Fork of the espurna firmware for `mhsw` switches
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1114 lines
33 KiB

6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
7 years ago
7 years ago
7 years ago
7 years ago
7 years ago
  1. /*
  2. LIGHT MODULE
  3. Copyright (C) 2016-2018 by Xose Pérez <xose dot perez at gmail dot com>
  4. */
  5. #if LIGHT_PROVIDER != LIGHT_PROVIDER_NONE
  6. #include <Ticker.h>
  7. #include <ArduinoJson.h>
  8. #include <vector>
  9. extern "C" {
  10. #include "libs/fs_math.h"
  11. }
  12. #if LIGHT_PROVIDER == LIGHT_PROVIDER_DIMMER
  13. #define PWM_CHANNEL_NUM_MAX LIGHT_CHANNELS
  14. extern "C" {
  15. #include "libs/pwm.h"
  16. }
  17. #endif
  18. // -----------------------------------------------------------------------------
  19. Ticker _light_save_ticker;
  20. Ticker _light_transition_ticker;
  21. typedef struct {
  22. unsigned char pin;
  23. bool reverse;
  24. bool state;
  25. unsigned char inputValue; // value that has been inputted
  26. unsigned char value; // normalized value including brightness
  27. unsigned char shadow; // represented value
  28. double current; // transition value
  29. } channel_t;
  30. std::vector<channel_t> _light_channel;
  31. bool _light_state = false;
  32. bool _light_use_transitions = false;
  33. unsigned int _light_transition_time = LIGHT_TRANSITION_TIME;
  34. bool _light_has_color = false;
  35. bool _light_use_white = false;
  36. bool _light_use_cct = false;
  37. bool _light_use_gamma = false;
  38. unsigned long _light_steps_left = 1;
  39. unsigned char _light_brightness = LIGHT_MAX_BRIGHTNESS;
  40. unsigned int _light_mireds = round((LIGHT_COLDWHITE_MIRED+LIGHT_WARMWHITE_MIRED)/2);
  41. #if LIGHT_PROVIDER == LIGHT_PROVIDER_MY92XX
  42. #include <my92xx.h>
  43. my92xx * _my92xx;
  44. ARRAYINIT(unsigned char, _light_channel_map, MY92XX_MAPPING);
  45. #endif
  46. // Gamma Correction lookup table (8 bit)
  47. // TODO: move to PROGMEM
  48. const unsigned char _light_gamma_table[] = {
  49. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  50. 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2,
  51. 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 6, 6,
  52. 6, 7, 7, 7, 7, 8, 8, 8, 9, 9, 9, 10, 10, 11, 11, 11,
  53. 12, 12, 13, 13, 14, 14, 14, 15, 15, 16, 16, 17, 17, 18, 18, 19,
  54. 19, 20, 20, 21, 22, 22, 23, 23, 24, 25, 25, 26, 26, 27, 28, 28,
  55. 29, 30, 30, 31, 32, 33, 33, 34, 35, 35, 36, 37, 38, 39, 39, 40,
  56. 41, 42, 43, 43, 44, 45, 46, 47, 48, 49, 50, 50, 51, 52, 53, 54,
  57. 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 71,
  58. 72, 73, 74, 75, 76, 77, 78, 80, 81, 82, 83, 84, 86, 87, 88, 89,
  59. 91, 92, 93, 94, 96, 97, 98, 100, 101, 102, 104, 105, 106, 108, 109, 110,
  60. 112, 113, 115, 116, 118, 119, 121, 122, 123, 125, 126, 128, 130, 131, 133, 134,
  61. 136, 137, 139, 140, 142, 144, 145, 147, 149, 150, 152, 154, 155, 157, 159, 160,
  62. 162, 164, 166, 167, 169, 171, 173, 175, 176, 178, 180, 182, 184, 186, 187, 189,
  63. 191, 193, 195, 197, 199, 201, 203, 205, 207, 209, 211, 213, 215, 217, 219, 221,
  64. 223, 225, 227, 229, 231, 233, 235, 238, 240, 242, 244, 246, 248, 251, 253, 255
  65. };
  66. // -----------------------------------------------------------------------------
  67. // UTILS
  68. // -----------------------------------------------------------------------------
  69. void _setRGBInputValue(unsigned char red, unsigned char green, unsigned char blue) {
  70. _light_channel[0].inputValue = constrain(red, 0, LIGHT_MAX_VALUE);
  71. _light_channel[1].inputValue = constrain(green, 0, LIGHT_MAX_VALUE);;
  72. _light_channel[2].inputValue = constrain(blue, 0, LIGHT_MAX_VALUE);;
  73. }
  74. void _generateBrightness() {
  75. double brightness = (double) _light_brightness / LIGHT_MAX_BRIGHTNESS;
  76. // Convert RGB to RGBW(W)
  77. if (_light_has_color && _light_use_white) {
  78. // Substract the common part from RGB channels and add it to white channel. So [250,150,50] -> [200,100,0,50]
  79. unsigned char white = std::min(_light_channel[0].inputValue, std::min(_light_channel[1].inputValue, _light_channel[2].inputValue));
  80. for (unsigned int i=0; i < 3; i++) {
  81. _light_channel[i].value = _light_channel[i].inputValue - white;
  82. }
  83. // Split the White Value across 2 White LED Strips.
  84. if (_light_use_cct) {
  85. // This change the range from 153-500 to 0-347 so we get a value between 0 and 1 in the end.
  86. double miredFactor = ((double) _light_mireds - (double) LIGHT_COLDWHITE_MIRED)/((double) LIGHT_WARMWHITE_MIRED - (double) LIGHT_COLDWHITE_MIRED);
  87. // set cold white
  88. _light_channel[3].inputValue = 0;
  89. _light_channel[3].value = round(((double) 1.0 - miredFactor) * white);
  90. // set warm white
  91. _light_channel[4].inputValue = 0;
  92. _light_channel[4].value = round(miredFactor * white);
  93. } else {
  94. _light_channel[3].inputValue = 0;
  95. _light_channel[3].value = white;
  96. }
  97. // Scale up to equal input values. So [250,150,50] -> [200,100,0,50] -> [250, 125, 0, 63]
  98. unsigned char max_in = std::max(_light_channel[0].inputValue, std::max(_light_channel[1].inputValue, _light_channel[2].inputValue));
  99. unsigned char max_out = std::max(std::max(_light_channel[0].value, _light_channel[1].value), std::max(_light_channel[2].value, _light_channel[3].value));
  100. unsigned char channelSize = _light_use_cct ? 5 : 4;
  101. if (_light_use_cct) {
  102. max_out = std::max(max_out, _light_channel[4].value);
  103. }
  104. double factor = (max_out > 0) ? (double) (max_in / max_out) : 0;
  105. for (unsigned char i=0; i < channelSize; i++) {
  106. _light_channel[i].value = round((double) _light_channel[i].value * factor * brightness);
  107. }
  108. // Scale white channel to match brightness
  109. for (unsigned char i=3; i < channelSize; i++) {
  110. _light_channel[i].value = constrain(_light_channel[i].value * LIGHT_WHITE_FACTOR, 0, LIGHT_MAX_BRIGHTNESS);
  111. }
  112. // For the rest of channels, don't apply brightness, it is already in the inputValue
  113. // i should be 4 when RGBW and 5 when RGBWW
  114. for (unsigned char i=channelSize; i < _light_channel.size(); i++) {
  115. _light_channel[i].value = _light_channel[i].inputValue;
  116. }
  117. } else {
  118. // Apply brightness equally to all channels
  119. for (unsigned char i=0; i < _light_channel.size(); i++) {
  120. _light_channel[i].value = _light_channel[i].inputValue * brightness;
  121. }
  122. }
  123. }
  124. // -----------------------------------------------------------------------------
  125. // Input Values
  126. // -----------------------------------------------------------------------------
  127. void _fromLong(unsigned long value, bool brightness) {
  128. if (brightness) {
  129. _setRGBInputValue((value >> 24) & 0xFF, (value >> 16) & 0xFF, (value >> 8) & 0xFF);
  130. _light_brightness = (value & 0xFF) * LIGHT_MAX_BRIGHTNESS / 255;
  131. } else {
  132. _setRGBInputValue((value >> 16) & 0xFF, (value >> 8) & 0xFF, (value) & 0xFF);
  133. }
  134. }
  135. void _fromRGB(const char * rgb) {
  136. char * p = (char *) rgb;
  137. if (strlen(p) == 0) return;
  138. switch (p[0]) {
  139. case '#': // HEX Value
  140. if (_light_has_color) {
  141. ++p;
  142. unsigned long value = strtoul(p, NULL, 16);
  143. // RGBA values are interpreted like RGB + brightness
  144. _fromLong(value, strlen(p) > 7);
  145. }
  146. break;
  147. case 'M': // Mired Value
  148. _fromMireds(atol(p + 1));
  149. break;
  150. case 'K': // Kelvin Value
  151. _fromKelvin(atol(p + 1));
  152. break;
  153. default: // assume decimal values separated by commas
  154. char * tok;
  155. unsigned char count = 0;
  156. unsigned char channels = _light_channel.size();
  157. tok = strtok(p, ",");
  158. while (tok != NULL) {
  159. _light_channel[count].inputValue = atoi(tok);
  160. if (++count == channels) break;
  161. tok = strtok(NULL, ",");
  162. }
  163. // RGB but less than 3 values received, assume it is 0
  164. if (_light_has_color && (count < 3)) {
  165. // check channel 1 and 2:
  166. for (int i = 1; i <= 2; i++) {
  167. if (count < (i+1)) {
  168. _light_channel[i].inputValue = 0;
  169. }
  170. }
  171. }
  172. break;
  173. }
  174. }
  175. // HSV string is expected to be "H,S,V", where:
  176. // 0 <= H <= 360
  177. // 0 <= S <= 100
  178. // 0 <= V <= 100
  179. void _fromHSV(const char * hsv) {
  180. char * ptr = (char *) hsv;
  181. if (strlen(ptr) == 0) return;
  182. if (!_light_has_color) return;
  183. char * tok;
  184. unsigned char count = 0;
  185. unsigned int value[3] = {0};
  186. tok = strtok(ptr, ",");
  187. while (tok != NULL) {
  188. value[count] = atoi(tok);
  189. if (++count == 3) break;
  190. tok = strtok(NULL, ",");
  191. }
  192. if (count != 3) return;
  193. // HSV to RGB transformation -----------------------------------------------
  194. //INPUT: [0,100,57]
  195. //IS: [145,0,0]
  196. //SHOULD: [255,0,0]
  197. double h = (value[0] == 360) ? 0 : (double) value[0] / 60.0;
  198. double f = (h - floor(h));
  199. double s = (double) value[1] / 100.0;
  200. _light_brightness = round((double) value[2] * 2.55); // (255/100)
  201. unsigned char p = round(255 * (1.0 - s));
  202. unsigned char q = round(255 * (1.0 - s * f));
  203. unsigned char t = round(255 * (1.0 - s * (1.0 - f)));
  204. switch (int(h)) {
  205. case 0:
  206. _setRGBInputValue(255, t, p);
  207. break;
  208. case 1:
  209. _setRGBInputValue(q, 255, p);
  210. break;
  211. case 2:
  212. _setRGBInputValue(p, 255, t);
  213. break;
  214. case 3:
  215. _setRGBInputValue(p, q, 255);
  216. break;
  217. case 4:
  218. _setRGBInputValue(t, p, 255);
  219. break;
  220. case 5:
  221. _setRGBInputValue(255, p, q);
  222. break;
  223. default:
  224. _setRGBInputValue(0, 0, 0);
  225. break;
  226. }
  227. }
  228. // Thanks to Sacha Telgenhof for sharing this code in his AiLight library
  229. // https://github.com/stelgenhof/AiLight
  230. void _fromKelvin(unsigned long kelvin) {
  231. if (!_light_has_color) return;
  232. _light_mireds = constrain(round(1000000UL / kelvin), LIGHT_MIN_MIREDS, LIGHT_MAX_MIREDS);
  233. if (_light_use_cct) {
  234. _setRGBInputValue(LIGHT_MAX_VALUE, LIGHT_MAX_VALUE, LIGHT_MAX_VALUE);
  235. return;
  236. }
  237. // Calculate colors
  238. kelvin /= 100;
  239. unsigned int red = (kelvin <= 66)
  240. ? LIGHT_MAX_VALUE
  241. : 329.698727446 * fs_pow((double) (kelvin - 60), -0.1332047592);
  242. unsigned int green = (kelvin <= 66)
  243. ? 99.4708025861 * fs_log(kelvin) - 161.1195681661
  244. : 288.1221695283 * fs_pow((double) kelvin, -0.0755148492);
  245. unsigned int blue = (kelvin >= 66)
  246. ? LIGHT_MAX_VALUE
  247. : ((kelvin <= 19)
  248. ? 0
  249. : 138.5177312231 * fs_log(kelvin - 10) - 305.0447927307);
  250. _setRGBInputValue(red, green, blue);
  251. }
  252. // Color temperature is measured in mireds (kelvin = 1e6/mired)
  253. void _fromMireds(unsigned long mireds) {
  254. unsigned long kelvin = constrain(1000000UL / mireds, 1000, 40000);
  255. _fromKelvin(kelvin);
  256. }
  257. // -----------------------------------------------------------------------------
  258. // Output Values
  259. // -----------------------------------------------------------------------------
  260. void _toRGB(char * rgb, size_t len) {
  261. unsigned long value = 0;
  262. value += _light_channel[0].inputValue;
  263. value <<= 8;
  264. value += _light_channel[1].inputValue;
  265. value <<= 8;
  266. value += _light_channel[2].inputValue;
  267. snprintf_P(rgb, len, PSTR("#%06X"), value);
  268. }
  269. void _toHSV(char * hsv, size_t len) {
  270. double h, s, v;
  271. double brightness = (double) _light_brightness / LIGHT_MAX_BRIGHTNESS;
  272. double r = (double) (_light_channel[0].inputValue * brightness) / 255.0;
  273. double g = (double) (_light_channel[1].inputValue * brightness) / 255.0;
  274. double b = (double) (_light_channel[2].inputValue * brightness) / 255.0;
  275. double min = std::min(r, std::min(g, b));
  276. double max = std::max(r, std::max(g, b));
  277. v = 100.0 * max;
  278. if (v == 0) {
  279. h = s = 0;
  280. } else {
  281. s = 100.0 * (max - min) / max;
  282. if (s == 0) {
  283. h = 0;
  284. } else {
  285. if (max == r) {
  286. if (g >= b) {
  287. h = 0.0 + 60.0 * (g - b) / (max - min);
  288. } else {
  289. h = 360.0 + 60.0 * (g - b) / (max - min);
  290. }
  291. } else if (max == g) {
  292. h = 120.0 + 60.0 * (b - r) / (max - min);
  293. } else {
  294. h = 240.0 + 60.0 * (r - g) / (max - min);
  295. }
  296. }
  297. }
  298. // String
  299. snprintf_P(hsv, len, PSTR("%d,%d,%d"), round(h), round(s), round(v));
  300. }
  301. void _toLong(char * color, size_t len) {
  302. if (!_light_has_color) return;
  303. snprintf_P(color, len, PSTR("%d,%d,%d"),
  304. (int) _light_channel[0].inputValue,
  305. (int) _light_channel[1].inputValue,
  306. (int) _light_channel[2].inputValue
  307. );
  308. }
  309. void _toCSV(char * buffer, size_t len, bool applyBrightness) {
  310. char num[10];
  311. float b = applyBrightness ? (float) _light_brightness / LIGHT_MAX_BRIGHTNESS : 1;
  312. for (unsigned char i=0; i<_light_channel.size(); i++) {
  313. itoa(_light_channel[i].inputValue * b, num, 10);
  314. if (i>0) strncat(buffer, ",", len--);
  315. strncat(buffer, num, len);
  316. len = len - strlen(num);
  317. }
  318. }
  319. // -----------------------------------------------------------------------------
  320. // PROVIDER
  321. // -----------------------------------------------------------------------------
  322. unsigned int _toPWM(unsigned long value, bool gamma, bool reverse) {
  323. value = constrain(value, 0, LIGHT_MAX_VALUE);
  324. if (gamma) value = _light_gamma_table[value];
  325. if (LIGHT_MAX_VALUE != LIGHT_LIMIT_PWM) value = map(value, 0, LIGHT_MAX_VALUE, 0, LIGHT_LIMIT_PWM);
  326. if (reverse) value = LIGHT_LIMIT_PWM - value;
  327. return value;
  328. }
  329. // Returns a PWM value for the given channel ID
  330. unsigned int _toPWM(unsigned char id) {
  331. bool useGamma = _light_use_gamma && _light_has_color && (id < 3);
  332. return _toPWM(_light_channel[id].shadow, useGamma, _light_channel[id].reverse);
  333. }
  334. void _shadow() {
  335. // Update transition ticker
  336. _light_steps_left--;
  337. if (_light_steps_left == 0) _light_transition_ticker.detach();
  338. // Transitions
  339. unsigned char target;
  340. for (unsigned int i=0; i < _light_channel.size(); i++) {
  341. target = _light_state && _light_channel[i].state ? _light_channel[i].value : 0;
  342. if (_light_steps_left == 0) {
  343. _light_channel[i].current = target;
  344. } else {
  345. double difference = (double) (target - _light_channel[i].current) / (_light_steps_left + 1);
  346. _light_channel[i].current = _light_channel[i].current + difference;
  347. }
  348. _light_channel[i].shadow = _light_channel[i].current;
  349. }
  350. }
  351. void _lightProviderUpdate() {
  352. _shadow();
  353. #if LIGHT_PROVIDER == LIGHT_PROVIDER_MY92XX
  354. for (unsigned char i=0; i<_light_channel.size(); i++) {
  355. _my92xx->setChannel(_light_channel_map[i], _toPWM(i));
  356. }
  357. _my92xx->setState(true);
  358. _my92xx->update();
  359. #endif
  360. #if LIGHT_PROVIDER == LIGHT_PROVIDER_DIMMER
  361. for (unsigned int i=0; i < _light_channel.size(); i++) {
  362. pwm_set_duty(_toPWM(i), i);
  363. }
  364. pwm_start();
  365. #endif
  366. }
  367. // -----------------------------------------------------------------------------
  368. // PERSISTANCE
  369. // -----------------------------------------------------------------------------
  370. void _lightColorSave() {
  371. for (unsigned int i=0; i < _light_channel.size(); i++) {
  372. setSetting("ch", i, _light_channel[i].inputValue);
  373. }
  374. setSetting("brightness", _light_brightness);
  375. setSetting("mireds", _light_mireds);
  376. saveSettings();
  377. }
  378. void _lightColorRestore() {
  379. for (unsigned int i=0; i < _light_channel.size(); i++) {
  380. _light_channel[i].inputValue = getSetting("ch", i, i==0 ? 255 : 0).toInt();
  381. }
  382. _light_brightness = getSetting("brightness", LIGHT_MAX_BRIGHTNESS).toInt();
  383. _light_mireds = getSetting("mireds", _light_mireds).toInt();
  384. lightUpdate(false, false);
  385. }
  386. // -----------------------------------------------------------------------------
  387. // MQTT
  388. // -----------------------------------------------------------------------------
  389. #if MQTT_SUPPORT
  390. void _lightMQTTCallback(unsigned int type, const char * topic, const char * payload) {
  391. String mqtt_group_color = getSetting("mqttGroupColor");
  392. if (type == MQTT_CONNECT_EVENT) {
  393. if (_light_has_color) {
  394. mqttSubscribe(MQTT_TOPIC_BRIGHTNESS);
  395. mqttSubscribe(MQTT_TOPIC_MIRED);
  396. mqttSubscribe(MQTT_TOPIC_KELVIN);
  397. mqttSubscribe(MQTT_TOPIC_COLOR_RGB);
  398. mqttSubscribe(MQTT_TOPIC_COLOR_HSV);
  399. }
  400. // Group color
  401. if (mqtt_group_color.length() > 0) mqttSubscribeRaw(mqtt_group_color.c_str());
  402. // Channels
  403. char buffer[strlen(MQTT_TOPIC_CHANNEL) + 3];
  404. snprintf_P(buffer, sizeof(buffer), PSTR("%s/+"), MQTT_TOPIC_CHANNEL);
  405. mqttSubscribe(buffer);
  406. }
  407. if (type == MQTT_MESSAGE_EVENT) {
  408. // Group color
  409. if ((mqtt_group_color.length() > 0) & (mqtt_group_color.equals(topic))) {
  410. lightColor(payload, true);
  411. lightUpdate(true, mqttForward(), false);
  412. return;
  413. }
  414. // Match topic
  415. String t = mqttMagnitude((char *) topic);
  416. // Color temperature in mireds
  417. if (t.equals(MQTT_TOPIC_MIRED)) {
  418. _fromMireds(atol(payload));
  419. lightUpdate(true, mqttForward());
  420. return;
  421. }
  422. // Color temperature in kelvins
  423. if (t.equals(MQTT_TOPIC_KELVIN)) {
  424. _fromKelvin(atol(payload));
  425. lightUpdate(true, mqttForward());
  426. return;
  427. }
  428. // Color
  429. if (t.equals(MQTT_TOPIC_COLOR_RGB)) {
  430. lightColor(payload, true);
  431. lightUpdate(true, mqttForward());
  432. return;
  433. }
  434. if (t.equals(MQTT_TOPIC_COLOR_HSV)) {
  435. lightColor(payload, false);
  436. lightUpdate(true, mqttForward());
  437. return;
  438. }
  439. // Brightness
  440. if (t.equals(MQTT_TOPIC_BRIGHTNESS)) {
  441. _light_brightness = constrain(atoi(payload), 0, LIGHT_MAX_BRIGHTNESS);
  442. lightUpdate(true, mqttForward());
  443. return;
  444. }
  445. // Channel
  446. if (t.startsWith(MQTT_TOPIC_CHANNEL)) {
  447. unsigned int channelID = t.substring(strlen(MQTT_TOPIC_CHANNEL)+1).toInt();
  448. if (channelID >= _light_channel.size()) {
  449. DEBUG_MSG_P(PSTR("[LIGHT] Wrong channelID (%d)\n"), channelID);
  450. return;
  451. }
  452. lightChannel(channelID, atoi(payload));
  453. lightUpdate(true, mqttForward());
  454. return;
  455. }
  456. }
  457. }
  458. void lightMQTT() {
  459. char buffer[20];
  460. if (_light_has_color) {
  461. // Color
  462. if (getSetting("useCSS", LIGHT_USE_CSS).toInt() == 1) {
  463. _toRGB(buffer, sizeof(buffer));
  464. } else {
  465. _toLong(buffer, sizeof(buffer));
  466. }
  467. mqttSend(MQTT_TOPIC_COLOR_RGB, buffer);
  468. _toHSV(buffer, sizeof(buffer));
  469. mqttSend(MQTT_TOPIC_COLOR_HSV, buffer);
  470. // Mireds
  471. snprintf_P(buffer, sizeof(buffer), PSTR("%d"), _light_mireds);
  472. mqttSend(MQTT_TOPIC_MIRED, buffer);
  473. }
  474. // Channels
  475. for (unsigned int i=0; i < _light_channel.size(); i++) {
  476. itoa(_light_channel[i].inputValue, buffer, 10);
  477. mqttSend(MQTT_TOPIC_CHANNEL, i, buffer);
  478. }
  479. // Brightness
  480. snprintf_P(buffer, sizeof(buffer), PSTR("%d"), _light_brightness);
  481. mqttSend(MQTT_TOPIC_BRIGHTNESS, buffer);
  482. }
  483. void lightMQTTGroup() {
  484. String mqtt_group_color = getSetting("mqttGroupColor");
  485. if (mqtt_group_color.length()>0) {
  486. char buffer[20];
  487. _toCSV(buffer, sizeof(buffer), true);
  488. mqttSendRaw(mqtt_group_color.c_str(), buffer);
  489. }
  490. }
  491. #endif
  492. // -----------------------------------------------------------------------------
  493. // Broker
  494. // -----------------------------------------------------------------------------
  495. #if BROKER_SUPPORT
  496. void lightBroker() {
  497. char buffer[10];
  498. for (unsigned int i=0; i < _light_channel.size(); i++) {
  499. itoa(_light_channel[i].inputValue, buffer, 10);
  500. brokerPublish(MQTT_TOPIC_CHANNEL, i, buffer);
  501. }
  502. }
  503. #endif
  504. // -----------------------------------------------------------------------------
  505. // API
  506. // -----------------------------------------------------------------------------
  507. unsigned char lightChannels() {
  508. return _light_channel.size();
  509. }
  510. bool lightHasColor() {
  511. return _light_has_color;
  512. }
  513. void lightUpdate(bool save, bool forward, bool group_forward) {
  514. _generateBrightness();
  515. // Configure color transition
  516. _light_steps_left = _light_use_transitions ? _light_transition_time / LIGHT_TRANSITION_STEP : 1;
  517. _light_transition_ticker.attach_ms(LIGHT_TRANSITION_STEP, _lightProviderUpdate);
  518. // Report channels to local broker
  519. #if BROKER_SUPPORT
  520. lightBroker();
  521. #endif
  522. // Report color & brightness to MQTT broker
  523. #if MQTT_SUPPORT
  524. if (forward) lightMQTT();
  525. if (group_forward) lightMQTTGroup();
  526. #endif
  527. // Report color to WS clients (using current brightness setting)
  528. #if WEB_SUPPORT
  529. wsSend(_lightWebSocketOnSend);
  530. #endif
  531. #if LIGHT_SAVE_ENABLED
  532. // Delay saving to EEPROM 5 seconds to avoid wearing it out unnecessarily
  533. if (save) _light_save_ticker.once(LIGHT_SAVE_DELAY, _lightColorSave);
  534. #endif
  535. };
  536. void lightUpdate(bool save, bool forward) {
  537. lightUpdate(save, forward, true);
  538. }
  539. #if LIGHT_SAVE_ENABLED == 0
  540. void lightSave() {
  541. _lightColorSave();
  542. }
  543. #endif
  544. void lightState(unsigned char i, bool state) {
  545. _light_channel[i].state = state;
  546. }
  547. bool lightState(unsigned char i) {
  548. return _light_channel[i].state;
  549. }
  550. void lightState(bool state) {
  551. _light_state = state;
  552. }
  553. bool lightState() {
  554. return _light_state;
  555. }
  556. void lightColor(const char * color, bool rgb) {
  557. DEBUG_MSG_P(PSTR("[LIGHT] %s: %s\n"), rgb ? "RGB" : "HSV", color);
  558. if (rgb) {
  559. _fromRGB(color);
  560. } else {
  561. _fromHSV(color);
  562. }
  563. }
  564. void lightColor(const char * color) {
  565. lightColor(color, true);
  566. }
  567. void lightColor(unsigned long color) {
  568. _fromLong(color, false);
  569. }
  570. String lightColor(bool rgb) {
  571. char str[12];
  572. if (rgb) {
  573. _toRGB(str, sizeof(str));
  574. } else {
  575. _toHSV(str, sizeof(str));
  576. }
  577. return String(str);
  578. }
  579. String lightColor() {
  580. return lightColor(true);
  581. }
  582. unsigned int lightChannel(unsigned char id) {
  583. if (id <= _light_channel.size()) {
  584. return _light_channel[id].inputValue;
  585. }
  586. return 0;
  587. }
  588. void lightChannel(unsigned char id, int value) {
  589. if (id <= _light_channel.size()) {
  590. _light_channel[id].inputValue = constrain(value, 0, LIGHT_MAX_VALUE);
  591. }
  592. }
  593. void lightChannelStep(unsigned char id, int steps) {
  594. lightChannel(id, lightChannel(id) + steps * LIGHT_STEP);
  595. }
  596. unsigned int lightBrightness() {
  597. return _light_brightness;
  598. }
  599. void lightBrightness(int b) {
  600. _light_brightness = constrain(b, 0, LIGHT_MAX_BRIGHTNESS);
  601. }
  602. void lightBrightnessStep(int steps) {
  603. lightBrightness(_light_brightness + steps * LIGHT_STEP);
  604. }
  605. // -----------------------------------------------------------------------------
  606. // SETUP
  607. // -----------------------------------------------------------------------------
  608. #if WEB_SUPPORT
  609. bool _lightWebSocketOnReceive(const char * key, JsonVariant& value) {
  610. if (strncmp(key, "light", 5) == 0) return true;
  611. if (strncmp(key, "use", 3) == 0) return true;
  612. return false;
  613. }
  614. void _lightWebSocketOnSend(JsonObject& root) {
  615. root["colorVisible"] = 1;
  616. root["mqttGroupColor"] = getSetting("mqttGroupColor");
  617. root["useColor"] = _light_has_color;
  618. root["useWhite"] = _light_use_white;
  619. root["useGamma"] = _light_use_gamma;
  620. root["useTransitions"] = _light_use_transitions;
  621. root["lightTime"] = _light_transition_time;
  622. root["useCSS"] = getSetting("useCSS", LIGHT_USE_CSS).toInt() == 1;
  623. bool useRGB = getSetting("useRGB", LIGHT_USE_RGB).toInt() == 1;
  624. root["useRGB"] = useRGB;
  625. if (_light_has_color) {
  626. if (_light_use_cct) {
  627. root["useCCT"] = _light_use_cct;
  628. root["mireds"] = _light_mireds;
  629. }
  630. if (useRGB) {
  631. root["rgb"] = lightColor(true);
  632. } else {
  633. root["hsv"] = lightColor(false);
  634. }
  635. }
  636. JsonArray& channels = root.createNestedArray("channels");
  637. for (unsigned char id=0; id < _light_channel.size(); id++) {
  638. channels.add(lightChannel(id));
  639. }
  640. root["brightness"] = lightBrightness();
  641. }
  642. void _lightWebSocketOnAction(uint32_t client_id, const char * action, JsonObject& data) {
  643. if (_light_has_color) {
  644. if (strcmp(action, "color") == 0) {
  645. if (data.containsKey("rgb")) {
  646. lightColor(data["rgb"], true);
  647. lightUpdate(true, true);
  648. }
  649. if (data.containsKey("hsv")) {
  650. lightColor(data["hsv"], false);
  651. lightUpdate(true, true);
  652. }
  653. }
  654. if (_light_use_cct) {
  655. if (strcmp(action, "mireds") == 0) {
  656. _fromMireds(data["mireds"]);
  657. lightUpdate(true, true);
  658. }
  659. }
  660. }
  661. if (strcmp(action, "channel") == 0) {
  662. if (data.containsKey("id") && data.containsKey("value")) {
  663. lightChannel(data["id"], data["value"]);
  664. lightUpdate(true, true);
  665. }
  666. }
  667. if (strcmp(action, "brightness") == 0) {
  668. if (data.containsKey("value")) {
  669. lightBrightness(data["value"]);
  670. lightUpdate(true, true);
  671. }
  672. }
  673. }
  674. #endif
  675. #if API_SUPPORT
  676. void _lightAPISetup() {
  677. if (_light_has_color) {
  678. apiRegister(MQTT_TOPIC_COLOR_RGB,
  679. [](char * buffer, size_t len) {
  680. if (getSetting("useCSS", LIGHT_USE_CSS).toInt() == 1) {
  681. _toRGB(buffer, len);
  682. } else {
  683. _toLong(buffer, len);
  684. }
  685. },
  686. [](const char * payload) {
  687. lightColor(payload, true);
  688. lightUpdate(true, true);
  689. }
  690. );
  691. apiRegister(MQTT_TOPIC_COLOR_HSV,
  692. [](char * buffer, size_t len) {
  693. _toHSV(buffer, len);
  694. },
  695. [](const char * payload) {
  696. lightColor(payload, false);
  697. lightUpdate(true, true);
  698. }
  699. );
  700. apiRegister(MQTT_TOPIC_KELVIN,
  701. [](char * buffer, size_t len) {},
  702. [](const char * payload) {
  703. _fromKelvin(atol(payload));
  704. lightUpdate(true, true);
  705. }
  706. );
  707. apiRegister(MQTT_TOPIC_MIRED,
  708. [](char * buffer, size_t len) {},
  709. [](const char * payload) {
  710. _fromMireds(atol(payload));
  711. lightUpdate(true, true);
  712. }
  713. );
  714. }
  715. for (unsigned int id=0; id<_light_channel.size(); id++) {
  716. char key[15];
  717. snprintf_P(key, sizeof(key), PSTR("%s/%d"), MQTT_TOPIC_CHANNEL, id);
  718. apiRegister(key,
  719. [id](char * buffer, size_t len) {
  720. snprintf_P(buffer, len, PSTR("%d"), lightChannel(id));
  721. },
  722. [id](const char * payload) {
  723. lightChannel(id, atoi(payload));
  724. lightUpdate(true, true);
  725. }
  726. );
  727. }
  728. apiRegister(MQTT_TOPIC_BRIGHTNESS,
  729. [](char * buffer, size_t len) {
  730. snprintf_P(buffer, len, PSTR("%d"), _light_brightness);
  731. },
  732. [](const char * payload) {
  733. lightBrightness(atoi(payload));
  734. lightUpdate(true, true);
  735. }
  736. );
  737. }
  738. #endif // API_SUPPORT
  739. #if TERMINAL_SUPPORT
  740. void _lightInitCommands() {
  741. settingsRegisterCommand(F("BRIGHTNESS"), [](Embedis* e) {
  742. if (e->argc > 1) {
  743. lightBrightness(String(e->argv[1]).toInt());
  744. lightUpdate(true, true);
  745. }
  746. DEBUG_MSG_P(PSTR("Brightness: %d\n"), lightBrightness());
  747. DEBUG_MSG_P(PSTR("+OK\n"));
  748. });
  749. settingsRegisterCommand(F("CHANNEL"), [](Embedis* e) {
  750. if (e->argc < 2) {
  751. DEBUG_MSG_P(PSTR("-ERROR: Wrong arguments\n"));
  752. }
  753. int id = String(e->argv[1]).toInt();
  754. if (e->argc > 2) {
  755. int value = String(e->argv[2]).toInt();
  756. lightChannel(id, value);
  757. lightUpdate(true, true);
  758. }
  759. DEBUG_MSG_P(PSTR("Channel #%d: %d\n"), id, lightChannel(id));
  760. DEBUG_MSG_P(PSTR("+OK\n"));
  761. });
  762. settingsRegisterCommand(F("COLOR"), [](Embedis* e) {
  763. if (e->argc > 1) {
  764. String color = String(e->argv[1]);
  765. lightColor(color.c_str());
  766. lightUpdate(true, true);
  767. }
  768. DEBUG_MSG_P(PSTR("Color: %s\n"), lightColor().c_str());
  769. DEBUG_MSG_P(PSTR("+OK\n"));
  770. });
  771. settingsRegisterCommand(F("KELVIN"), [](Embedis* e) {
  772. if (e->argc > 1) {
  773. String color = String("K") + String(e->argv[1]);
  774. lightColor(color.c_str());
  775. lightUpdate(true, true);
  776. }
  777. DEBUG_MSG_P(PSTR("Color: %s\n"), lightColor().c_str());
  778. DEBUG_MSG_P(PSTR("+OK\n"));
  779. });
  780. settingsRegisterCommand(F("MIRED"), [](Embedis* e) {
  781. if (e->argc > 1) {
  782. String color = String("M") + String(e->argv[1]);
  783. lightColor(color.c_str());
  784. lightUpdate(true, true);
  785. }
  786. DEBUG_MSG_P(PSTR("Color: %s\n"), lightColor().c_str());
  787. DEBUG_MSG_P(PSTR("+OK\n"));
  788. });
  789. }
  790. #endif // TERMINAL_SUPPORT
  791. #if LIGHT_PROVIDER == LIGHT_PROVIDER_DIMMER
  792. unsigned long getIOMux(unsigned long gpio) {
  793. unsigned long muxes[16] = {
  794. PERIPHS_IO_MUX_GPIO0_U, PERIPHS_IO_MUX_U0TXD_U, PERIPHS_IO_MUX_GPIO2_U, PERIPHS_IO_MUX_U0RXD_U,
  795. PERIPHS_IO_MUX_GPIO4_U, PERIPHS_IO_MUX_GPIO5_U, PERIPHS_IO_MUX_SD_CLK_U, PERIPHS_IO_MUX_SD_DATA0_U,
  796. PERIPHS_IO_MUX_SD_DATA1_U, PERIPHS_IO_MUX_SD_DATA2_U, PERIPHS_IO_MUX_SD_DATA3_U, PERIPHS_IO_MUX_SD_CMD_U,
  797. PERIPHS_IO_MUX_MTDI_U, PERIPHS_IO_MUX_MTCK_U, PERIPHS_IO_MUX_MTMS_U, PERIPHS_IO_MUX_MTDO_U
  798. };
  799. return muxes[gpio];
  800. }
  801. unsigned long getIOFunc(unsigned long gpio) {
  802. unsigned long funcs[16] = {
  803. FUNC_GPIO0, FUNC_GPIO1, FUNC_GPIO2, FUNC_GPIO3,
  804. FUNC_GPIO4, FUNC_GPIO5, FUNC_GPIO6, FUNC_GPIO7,
  805. FUNC_GPIO8, FUNC_GPIO9, FUNC_GPIO10, FUNC_GPIO11,
  806. FUNC_GPIO12, FUNC_GPIO13, FUNC_GPIO14, FUNC_GPIO15
  807. };
  808. return funcs[gpio];
  809. }
  810. #endif
  811. void _lightConfigure() {
  812. _light_has_color = getSetting("useColor", LIGHT_USE_COLOR).toInt() == 1;
  813. if (_light_has_color && (_light_channel.size() < 3)) {
  814. _light_has_color = false;
  815. setSetting("useColor", _light_has_color);
  816. }
  817. _light_use_white = getSetting("useWhite", LIGHT_USE_WHITE).toInt() == 1;
  818. if (_light_use_white && (_light_channel.size() < 4)) {
  819. _light_use_white = false;
  820. setSetting("useWhite", _light_use_white);
  821. }
  822. _light_use_cct = getSetting("useCCT", LIGHT_USE_CCT).toInt() == 1;
  823. if (_light_use_cct && ((_light_channel.size() < 5) || !_light_use_white)) {
  824. _light_use_cct = false;
  825. setSetting("useCCT", _light_use_cct);
  826. }
  827. _light_use_gamma = getSetting("useGamma", LIGHT_USE_GAMMA).toInt() == 1;
  828. _light_use_transitions = getSetting("useTransitions", LIGHT_USE_TRANSITIONS).toInt() == 1;
  829. _light_transition_time = getSetting("lightTime", LIGHT_TRANSITION_TIME).toInt();
  830. }
  831. void lightSetup() {
  832. #ifdef LIGHT_ENABLE_PIN
  833. pinMode(LIGHT_ENABLE_PIN, OUTPUT);
  834. digitalWrite(LIGHT_ENABLE_PIN, HIGH);
  835. #endif
  836. #if LIGHT_PROVIDER == LIGHT_PROVIDER_MY92XX
  837. _my92xx = new my92xx(MY92XX_MODEL, MY92XX_CHIPS, MY92XX_DI_PIN, MY92XX_DCKI_PIN, MY92XX_COMMAND);
  838. for (unsigned char i=0; i<LIGHT_CHANNELS; i++) {
  839. _light_channel.push_back((channel_t) {0, false, true, 0, 0, 0});
  840. }
  841. #endif
  842. #if LIGHT_PROVIDER == LIGHT_PROVIDER_DIMMER
  843. #ifdef LIGHT_CH1_PIN
  844. _light_channel.push_back((channel_t) {LIGHT_CH1_PIN, LIGHT_CH1_INVERSE, true, 0, 0, 0});
  845. #endif
  846. #ifdef LIGHT_CH2_PIN
  847. _light_channel.push_back((channel_t) {LIGHT_CH2_PIN, LIGHT_CH2_INVERSE, true, 0, 0, 0});
  848. #endif
  849. #ifdef LIGHT_CH3_PIN
  850. _light_channel.push_back((channel_t) {LIGHT_CH3_PIN, LIGHT_CH3_INVERSE, true, 0, 0, 0});
  851. #endif
  852. #ifdef LIGHT_CH4_PIN
  853. _light_channel.push_back((channel_t) {LIGHT_CH4_PIN, LIGHT_CH4_INVERSE, true, 0, 0, 0});
  854. #endif
  855. #ifdef LIGHT_CH5_PIN
  856. _light_channel.push_back((channel_t) {LIGHT_CH5_PIN, LIGHT_CH5_INVERSE, true, 0, 0, 0});
  857. #endif
  858. uint32 pwm_duty_init[PWM_CHANNEL_NUM_MAX];
  859. uint32 io_info[PWM_CHANNEL_NUM_MAX][3];
  860. for (unsigned int i=0; i < _light_channel.size(); i++) {
  861. pwm_duty_init[i] = 0;
  862. io_info[i][0] = getIOMux(_light_channel[i].pin);
  863. io_info[i][1] = getIOFunc(_light_channel[i].pin);
  864. io_info[i][2] = _light_channel[i].pin;
  865. pinMode(_light_channel[i].pin, OUTPUT);
  866. }
  867. pwm_init(LIGHT_MAX_PWM, pwm_duty_init, PWM_CHANNEL_NUM_MAX, io_info);
  868. pwm_start();
  869. #endif
  870. DEBUG_MSG_P(PSTR("[LIGHT] LIGHT_PROVIDER = %d\n"), LIGHT_PROVIDER);
  871. DEBUG_MSG_P(PSTR("[LIGHT] Number of channels: %d\n"), _light_channel.size());
  872. _lightConfigure();
  873. _lightColorRestore();
  874. #if WEB_SUPPORT
  875. wsOnSendRegister(_lightWebSocketOnSend);
  876. wsOnActionRegister(_lightWebSocketOnAction);
  877. wsOnReceiveRegister(_lightWebSocketOnReceive);
  878. #endif
  879. #if API_SUPPORT
  880. _lightAPISetup();
  881. #endif
  882. #if MQTT_SUPPORT
  883. mqttRegister(_lightMQTTCallback);
  884. #endif
  885. #if TERMINAL_SUPPORT
  886. _lightInitCommands();
  887. #endif
  888. // Main callbacks
  889. espurnaRegisterReload([]() {
  890. #if LIGHT_SAVE_ENABLED == 0
  891. lightSave();
  892. #endif
  893. _lightConfigure();
  894. });
  895. }
  896. #endif // LIGHT_PROVIDER != LIGHT_PROVIDER_NONE