #define RF_CODE_LEARN_KO_NEW 0xAA
  25. #define RF_CODE_LEARN_OK_NEW 0xAB
  26. #define RF_CODE_RFOUT_BUCKET 0xB0
  27. #define RF_CODE_STOP 0x55
  28. // -----------------------------------------------------------------------------
  29. // GLOBALS TO THE MODULE
  30. // -----------------------------------------------------------------------------
  31. unsigned char _uartbuf[RF_MESSAGE_SIZE+3] = {0};
  32. unsigned char _uartpos = 0;
  33. unsigned char _learnId = 0;
  34. bool _learnStatus = true;
  35. bool _rfbin = false;
  36. typedef struct {
  37. byte code[RF_MESSAGE_SIZE];
  38. byte times;
  39. } rfb_message_t;
  40. std::vector<rfb_message_t> _rfb_message_queue;
  41. Ticker _rfbTicker;
  42. // -----------------------------------------------------------------------------
  43. // PRIVATES
  44. // -----------------------------------------------------------------------------
  45. /*
  46. From an hexa char array ("A220EE...") to a byte array (half the size)
  47. */
  48. static int _rfbToArray(const char * in, byte * out, int length = RF_MESSAGE_SIZE * 2) {
  49. int n = strlen(in);
  50. if (n > RF_MAX_MESSAGE_SIZE*2 || (length > 0 && n != length)) return 0;
  51. char tmp[3] = {0,0,0};
  52. n /= 2;
  53. for (unsigned char p = 0; p<n; p++) {
  54. memcpy(tmp, &in[p*2], 2);
  55. out[p] = strtol(tmp, NULL, 16);
  56. }
  57. return n;
  58. }
  59. /*
  60. From a byte array to an hexa char array ("A220EE...", double the size)
  61. */
  62. static bool _rfbToChar(byte * in, char * out, int n = RF_MESSAGE_SIZE) {
  63. for (unsigned char p = 0; p<n; p++) {
  64. sprintf_P(&out[p*2], PSTR("%02X"), in[p]);
  65. }
  66. return true;
  67. }
  68. void _rfbWebSocketOnSend(JsonObject& root) {
  69. root["rfbVisible"] = 1;
  70. root["rfbCount"] = relayCount();
  71. JsonArray& rfb = root.createNestedArray("rfb");
  72. for (byte id=0; id<relayCount(); id++) {
  73. for (byte status=0; status<2; status++) {
  74. JsonObject& node = rfb.createNestedObject();
  75. node["id"] = id;
  76. node["status"] = status;
  77. node["data"] = rfbRetrieve(id, status == 1);
  78. }
  79. }
  80. }
  81. void _rfbWebSocketOnAction(const char * action, JsonObject& data) {
  82. if (strcmp(action, "rfblearn") == 0) rfbLearn(data["id"], data["status"]);
  83. if (strcmp(action, "rfbforget") == 0) rfbForget(data["id"], data["status"]);
  84. if (strcmp(action, "rfbsend") == 0) rfbStore(data["id"], data["status"], data["data"].as<const char*>());
  85. }
  86. void _rfbAck() {
  87. DEBUG_MSG_P(PSTR("[RFBRIDGE] Sending ACK\n"));
  88. Serial.println();
  89. Serial.write(RF_CODE_START);
  90. Serial.write(RF_CODE_ACK);
  91. Serial.write(RF_CODE_STOP);
  92. Serial.flush();
  93. Serial.println();
  94. }
  95. void _rfbLearn() {
  96. DEBUG_MSG_P(PSTR("[RFBRIDGE] Sending LEARN\n"));
  97. Serial.println();
  98. Serial.write(RF_CODE_START);
  99. Serial.write(RF_CODE_LEARN);
  100. Serial.write(RF_CODE_STOP);
  101. Serial.flush();
  102. Serial.println();
  103. #if WEB_SUPPORT
  104. char buffer[100];
  105. snprintf_P(buffer, sizeof(buffer), PSTR("{\"action\": \"rfbLearn\", \"data\":{\"id\": %d, \"status\": %d}}"), _learnId, _learnStatus ? 1 : 0);
  106. wsSend(buffer);
  107. #endif
  108. }
  109. void _rfbSendRaw(const byte *message, const unsigned char n = RF_MESSAGE_SIZE) {
  110. for (unsigned char j=0; j<n; j++) {
  111. Serial.write(message[j]);
  112. }
  113. }
  114. void _rfbSend(byte * message) {
  115. Serial.println();
  116. Serial.write(RF_CODE_START);
  117. Serial.write(RF_CODE_RFOUT);
  118. _rfbSendRaw(message);
  119. Serial.write(RF_CODE_STOP);
  120. Serial.flush();
  121. Serial.println();
  122. }
  123. void _rfbSend() {
  124. // Check if there is something in the queue
  125. if (_rfb_message_queue.size() == 0) return;
  126. // Pop the first element
  127. rfb_message_t message = _rfb_message_queue.front();
  128. _rfb_message_queue.erase(_rfb_message_queue.begin());
  129. // Send the message
  130. _rfbSend(message.code);
  131. // If it should be further sent, push it to the stack again
  132. if (message.times > 1) {
  133. message.times = message.times - 1;
  134. _rfb_message_queue.push_back(message);
  135. }
  136. // if there are still messages in the queue...
  137. if (_rfb_message_queue.size() > 0) {
  138. _rfbTicker.once_ms(RF_SEND_DELAY, _rfbSend);
  139. }
  140. }
  141. void _rfbSend(byte * code, int times) {
  142. char buffer[RF_MESSAGE_SIZE];
  143. _rfbToChar(code, buffer);
  144. DEBUG_MSG_P(PSTR("[RFBRIDGE] Sending MESSAGE '%s' %d time(s)\n"), buffer, times);
  145. rfb_message_t message;
  146. memcpy(message.code, code, RF_MESSAGE_SIZE);
  147. message.times = times;
  148. _rfb_message_queue.push_back(message);
  149. _rfbSend();
  150. }
  151. #ifdef RF_RAW_SUPPORT
  152. void _rfbSendRawOnce(byte *code, int length) {
  153. char buffer[length*2];
  154. _rfbToChar(code, buffer, length);
  155. DEBUG_MSG_P(PSTR("[RFBRIDGE] Sending raw MESSAGE '%s'\n"), buffer);
  156. _rfbSendRaw(code, length);
  157. }
  158. #endif
  159. bool _rfbMatch(char * code, unsigned char& relayID, unsigned char& value) {
  160. if (strlen(code) != 18) return false;
  161. bool found = false;
  162. String compareto = String(&code[12]);
  163. compareto.toUpperCase();
  164. DEBUG_MSG_P(PSTR("[RFBRIDGE] Trying to match code %s\n"), compareto.c_str());
  165. for (unsigned char i=0; i<relayCount(); i++) {
  166. String code_on = rfbRetrieve(i, true);
  167. if (code_on.length() && code_on.endsWith(compareto)) {
  168. DEBUG_MSG_P(PSTR("[RFBRIDGE] Match ON code for relay %d\n"), i);
  169. value = 1;
  170. found = true;
  171. }
  172. String code_off = rfbRetrieve(i, false);
  173. if (code_off.length() && code_off.endsWith(compareto)) {
  174. DEBUG_MSG_P(PSTR("[RFBRIDGE] Match OFF code for relay %d\n"), i);
  175. if (found) value = 2;
  176. found = true;
  177. }
  178. if (found) {
  179. relayID = i;
  180. return true;
  181. }
  182. }
  183. return false;
  184. }
  185. void _rfbDecode() {
  186. static unsigned long last = 0;
  187. if (millis() - last < RF_RECEIVE_DELAY) return;
  188. last = millis();
  189. byte action = _uartbuf[0];
  190. char buffer[RF_MESSAGE_SIZE * 2 + 1] = {0};
  191. DEBUG_MSG_P(PSTR("[RFBRIDGE] Action 0x%02X\n"), action);
  192. if (action == RF_CODE_LEARN_KO) {
  193. _rfbAck();
  194. DEBUG_MSG_P(PSTR("[RFBRIDGE] Learn timeout\n"));
  195. #if WEB_SUPPORT
  196. wsSend_P(PSTR("{\"action\": \"rfbTimeout\"}"));
  197. #endif
  198. }
  199. if (action == RF_CODE_LEARN_OK || action == RF_CODE_RFIN) {
  200. #if MQTT_SUPPORT
  201. _rfbToChar(&_uartbuf[1], buffer);
  202. mqttSend(MQTT_TOPIC_RFIN, buffer);
  203. #endif
  204. _rfbAck();
  205. }
  206. if (action == RF_CODE_LEARN_OK) {
  207. DEBUG_MSG_P(PSTR("[RFBRIDGE] Learn success\n"));
  208. rfbStore(_learnId, _learnStatus, buffer);
  209. // Websocket update
  210. #if WEB_SUPPORT
  211. char wsb[100];
  212. snprintf_P(wsb, sizeof(wsb), PSTR("{\"rfb\":[{\"id\": %d, \"status\": %d, \"data\": \"%s\"}]}"), _learnId, _learnStatus ? 1 : 0, buffer);
  213. wsSend(wsb);
  214. #endif
  215. }
  216. if (action == RF_CODE_RFIN) {
  217. DEBUG_MSG_P(PSTR("[RFBRIDGE] Forward message '%s'\n"), buffer);
  218. // Look for the code
  219. unsigned char id;
  220. unsigned char status = 0;
  221. if (_rfbMatch(buffer, id, status)) {
  222. _rfbin = true;
  223. if (status == 2) {
  224. relayToggle(id);
  225. } else {
  226. relayStatus(id, status == 1);
  227. }
  228. }
  229. }
  230. }
  231. void _rfbReceive() {
  232. static bool receiving = false;
  233. while (Serial.available()) {
  234. yield();
  235. byte c = Serial.read();
  236. //DEBUG_MSG_P(PSTR("[RFBRIDGE] Received 0x%02X\n"), c);
  237. if (receiving) {
  238. if (c == RF_CODE_STOP) {
  239. _rfbDecode();
  240. receiving = false;
  241. } else {
  242. _uartbuf[_uartpos++] = c;
  243. }
  244. } else if (c == RF_CODE_START) {
  245. _uartpos = 0;
  246. receiving = true;
  247. }
  248. }
  249. }
  250. bool _rfbCompare(const char * code1, const char * code2) {
  251. return strcmp(&code1[12], &code2[12]) == 0;
  252. }
  253. bool _rfbSameOnOff(unsigned char id) {
  254. return _rfbCompare(rfbRetrieve(id, true).c_str(), rfbRetrieve(id, false).c_str());
  255. }
  256. #if MQTT_SUPPORT
  257. void _rfbMqttCallback(unsigned int type, const char * topic, const char * payload) {
  258. if (type == MQTT_CONNECT_EVENT) {
  259. char buffer[strlen(MQTT_TOPIC_RFLEARN) + 3];
  260. snprintf_P(buffer, sizeof(buffer), PSTR("%s/+"), MQTT_TOPIC_RFLEARN);
  261. mqttSubscribe(buffer);
  262. mqttSubscribe(MQTT_TOPIC_RFOUT);
  263. #ifdef RF_RAW_SUPPORT
  264. mqttSubscribe(MQTT_TOPIC_RFRAW);
  265. #endif
  266. }
  267. if (type == MQTT_MESSAGE_EVENT) {
  268. // Match topic
  269. String t = mqttSubtopic((char *) topic);
  270. // Check if should go into learn mode
  271. if (t.startsWith(MQTT_TOPIC_RFLEARN)) {
  272. _learnId = t.substring(strlen(MQTT_TOPIC_RFLEARN)+1).toInt();
  273. if (_learnId >= relayCount()) {
  274. DEBUG_MSG_P(PSTR("[RFBRIDGE] Wrong learnID (%d)\n"), _learnId);
  275. return;
  276. }
  277. _learnStatus = (char)payload[0] != '0';
  278. _rfbLearn();
  279. }
  280. #ifdef RF_RAW_SUPPORT
  281. bool isRFOut = t.equals(MQTT_TOPIC_RFOUT);
  282. bool isRFRaw = !isRFOut && t.equals(MQTT_TOPIC_RFRAW);
  283. if (isRFOut || isRFRaw) {
  284. byte message[RF_MAX_MESSAGE_SIZE];
  285. #else
  286. if (t.equals(MQTT_TOPIC_RFOUT)) {
  287. byte message[RF_MESSAGE_SIZE];
  288. #endif
  289. // The payload may be a code in HEX format ([0-9A-Z]{18}) or
  290. // the code comma the number of times to transmit it.
  291. char * tok = strtok((char *) payload, ",");
  292. // Check if a switch is linked to that message
  293. unsigned char id;
  294. unsigned char status = 0;
  295. if (_rfbMatch(tok, id, status)) {
  296. if (status == 2) {
  297. relayToggle(id);
  298. } else {
  299. relayStatus(id, status == 1);
  300. }
  301. return;
  302. }
  303. #ifdef RF_RAW_SUPPORT
  304. int len = _rfbToArray(tok, message, 0);
  305. if (len > 0 && (isRFRaw || len != RF_MESSAGE_SIZE)) {
  306. _rfbSendRawOnce(message, len);
  307. } else {
  308. #else
  309. if (_rfbToArray(tok, message)) {
  310. #endif
  311. tok = strtok(NULL, ",");
  312. byte times = (tok != NULL) ? atoi(tok) : 1;
  313. _rfbSend(message, times);
  314. }
  315. }
  316. }
  317. }
  318. #endif
  319. // -----------------------------------------------------------------------------
  320. // PUBLIC
  321. // -----------------------------------------------------------------------------
  322. void rfbStore(unsigned char id, bool status, const char * code) {
  323. DEBUG_MSG_P(PSTR("[RFBRIDGE] Storing %d-%s => '%s'\n"), id, status ? "ON" : "OFF", code);
  324. char key[8] = {0};
  325. snprintf_P(key, sizeof(key), PSTR("rfb%s%d"), status ? "ON" : "OFF", id);
  326. setSetting(key, code);
  327. }
  328. String rfbRetrieve(unsigned char id, bool status) {
  329. char key[8] = {0};
  330. snprintf_P(key, sizeof(key), PSTR("rfb%s%d"), status ? "ON" : "OFF", id);
  331. return getSetting(key);
  332. }
  333. void rfbStatus(unsigned char id, bool status) {
  334. String value = rfbRetrieve(id, status);
  335. if (value.length() > 0) {
  336. bool same = _rfbSameOnOff(id);
  337. #ifdef RF_RAW_SUPPORT
  338. byte message[RF_MAX_MESSAGE_SIZE];
  339. int len = _rfbToArray(value.c_str(), message, 0);
  340. if (len == RF_MESSAGE_SIZE && // probably a standard msg
  341. (message[0] != RF_CODE_START || // raw would start with 0xAA
  342. message[1] != RF_CODE_RFOUT_BUCKET || // followed by 0xB0,
  343. message[2] + 4 != len || // needs a valid length,
  344. message[len-1] != RF_CODE_STOP)) { // and finish with 0x55
  345. #else
  346. byte message[RF_MESSAGE_SIZE];
  347. _rfbToArray(value.c_str(), message);
  348. #endif
  349. unsigned char times = RF_SEND_TIMES;
  350. if (same) times = _rfbin ? 0 : 1;
  351. _rfbSend(message, times);
  352. #ifdef RF_RAW_SUPPORT
  353. } else {
  354. _rfbSendRawOnce(message, len); // send a raw message
  355. }
  356. #endif
  357. }
  358. }
  359. void rfbLearn(unsigned char id, bool status) {
  360. _learnId = id;
  361. _learnStatus = status;
  362. _rfbLearn();
  363. }
  364. void rfbForget(unsigned char id, bool status) {
  365. char key[8] = {0};
  366. snprintf_P(key, sizeof(key), PSTR("rfb%s%d"), status ? "ON" : "OFF", id);
  367. delSetting(key);
  368. // Websocket update
  369. #if WEB_SUPPORT
  370. char wsb[100];
  371. snprintf_P(wsb, sizeof(wsb), PSTR("{\"rfb\":[{\"id\": %d, \"status\": %d, \"data\": \"\"}]}"), id, status ? 1 : 0);
  372. wsSend(wsb);
  373. #endif
  374. }
  375. // -----------------------------------------------------------------------------
  376. // SETUP & LOOP
  377. // -----------------------------------------------------------------------------
  378. void rfbSetup() {
  379. #if MQTT_SUPPORT
  380. mqttRegister(_rfbMqttCallback);
  381. #endif
  382. #if WEB_SUPPORT
  383. wsOnSendRegister(_rfbWebSocketOnSend);
  384. wsOnActionRegister(_rfbWebSocketOnAction);
  385. #endif
  386. }
  387. void rfbLoop() {
  388. _rfbReceive();
  389. }
  390. #endif