Fork of the espurna firmware for `mhsw` switches
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1094 lines
33 KiB

6 years ago
6 years ago
6 years ago
7 years ago
7 years ago
7 years ago
7 years ago
7 years ago
7 years ago
7 years ago
7 years ago
  1. /*
  2. LIGHT MODULE
  3. Copyright (C) 2016-2018 by Xose Pérez <xose dot perez at gmail dot com>
  4. */
  5. #if LIGHT_PROVIDER != LIGHT_PROVIDER_NONE
  6. #include <Ticker.h>
  7. #include <ArduinoJson.h>
  8. #include <vector>
  9. extern "C" {
  10. #include "libs/fs_math.h"
  11. }
  12. #if LIGHT_PROVIDER == LIGHT_PROVIDER_DIMMER
  13. #define PWM_CHANNEL_NUM_MAX LIGHT_CHANNELS
  14. extern "C" {
  15. #include "libs/pwm.h"
  16. }
  17. #endif
  18. // -----------------------------------------------------------------------------
  19. Ticker _light_save_ticker;
  20. Ticker _light_transition_ticker;
  21. typedef struct {
  22. unsigned char pin;
  23. bool reverse;
  24. bool state;
  25. unsigned char inputValue; // value that has been inputted
  26. unsigned char value; // normalized value including brightness
  27. unsigned char shadow; // represented value
  28. double current; // transition value
  29. } channel_t;
  30. std::vector<channel_t> _light_channel;
  31. bool _light_state = false;
  32. bool _light_use_transitions = false;
  33. unsigned int _light_transition_time = LIGHT_TRANSITION_TIME;
  34. bool _light_has_color = false;
  35. bool _light_use_white = false;
  36. bool _light_use_cct = false;
  37. bool _light_use_gamma = false;
  38. unsigned long _light_steps_left = 1;
  39. unsigned char _light_brightness = LIGHT_MAX_BRIGHTNESS;
  40. unsigned int _light_mireds = round((LIGHT_COLDWHITE_MIRED+LIGHT_WARMWHITE_MIRED)/2);
  41. #if LIGHT_PROVIDER == LIGHT_PROVIDER_MY92XX
  42. #include <my92xx.h>
  43. my92xx * _my92xx;
  44. ARRAYINIT(unsigned char, _light_channel_map, MY92XX_MAPPING);
  45. #endif
  46. // Gamma Correction lookup table (8 bit)
  47. // TODO: move to PROGMEM
  48. const unsigned char _light_gamma_table[] = {
  49. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  50. 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2,
  51. 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 6, 6,
  52. 6, 7, 7, 7, 7, 8, 8, 8, 9, 9, 9, 10, 10, 11, 11, 11,
  53. 12, 12, 13, 13, 14, 14, 14, 15, 15, 16, 16, 17, 17, 18, 18, 19,
  54. 19, 20, 20, 21, 22, 22, 23, 23, 24, 25, 25, 26, 26, 27, 28, 28,
  55. 29, 30, 30, 31, 32, 33, 33, 34, 35, 35, 36, 37, 38, 39, 39, 40,
  56. 41, 42, 43, 43, 44, 45, 46, 47, 48, 49, 50, 50, 51, 52, 53, 54,
  57. 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 71,
  58. 72, 73, 74, 75, 76, 77, 78, 80, 81, 82, 83, 84, 86, 87, 88, 89,
  59. 91, 92, 93, 94, 96, 97, 98, 100, 101, 102, 104, 105, 106, 108, 109, 110,
  60. 112, 113, 115, 116, 118, 119, 121, 122, 123, 125, 126, 128, 130, 131, 133, 134,
  61. 136, 137, 139, 140, 142, 144, 145, 147, 149, 150, 152, 154, 155, 157, 159, 160,
  62. 162, 164, 166, 167, 169, 171, 173, 175, 176, 178, 180, 182, 184, 186, 187, 189,
  63. 191, 193, 195, 197, 199, 201, 203, 205, 207, 209, 211, 213, 215, 217, 219, 221,
  64. 223, 225, 227, 229, 231, 233, 235, 238, 240, 242, 244, 246, 248, 251, 253, 255
  65. };
  66. // -----------------------------------------------------------------------------
  67. // UTILS
  68. // -----------------------------------------------------------------------------
  69. void _setRGBInputValue(unsigned char red, unsigned char green, unsigned char blue) {
  70. _light_channel[0].inputValue = constrain(red, 0, LIGHT_MAX_VALUE);
  71. _light_channel[1].inputValue = constrain(green, 0, LIGHT_MAX_VALUE);;
  72. _light_channel[2].inputValue = constrain(blue, 0, LIGHT_MAX_VALUE);;
  73. }
  74. void _generateBrightness() {
  75. double brightness = (double) _light_brightness / LIGHT_MAX_BRIGHTNESS;
  76. // Convert RGB to RGBW(W)
  77. if (_light_has_color && _light_use_white) {
  78. // Substract the common part from RGB channels and add it to white channel. So [250,150,50] -> [200,100,0,50]
  79. unsigned char white = std::min(_light_channel[0].inputValue, std::min(_light_channel[1].inputValue, _light_channel[2].inputValue));
  80. for (unsigned int i=0; i < 3; i++) {
  81. _light_channel[i].value = _light_channel[i].inputValue - white;
  82. }
  83. // Split the White Value across 2 White LED Strips.
  84. if (_light_use_cct) {
  85. // This change the range from 153-500 to 0-347 so we get a value between 0 and 1 in the end.
  86. double miredFactor = ((double) _light_mireds - (double) LIGHT_COLDWHITE_MIRED)/((double) LIGHT_WARMWHITE_MIRED - (double) LIGHT_COLDWHITE_MIRED);
  87. // set cold white
  88. _light_channel[3].inputValue = 0;
  89. _light_channel[3].value = round(((double) 1.0 - miredFactor) * white);
  90. // set warm white
  91. _light_channel[4].inputValue = 0;
  92. _light_channel[4].value = round(miredFactor * white);
  93. } else {
  94. _light_channel[3].inputValue = 0;
  95. _light_channel[3].value = white;
  96. }
  97. // Scale up to equal input values. So [250,150,50] -> [200,100,0,50] -> [250, 125, 0, 63]
  98. unsigned char max_in = std::max(_light_channel[0].inputValue, std::max(_light_channel[1].inputValue, _light_channel[2].inputValue));
  99. unsigned char max_out = std::max(std::max(_light_channel[0].value, _light_channel[1].value), std::max(_light_channel[2].value, _light_channel[3].value));
  100. unsigned char channelSize = _light_use_cct ? 5 : 4;
  101. if (_light_use_cct) {
  102. max_out = std::max(max_out, _light_channel[4].value);
  103. }
  104. double factor = (max_out > 0) ? (double) (max_in / max_out) : 0;
  105. for (unsigned char i=0; i < channelSize; i++) {
  106. _light_channel[i].value = round((double) _light_channel[i].value * factor * brightness);
  107. }
  108. // Scale white channel to match brightness
  109. for (unsigned char i=3; i < channelSize; i++) {
  110. _light_channel[i].value = constrain(_light_channel[i].value * LIGHT_WHITE_FACTOR, 0, LIGHT_MAX_BRIGHTNESS);
  111. }
  112. // For the rest of channels, don't apply brightness, it is already in the inputValue
  113. // i should be 4 when RGBW and 5 when RGBWW
  114. for (unsigned char i=channelSize; i < _light_channel.size(); i++) {
  115. _light_channel[i].value = _light_channel[i].inputValue;
  116. }
  117. } else {
  118. // Don't apply brightness, it is already in the target:
  119. for (unsigned char i=0; i < _light_channel.size(); i++) {
  120. if (_light_has_color & (i<3)) {
  121. _light_channel[i].value = _light_channel[i].inputValue * brightness;
  122. } else {
  123. _light_channel[i].value = _light_channel[i].inputValue;
  124. }
  125. }
  126. }
  127. }
  128. // -----------------------------------------------------------------------------
  129. // Input Values
  130. // -----------------------------------------------------------------------------
  131. void _fromLong(unsigned long value, bool brightness) {
  132. if (brightness) {
  133. _setRGBInputValue((value >> 24) & 0xFF, (value >> 16) & 0xFF, (value >> 8) & 0xFF);
  134. _light_brightness = (value & 0xFF) * LIGHT_MAX_BRIGHTNESS / 255;
  135. } else {
  136. _setRGBInputValue((value >> 16) & 0xFF, (value >> 8) & 0xFF, (value) & 0xFF);
  137. }
  138. }
  139. void _fromRGB(const char * rgb) {
  140. char * p = (char *) rgb;
  141. if (strlen(p) == 0) return;
  142. switch (p[0]) {
  143. case '#': // HEX Value
  144. if (_light_has_color) {
  145. ++p;
  146. unsigned long value = strtoul(p, NULL, 16);
  147. // RGBA values are interpreted like RGB + brightness
  148. _fromLong(value, strlen(p) > 7);
  149. }
  150. break;
  151. case 'M': // Mired Value
  152. _fromMireds(atol(p + 1));
  153. break;
  154. case 'K': // Kelvin Value
  155. _fromKelvin(atol(p + 1));
  156. break;
  157. default: // assume decimal values separated by commas
  158. char * tok;
  159. unsigned char count = 0;
  160. unsigned char channels = _light_channel.size();
  161. tok = strtok(p, ",");
  162. while (tok != NULL) {
  163. _light_channel[count].inputValue = atoi(tok);
  164. if (++count == channels) break;
  165. tok = strtok(NULL, ",");
  166. }
  167. // RGB but less than 3 values received, assume it is 0
  168. if (_light_has_color && (count < 3)) {
  169. // check channel 1 and 2:
  170. for (int i = 1; i <= 2; i++) {
  171. if (count < (i+1)) {
  172. _light_channel[i].inputValue = 0;
  173. }
  174. }
  175. }
  176. break;
  177. }
  178. }
  179. // HSV string is expected to be "H,S,V", where:
  180. // 0 <= H <= 360
  181. // 0 <= S <= 100
  182. // 0 <= V <= 100
  183. void _fromHSV(const char * hsv) {
  184. char * ptr = (char *) hsv;
  185. if (strlen(ptr) == 0) return;
  186. if (!_light_has_color) return;
  187. char * tok;
  188. unsigned char count = 0;
  189. unsigned int value[3] = {0};
  190. tok = strtok(ptr, ",");
  191. while (tok != NULL) {
  192. value[count] = atoi(tok);
  193. if (++count == 3) break;
  194. tok = strtok(NULL, ",");
  195. }
  196. if (count != 3) return;
  197. // HSV to RGB transformation -----------------------------------------------
  198. //INPUT: [0,100,57]
  199. //IS: [145,0,0]
  200. //SHOULD: [255,0,0]
  201. double h = (value[0] == 360) ? 0 : (double) value[0] / 60.0;
  202. double f = (h - floor(h));
  203. double s = (double) value[1] / 100.0;
  204. _light_brightness = round((double) value[2] * 2.55); // (255/100)
  205. unsigned char p = round(255 * (1.0 - s));
  206. unsigned char q = round(255 * (1.0 - s * f));
  207. unsigned char t = round(255 * (1.0 - s * (1.0 - f)));
  208. switch (int(h)) {
  209. case 0:
  210. _setRGBInputValue(255, t, p);
  211. break;
  212. case 1:
  213. _setRGBInputValue(q, 255, p);
  214. break;
  215. case 2:
  216. _setRGBInputValue(p, 255, t);
  217. break;
  218. case 3:
  219. _setRGBInputValue(p, q, 255);
  220. break;
  221. case 4:
  222. _setRGBInputValue(t, p, 255);
  223. break;
  224. case 5:
  225. _setRGBInputValue(255, p, q);
  226. break;
  227. default:
  228. _setRGBInputValue(0, 0, 0);
  229. break;
  230. }
  231. }
  232. // Thanks to Sacha Telgenhof for sharing this code in his AiLight library
  233. // https://github.com/stelgenhof/AiLight
  234. void _fromKelvin(unsigned long kelvin) {
  235. if (!_light_has_color) return;
  236. _light_mireds = constrain(round(1000000UL / kelvin), LIGHT_MIN_MIREDS, LIGHT_MAX_MIREDS);
  237. if (_light_use_cct) {
  238. _setRGBInputValue(LIGHT_MAX_VALUE, LIGHT_MAX_VALUE, LIGHT_MAX_VALUE);
  239. return;
  240. }
  241. // Calculate colors
  242. kelvin /= 100;
  243. unsigned int red = (kelvin <= 66)
  244. ? LIGHT_MAX_VALUE
  245. : 329.698727446 * fs_pow((double) (kelvin - 60), -0.1332047592);
  246. unsigned int green = (kelvin <= 66)
  247. ? 99.4708025861 * fs_log(kelvin) - 161.1195681661
  248. : 288.1221695283 * fs_pow((double) kelvin, -0.0755148492);
  249. unsigned int blue = (kelvin >= 66)
  250. ? LIGHT_MAX_VALUE
  251. : ((kelvin <= 19)
  252. ? 0
  253. : 138.5177312231 * fs_log(kelvin - 10) - 305.0447927307);
  254. _setRGBInputValue(red, green, blue);
  255. }
  256. // Color temperature is measured in mireds (kelvin = 1e6/mired)
  257. void _fromMireds(unsigned long mireds) {
  258. unsigned long kelvin = constrain(1000000UL / mireds, 1000, 40000);
  259. _fromKelvin(kelvin);
  260. }
  261. // -----------------------------------------------------------------------------
  262. // Output Values
  263. // -----------------------------------------------------------------------------
  264. void _toRGB(char * rgb, size_t len) {
  265. unsigned long value = 0;
  266. value += _light_channel[0].inputValue;
  267. value <<= 8;
  268. value += _light_channel[1].inputValue;
  269. value <<= 8;
  270. value += _light_channel[2].inputValue;
  271. snprintf_P(rgb, len, PSTR("#%06X"), value);
  272. }
  273. void _toHSV(char * hsv, size_t len) {
  274. double h, s, v;
  275. double brightness = (double) _light_brightness / LIGHT_MAX_BRIGHTNESS;
  276. double r = (double) (_light_channel[0].inputValue * brightness) / 255.0;
  277. double g = (double) (_light_channel[1].inputValue * brightness) / 255.0;
  278. double b = (double) (_light_channel[2].inputValue * brightness) / 255.0;
  279. double min = std::min(r, std::min(g, b));
  280. double max = std::max(r, std::max(g, b));
  281. v = 100.0 * max;
  282. if (v == 0) {
  283. h = s = 0;
  284. } else {
  285. s = 100.0 * (max - min) / max;
  286. if (s == 0) {
  287. h = 0;
  288. } else {
  289. if (max == r) {
  290. if (g >= b) {
  291. h = 0.0 + 60.0 * (g - b) / (max - min);
  292. } else {
  293. h = 360.0 + 60.0 * (g - b) / (max - min);
  294. }
  295. } else if (max == g) {
  296. h = 120.0 + 60.0 * (b - r) / (max - min);
  297. } else {
  298. h = 240.0 + 60.0 * (r - g) / (max - min);
  299. }
  300. }
  301. }
  302. // String
  303. snprintf_P(hsv, len, PSTR("%d,%d,%d"), round(h), round(s), round(v));
  304. }
  305. void _toLong(char * color, size_t len) {
  306. if (!_light_has_color) return;
  307. snprintf_P(color, len, PSTR("%d,%d,%d"),
  308. (int) _light_channel[0].inputValue,
  309. (int) _light_channel[1].inputValue,
  310. (int) _light_channel[2].inputValue
  311. );
  312. }
  313. void _toCSV(char * buffer, size_t len, bool applyBrightness) {
  314. char num[10];
  315. float b = applyBrightness ? (float) _light_brightness / LIGHT_MAX_BRIGHTNESS : 1;
  316. for (unsigned char i=0; i<_light_channel.size(); i++) {
  317. itoa(_light_channel[i].inputValue * b, num, 10);
  318. if (i>0) strncat(buffer, ",", len--);
  319. strncat(buffer, num, len);
  320. len = len - strlen(num);
  321. }
  322. }
  323. // -----------------------------------------------------------------------------
  324. // PROVIDER
  325. // -----------------------------------------------------------------------------
  326. unsigned int _toPWM(unsigned long value, bool gamma, bool reverse) {
  327. value = constrain(value, 0, LIGHT_MAX_VALUE);
  328. if (gamma) value = _light_gamma_table[value];
  329. if (LIGHT_MAX_VALUE != LIGHT_LIMIT_PWM) value = map(value, 0, LIGHT_MAX_VALUE, 0, LIGHT_LIMIT_PWM);
  330. if (reverse) value = LIGHT_LIMIT_PWM - value;
  331. return value;
  332. }
  333. // Returns a PWM value for the given channel ID
  334. unsigned int _toPWM(unsigned char id) {
  335. bool useGamma = _light_use_gamma && _light_has_color && (id < 3);
  336. return _toPWM(_light_channel[id].shadow, useGamma, _light_channel[id].reverse);
  337. }
  338. void _shadow() {
  339. // Update transition ticker
  340. _light_steps_left--;
  341. if (_light_steps_left == 0) _light_transition_ticker.detach();
  342. // Transitions
  343. unsigned char target;
  344. for (unsigned int i=0; i < _light_channel.size(); i++) {
  345. target = _light_state && _light_channel[i].state ? _light_channel[i].value : 0;
  346. if (_light_steps_left == 0) {
  347. _light_channel[i].current = target;
  348. } else {
  349. double difference = (double) (target - _light_channel[i].current) / (_light_steps_left + 1);
  350. _light_channel[i].current = _light_channel[i].current + difference;
  351. }
  352. _light_channel[i].shadow = _light_channel[i].current;
  353. }
  354. }
  355. void _lightProviderUpdate() {
  356. _shadow();
  357. #if LIGHT_PROVIDER == LIGHT_PROVIDER_MY92XX
  358. for (unsigned char i=0; i<_light_channel.size(); i++) {
  359. _my92xx->setChannel(_light_channel_map[i], _toPWM(i));
  360. }
  361. _my92xx->setState(true);
  362. _my92xx->update();
  363. #endif
  364. #if LIGHT_PROVIDER == LIGHT_PROVIDER_DIMMER
  365. for (unsigned int i=0; i < _light_channel.size(); i++) {
  366. pwm_set_duty(_toPWM(i), i);
  367. }
  368. pwm_start();
  369. #endif
  370. }
  371. // -----------------------------------------------------------------------------
  372. // PERSISTANCE
  373. // -----------------------------------------------------------------------------
  374. void _lightColorSave() {
  375. for (unsigned int i=0; i < _light_channel.size(); i++) {
  376. setSetting("ch", i, _light_channel[i].inputValue);
  377. }
  378. setSetting("brightness", _light_brightness);
  379. setSetting("mireds", _light_mireds);
  380. saveSettings();
  381. }
  382. void _lightColorRestore() {
  383. for (unsigned int i=0; i < _light_channel.size(); i++) {
  384. _light_channel[i].inputValue = getSetting("ch", i, i==0 ? 255 : 0).toInt();
  385. }
  386. _light_brightness = getSetting("brightness", LIGHT_MAX_BRIGHTNESS).toInt();
  387. _light_mireds = getSetting("mireds", _light_mireds).toInt();
  388. lightUpdate(false, false);
  389. }
  390. // -----------------------------------------------------------------------------
  391. // MQTT
  392. // -----------------------------------------------------------------------------
  393. #if MQTT_SUPPORT
  394. void _lightMQTTCallback(unsigned int type, const char * topic, const char * payload) {
  395. String mqtt_group_color = getSetting("mqttGroupColor");
  396. if (type == MQTT_CONNECT_EVENT) {
  397. if (_light_has_color) {
  398. mqttSubscribe(MQTT_TOPIC_BRIGHTNESS);
  399. mqttSubscribe(MQTT_TOPIC_MIRED);
  400. mqttSubscribe(MQTT_TOPIC_KELVIN);
  401. mqttSubscribe(MQTT_TOPIC_COLOR_RGB);
  402. mqttSubscribe(MQTT_TOPIC_COLOR_HSV);
  403. }
  404. // Group color
  405. if (mqtt_group_color.length() > 0) mqttSubscribeRaw(mqtt_group_color.c_str());
  406. // Channels
  407. char buffer[strlen(MQTT_TOPIC_CHANNEL) + 3];
  408. snprintf_P(buffer, sizeof(buffer), PSTR("%s/+"), MQTT_TOPIC_CHANNEL);
  409. mqttSubscribe(buffer);
  410. }
  411. if (type == MQTT_MESSAGE_EVENT) {
  412. // Group color
  413. if ((mqtt_group_color.length() > 0) & (mqtt_group_color.equals(topic))) {
  414. lightColor(payload, true);
  415. lightUpdate(true, mqttForward(), false);
  416. return;
  417. }
  418. // Match topic
  419. String t = mqttMagnitude((char *) topic);
  420. // Color temperature in mireds
  421. if (t.equals(MQTT_TOPIC_MIRED)) {
  422. _fromMireds(atol(payload));
  423. lightUpdate(true, mqttForward());
  424. return;
  425. }
  426. // Color temperature in kelvins
  427. if (t.equals(MQTT_TOPIC_KELVIN)) {
  428. _fromKelvin(atol(payload));
  429. lightUpdate(true, mqttForward());
  430. return;
  431. }
  432. // Color
  433. if (t.equals(MQTT_TOPIC_COLOR_RGB)) {
  434. lightColor(payload, true);
  435. lightUpdate(true, mqttForward());
  436. return;
  437. }
  438. if (t.equals(MQTT_TOPIC_COLOR_HSV)) {
  439. lightColor(payload, false);
  440. lightUpdate(true, mqttForward());
  441. return;
  442. }
  443. // Brightness
  444. if (t.equals(MQTT_TOPIC_BRIGHTNESS)) {
  445. _light_brightness = constrain(atoi(payload), 0, LIGHT_MAX_BRIGHTNESS);
  446. lightUpdate(true, mqttForward());
  447. return;
  448. }
  449. // Channel
  450. if (t.startsWith(MQTT_TOPIC_CHANNEL)) {
  451. unsigned int channelID = t.substring(strlen(MQTT_TOPIC_CHANNEL)+1).toInt();
  452. if (channelID >= _light_channel.size()) {
  453. DEBUG_MSG_P(PSTR("[LIGHT] Wrong channelID (%d)\n"), channelID);
  454. return;
  455. }
  456. lightChannel(channelID, atoi(payload));
  457. lightUpdate(true, mqttForward());
  458. return;
  459. }
  460. }
  461. }
  462. void lightMQTT() {
  463. char buffer[20];
  464. if (_light_has_color) {
  465. // Color
  466. if (getSetting("useCSS", LIGHT_USE_CSS).toInt() == 1) {
  467. _toRGB(buffer, sizeof(buffer));
  468. } else {
  469. _toLong(buffer, sizeof(buffer));
  470. }
  471. mqttSend(MQTT_TOPIC_COLOR_RGB, buffer);
  472. _toHSV(buffer, sizeof(buffer));
  473. mqttSend(MQTT_TOPIC_COLOR_HSV, buffer);
  474. // Brightness
  475. snprintf_P(buffer, sizeof(buffer), PSTR("%d"), _light_brightness);
  476. mqttSend(MQTT_TOPIC_BRIGHTNESS, buffer);
  477. // Mireds
  478. snprintf_P(buffer, sizeof(buffer), PSTR("%d"), _light_mireds);
  479. mqttSend(MQTT_TOPIC_MIRED, buffer);
  480. }
  481. // Channels
  482. for (unsigned int i=0; i < _light_channel.size(); i++) {
  483. itoa(_light_channel[i].inputValue, buffer, 10);
  484. mqttSend(MQTT_TOPIC_CHANNEL, i, buffer);
  485. }
  486. }
  487. void lightMQTTGroup() {
  488. String mqtt_group_color = getSetting("mqttGroupColor");
  489. if (mqtt_group_color.length()>0) {
  490. char buffer[20];
  491. _toCSV(buffer, sizeof(buffer), true);
  492. mqttSendRaw(mqtt_group_color.c_str(), buffer);
  493. }
  494. }
  495. #endif
  496. // -----------------------------------------------------------------------------
  497. // Broker
  498. // -----------------------------------------------------------------------------
  499. #if BROKER_SUPPORT
  500. void lightBroker() {
  501. char buffer[10];
  502. for (unsigned int i=0; i < _light_channel.size(); i++) {
  503. itoa(_light_channel[i].inputValue, buffer, 10);
  504. brokerPublish(MQTT_TOPIC_CHANNEL, i, buffer);
  505. }
  506. }
  507. #endif
  508. // -----------------------------------------------------------------------------
  509. // API
  510. // -----------------------------------------------------------------------------
  511. unsigned char lightChannels() {
  512. return _light_channel.size();
  513. }
  514. bool lightHasColor() {
  515. return _light_has_color;
  516. }
  517. void lightUpdate(bool save, bool forward, bool group_forward) {
  518. _generateBrightness();
  519. // Configure color transition
  520. _light_steps_left = _light_use_transitions ? _light_transition_time / LIGHT_TRANSITION_STEP : 1;
  521. _light_transition_ticker.attach_ms(LIGHT_TRANSITION_STEP, _lightProviderUpdate);
  522. // Report channels to local broker
  523. #if BROKER_SUPPORT
  524. lightBroker();
  525. #endif
  526. // Report color & brightness to MQTT broker
  527. #if MQTT_SUPPORT
  528. if (forward) lightMQTT();
  529. if (group_forward) lightMQTTGroup();
  530. #endif
  531. // Report color to WS clients (using current brightness setting)
  532. #if WEB_SUPPORT
  533. wsSend(_lightWebSocketOnSend);
  534. #endif
  535. #if LIGHT_SAVE_ENABLED
  536. // Delay saving to EEPROM 5 seconds to avoid wearing it out unnecessarily
  537. if (save) _light_save_ticker.once(LIGHT_SAVE_DELAY, _lightColorSave);
  538. #endif
  539. };
  540. void lightUpdate(bool save, bool forward) {
  541. lightUpdate(save, forward, true);
  542. }
  543. #if LIGHT_SAVE_ENABLED == 0
  544. void lightSave() {
  545. _lightColorSave();
  546. }
  547. #endif
  548. void lightState(unsigned char i, bool state) {
  549. _light_channel[i].state = state;
  550. }
  551. bool lightState(unsigned char i) {
  552. return _light_channel[i].state;
  553. }
  554. void lightState(bool state) {
  555. _light_state = state;
  556. }
  557. bool lightState() {
  558. return _light_state;
  559. }
  560. void lightColor(const char * color, bool rgb) {
  561. DEBUG_MSG_P(PSTR("[LIGHT] %s: %s\n"), rgb ? "RGB" : "HSV", color);
  562. if (rgb) {
  563. _fromRGB(color);
  564. } else {
  565. _fromHSV(color);
  566. }
  567. }
  568. void lightColor(const char * color) {
  569. lightColor(color, true);
  570. }
  571. void lightColor(unsigned long color) {
  572. _fromLong(color, false);
  573. }
  574. String lightColor(bool rgb) {
  575. char str[12];
  576. if (rgb) {
  577. _toRGB(str, sizeof(str));
  578. } else {
  579. _toHSV(str, sizeof(str));
  580. }
  581. return String(str);
  582. }
  583. String lightColor() {
  584. return lightColor(true);
  585. }
  586. unsigned int lightChannel(unsigned char id) {
  587. if (id <= _light_channel.size()) {
  588. return _light_channel[id].inputValue;
  589. }
  590. return 0;
  591. }
  592. void lightChannel(unsigned char id, unsigned int value) {
  593. if (id <= _light_channel.size()) {
  594. _light_channel[id].inputValue = constrain(value, 0, LIGHT_MAX_VALUE);
  595. }
  596. }
  597. unsigned int lightBrightness() {
  598. return _light_brightness;
  599. }
  600. void lightBrightness(int b) {
  601. _light_brightness = constrain(b, 0, LIGHT_MAX_BRIGHTNESS);
  602. }
  603. void lightBrightnessStep(int steps) {
  604. lightBrightness(_light_brightness + steps * LIGHT_STEP);
  605. }
  606. // -----------------------------------------------------------------------------
  607. // SETUP
  608. // -----------------------------------------------------------------------------
  609. #if WEB_SUPPORT
  610. bool _lightWebSocketOnReceive(const char * key, JsonVariant& value) {
  611. if (strncmp(key, "light", 5) == 0) return true;
  612. if (strncmp(key, "use", 3) == 0) return true;
  613. return false;
  614. }
  615. void _lightWebSocketOnSend(JsonObject& root) {
  616. root["colorVisible"] = 1;
  617. root["mqttGroupColor"] = getSetting("mqttGroupColor");
  618. root["useColor"] = _light_has_color;
  619. root["useWhite"] = _light_use_white;
  620. root["useGamma"] = _light_use_gamma;
  621. root["useTransitions"] = _light_use_transitions;
  622. root["lightTime"] = _light_transition_time;
  623. root["useCSS"] = getSetting("useCSS", LIGHT_USE_CSS).toInt() == 1;
  624. bool useRGB = getSetting("useRGB", LIGHT_USE_RGB).toInt() == 1;
  625. root["useRGB"] = useRGB;
  626. if (_light_has_color) {
  627. if (_light_use_cct) {
  628. root["useCCT"] = _light_use_cct;
  629. root["mireds"] = _light_mireds;
  630. }
  631. if (useRGB) {
  632. root["rgb"] = lightColor(true);
  633. root["brightness"] = lightBrightness();
  634. } else {
  635. root["hsv"] = lightColor(false);
  636. }
  637. }
  638. JsonArray& channels = root.createNestedArray("channels");
  639. for (unsigned char id=0; id < _light_channel.size(); id++) {
  640. channels.add(lightChannel(id));
  641. }
  642. }
  643. void _lightWebSocketOnAction(uint32_t client_id, const char * action, JsonObject& data) {
  644. if (_light_has_color) {
  645. if (strcmp(action, "color") == 0) {
  646. if (data.containsKey("rgb")) {
  647. lightColor(data["rgb"], true);
  648. lightUpdate(true, true);
  649. }
  650. if (data.containsKey("hsv")) {
  651. lightColor(data["hsv"], false);
  652. lightUpdate(true, true);
  653. }
  654. if (data.containsKey("brightness")) {
  655. lightBrightness(data["brightness"]);
  656. lightUpdate(true, true);
  657. }
  658. }
  659. if (_light_use_cct) {
  660. if (strcmp(action, "mireds") == 0) {
  661. _fromMireds(data["mireds"]);
  662. lightUpdate(true, true);
  663. }
  664. }
  665. }
  666. if (strcmp(action, "channel") == 0) {
  667. if (data.containsKey("id") && data.containsKey("value")) {
  668. lightChannel(data["id"], data["value"]);
  669. lightUpdate(true, true);
  670. }
  671. }
  672. }
  673. void _lightAPISetup() {
  674. // API entry points (protected with apikey)
  675. if (_light_has_color) {
  676. apiRegister(MQTT_TOPIC_COLOR_RGB,
  677. [](char * buffer, size_t len) {
  678. if (getSetting("useCSS", LIGHT_USE_CSS).toInt() == 1) {
  679. _toRGB(buffer, len);
  680. } else {
  681. _toLong(buffer, len);
  682. }
  683. },
  684. [](const char * payload) {
  685. lightColor(payload, true);
  686. lightUpdate(true, true);
  687. }
  688. );
  689. apiRegister(MQTT_TOPIC_COLOR_HSV,
  690. [](char * buffer, size_t len) {
  691. _toHSV(buffer, len);
  692. },
  693. [](const char * payload) {
  694. lightColor(payload, false);
  695. lightUpdate(true, true);
  696. }
  697. );
  698. apiRegister(MQTT_TOPIC_BRIGHTNESS,
  699. [](char * buffer, size_t len) {
  700. snprintf_P(buffer, len, PSTR("%d"), _light_brightness);
  701. },
  702. [](const char * payload) {
  703. lightBrightness(atoi(payload));
  704. lightUpdate(true, true);
  705. }
  706. );
  707. apiRegister(MQTT_TOPIC_KELVIN,
  708. [](char * buffer, size_t len) {},
  709. [](const char * payload) {
  710. _fromKelvin(atol(payload));
  711. lightUpdate(true, true);
  712. }
  713. );
  714. apiRegister(MQTT_TOPIC_MIRED,
  715. [](char * buffer, size_t len) {},
  716. [](const char * payload) {
  717. _fromMireds(atol(payload));
  718. lightUpdate(true, true);
  719. }
  720. );
  721. }
  722. for (unsigned int id=0; id<_light_channel.size(); id++) {
  723. char key[15];
  724. snprintf_P(key, sizeof(key), PSTR("%s/%d"), MQTT_TOPIC_CHANNEL, id);
  725. apiRegister(key,
  726. [id](char * buffer, size_t len) {
  727. snprintf_P(buffer, len, PSTR("%d"), lightChannel(id));
  728. },
  729. [id](const char * payload) {
  730. lightChannel(id, atoi(payload));
  731. lightUpdate(true, true);
  732. }
  733. );
  734. }
  735. }
  736. #endif // WEB_SUPPORT
  737. #if TERMINAL_SUPPORT
  738. void _lightInitCommands() {
  739. settingsRegisterCommand(F("BRIGHTNESS"), [](Embedis* e) {
  740. if (e->argc > 1) {
  741. lightBrightness(String(e->argv[1]).toInt());
  742. lightUpdate(true, true);
  743. }
  744. DEBUG_MSG_P(PSTR("Brightness: %d\n"), lightBrightness());
  745. DEBUG_MSG_P(PSTR("+OK\n"));
  746. });
  747. settingsRegisterCommand(F("CHANNEL"), [](Embedis* e) {
  748. if (e->argc < 2) {
  749. DEBUG_MSG_P(PSTR("-ERROR: Wrong arguments\n"));
  750. }
  751. int id = String(e->argv[1]).toInt();
  752. if (e->argc > 2) {
  753. int value = String(e->argv[2]).toInt();
  754. lightChannel(id, value);
  755. lightUpdate(true, true);
  756. }
  757. DEBUG_MSG_P(PSTR("Channel #%d: %d\n"), id, lightChannel(id));
  758. DEBUG_MSG_P(PSTR("+OK\n"));
  759. });
  760. settingsRegisterCommand(F("COLOR"), [](Embedis* e) {
  761. if (e->argc > 1) {
  762. String color = String(e->argv[1]);
  763. lightColor(color.c_str());
  764. lightUpdate(true, true);
  765. }
  766. DEBUG_MSG_P(PSTR("Color: %s\n"), lightColor().c_str());
  767. DEBUG_MSG_P(PSTR("+OK\n"));
  768. });
  769. settingsRegisterCommand(F("KELVIN"), [](Embedis* e) {
  770. if (e->argc > 1) {
  771. String color = String("K") + String(e->argv[1]);
  772. lightColor(color.c_str());
  773. lightUpdate(true, true);
  774. }
  775. DEBUG_MSG_P(PSTR("Color: %s\n"), lightColor().c_str());
  776. DEBUG_MSG_P(PSTR("+OK\n"));
  777. });
  778. settingsRegisterCommand(F("MIRED"), [](Embedis* e) {
  779. if (e->argc > 1) {
  780. String color = String("M") + String(e->argv[1]);
  781. lightColor(color.c_str());
  782. lightUpdate(true, true);
  783. }
  784. DEBUG_MSG_P(PSTR("Color: %s\n"), lightColor().c_str());
  785. DEBUG_MSG_P(PSTR("+OK\n"));
  786. });
  787. }
  788. #endif // TERMINAL_SUPPORT
  789. #if LIGHT_PROVIDER == LIGHT_PROVIDER_DIMMER
  790. unsigned long getIOMux(unsigned long gpio) {
  791. unsigned long muxes[16] = {
  792. PERIPHS_IO_MUX_GPIO0_U, PERIPHS_IO_MUX_U0TXD_U, PERIPHS_IO_MUX_GPIO2_U, PERIPHS_IO_MUX_U0RXD_U,
  793. PERIPHS_IO_MUX_GPIO4_U, PERIPHS_IO_MUX_GPIO5_U, PERIPHS_IO_MUX_SD_CLK_U, PERIPHS_IO_MUX_SD_DATA0_U,
  794. PERIPHS_IO_MUX_SD_DATA1_U, PERIPHS_IO_MUX_SD_DATA2_U, PERIPHS_IO_MUX_SD_DATA3_U, PERIPHS_IO_MUX_SD_CMD_U,
  795. PERIPHS_IO_MUX_MTDI_U, PERIPHS_IO_MUX_MTCK_U, PERIPHS_IO_MUX_MTMS_U, PERIPHS_IO_MUX_MTDO_U
  796. };
  797. return muxes[gpio];
  798. }
  799. unsigned long getIOFunc(unsigned long gpio) {
  800. unsigned long funcs[16] = {
  801. FUNC_GPIO0, FUNC_GPIO1, FUNC_GPIO2, FUNC_GPIO3,
  802. FUNC_GPIO4, FUNC_GPIO5, FUNC_GPIO6, FUNC_GPIO7,
  803. FUNC_GPIO8, FUNC_GPIO9, FUNC_GPIO10, FUNC_GPIO11,
  804. FUNC_GPIO12, FUNC_GPIO13, FUNC_GPIO14, FUNC_GPIO15
  805. };
  806. return funcs[gpio];
  807. }
  808. #endif
  809. void _lightConfigure() {
  810. _light_has_color = getSetting("useColor", LIGHT_USE_COLOR).toInt() == 1;
  811. if (_light_has_color && (_light_channel.size() < 3)) {
  812. _light_has_color = false;
  813. setSetting("useColor", _light_has_color);
  814. }
  815. _light_use_white = getSetting("useWhite", LIGHT_USE_WHITE).toInt() == 1;
  816. if (_light_use_white && (_light_channel.size() < 4)) {
  817. _light_use_white = false;
  818. setSetting("useWhite", _light_use_white);
  819. }
  820. _light_use_cct = getSetting("useCCT", LIGHT_USE_CCT).toInt() == 1;
  821. if (_light_use_cct && ((_light_channel.size() < 5) || !_light_use_white)) {
  822. _light_use_cct = false;
  823. setSetting("useCCT", _light_use_cct);
  824. }
  825. _light_use_gamma = getSetting("useGamma", LIGHT_USE_GAMMA).toInt() == 1;
  826. _light_use_transitions = getSetting("useTransitions", LIGHT_USE_TRANSITIONS).toInt() == 1;
  827. _light_transition_time = getSetting("lightTime", LIGHT_TRANSITION_TIME).toInt();
  828. }
  829. void lightSetup() {
  830. #ifdef LIGHT_ENABLE_PIN
  831. pinMode(LIGHT_ENABLE_PIN, OUTPUT);
  832. digitalWrite(LIGHT_ENABLE_PIN, HIGH);
  833. #endif
  834. #if LIGHT_PROVIDER == LIGHT_PROVIDER_MY92XX
  835. _my92xx = new my92xx(MY92XX_MODEL, MY92XX_CHIPS, MY92XX_DI_PIN, MY92XX_DCKI_PIN, MY92XX_COMMAND);
  836. for (unsigned char i=0; i<LIGHT_CHANNELS; i++) {
  837. _light_channel.push_back((channel_t) {0, false, true, 0, 0, 0});
  838. }
  839. #endif
  840. #if LIGHT_PROVIDER == LIGHT_PROVIDER_DIMMER
  841. #ifdef LIGHT_CH1_PIN
  842. _light_channel.push_back((channel_t) {LIGHT_CH1_PIN, LIGHT_CH1_INVERSE, true, 0, 0, 0});
  843. #endif
  844. #ifdef LIGHT_CH2_PIN
  845. _light_channel.push_back((channel_t) {LIGHT_CH2_PIN, LIGHT_CH2_INVERSE, true, 0, 0, 0});
  846. #endif
  847. #ifdef LIGHT_CH3_PIN
  848. _light_channel.push_back((channel_t) {LIGHT_CH3_PIN, LIGHT_CH3_INVERSE, true, 0, 0, 0});
  849. #endif
  850. #ifdef LIGHT_CH4_PIN
  851. _light_channel.push_back((channel_t) {LIGHT_CH4_PIN, LIGHT_CH4_INVERSE, true, 0, 0, 0});
  852. #endif
  853. #ifdef LIGHT_CH5_PIN
  854. _light_channel.push_back((channel_t) {LIGHT_CH5_PIN, LIGHT_CH5_INVERSE, true, 0, 0, 0});
  855. #endif
  856. uint32 pwm_duty_init[PWM_CHANNEL_NUM_MAX];
  857. uint32 io_info[PWM_CHANNEL_NUM_MAX][3];
  858. for (unsigned int i=0; i < _light_channel.size(); i++) {
  859. pwm_duty_init[i] = 0;
  860. io_info[i][0] = getIOMux(_light_channel[i].pin);
  861. io_info[i][1] = getIOFunc(_light_channel[i].pin);
  862. io_info[i][2] = _light_channel[i].pin;
  863. pinMode(_light_channel[i].pin, OUTPUT);
  864. }
  865. pwm_init(LIGHT_MAX_PWM, pwm_duty_init, PWM_CHANNEL_NUM_MAX, io_info);
  866. pwm_start();
  867. #endif
  868. DEBUG_MSG_P(PSTR("[LIGHT] LIGHT_PROVIDER = %d\n"), LIGHT_PROVIDER);
  869. DEBUG_MSG_P(PSTR("[LIGHT] Number of channels: %d\n"), _light_channel.size());
  870. _lightConfigure();
  871. _lightColorRestore();
  872. #if WEB_SUPPORT
  873. _lightAPISetup();
  874. wsOnSendRegister(_lightWebSocketOnSend);
  875. wsOnActionRegister(_lightWebSocketOnAction);
  876. wsOnReceiveRegister(_lightWebSocketOnReceive);
  877. wsOnAfterParseRegister([]() {
  878. #if LIGHT_SAVE_ENABLED == 0
  879. lightSave();
  880. #endif
  881. _lightConfigure();
  882. });
  883. #endif
  884. #if MQTT_SUPPORT
  885. mqttRegister(_lightMQTTCallback);
  886. #endif
  887. #if TERMINAL_SUPPORT
  888. _lightInitCommands();
  889. #endif
  890. }
  891. #endif // LIGHT_PROVIDER != LIGHT_PROVIDER_NONE