|
|
- // -----------------------------------------------------------------------------
- // Abstract Energy Monitor Sensor (other EMON sensors extend this class)
- // Copyright (C) 2017 by Xose Pérez <xose dot perez at gmail dot com>
- // -----------------------------------------------------------------------------
-
- #pragma once
-
- #include "Arduino.h"
- #include "BaseSensor.h"
-
- class EmonSensor : public BaseSensor {
-
- public:
-
- // ---------------------------------------------------------------------
- // Public
- // ---------------------------------------------------------------------
-
- EmonSensor(): BaseSensor() {
-
- // Calculate # of magnitudes
- #if EMON_REPORT_CURRENT
- ++_magnitudes;
- #endif
- #if EMON_REPORT_POWER
- ++_magnitudes;
- #endif
- #if EMON_REPORT_ENERGY
- ++_magnitudes;
- #endif
-
- }
-
- void setVoltage(double voltage) {
- if (_voltage != voltage) _dirty = true;
- _voltage = voltage;
- }
-
- void setReference(double reference) {
- if (_reference != reference) _dirty = true;
- _reference = reference;
- }
-
- void setCurrentRatio(unsigned char channel, double current_ratio) {
- if (channel >= _channels) return;
- if (_current_ratio[channel] != current_ratio) _dirty = true;
- _current_ratio[channel] = current_ratio;
- }
-
- // ---------------------------------------------------------------------
- // Sensor API
- // ---------------------------------------------------------------------
-
- void begin() {
-
- // Resolution
- _adc_counts = 1 << _resolution;
-
- // Calculations
- for (unsigned char i=0; i<_channels; i++) {
- _energy[i] = _current[i] = 0;
- _pivot[i] = _adc_counts >> 1;
- _current_factor[i] = _current_ratio[i] * _reference / _adc_counts;
- _multiplier[i] = calculateMultiplier(_current_factor[i]);
- }
-
- #if SENSOR_DEBUG
- DEBUG_MSG("[EMON] Reference (mV): %d\n", int(1000 * _reference));
- DEBUG_MSG("[EMON] ADC counts: %d\n", _adc_counts);
- for (unsigned char i=0; i<_channels; i++) {
- DEBUG_MSG("[EMON] Channel #%d current ratio (mA/V): %d\n", i, int(1000 * _current_ratio[i]));
- DEBUG_MSG("[EMON] Channel #%d current factor (mA/bit): %d\n", i, int(1000 * _current_factor[i]));
- DEBUG_MSG("[EMON] Channel #%d Multiplier: %d\n", i, int(_multiplier[i]));
- }
- #endif
-
- }
-
- protected:
-
- // ---------------------------------------------------------------------
- // Protected
- // ---------------------------------------------------------------------
-
- // Initializes internal variables
- void init() {
- _current_ratio = new double[_channels];
- _current_factor = new double[_channels];
- _multiplier = new uint16_t[_channels];
- _pivot = new double[_channels];
- _current = new double[_channels];
- #if EMON_REPORT_ENERGY
- _energy = new uint32_t[_channels];
- #endif
- }
-
- virtual unsigned int readADC(unsigned char channel) {}
-
- unsigned int calculateMultiplier(double current_factor) {
- unsigned int s = 1;
- unsigned int i = 1;
- unsigned int m = s * i;
- unsigned int multiplier;
- while (m * current_factor < 1) {
- multiplier = m;
- i = (i == 1) ? 2 : (i == 2) ? 5 : 1;
- if (i == 1) s *= 10;
- m = s * i;
- }
- return multiplier;
- }
-
- double read(unsigned char channel) {
-
- int sample;
- int max = 0;
- int min = _adc_counts;
- double filtered;
- double sum = 0;
-
- unsigned long time_span = millis();
- for (unsigned long i=0; i<_samples; i++) {
-
- // Read analog value
- sample = readADC(channel);
- if (sample > max) max = sample;
- if (sample < min) min = sample;
-
- // Digital low pass filter extracts the VDC offset
- _pivot[channel] = (_pivot[channel] + (sample - _pivot[channel]) / EMON_FILTER_SPEED);
- filtered = sample - _pivot[channel];
-
- // Root-mean-square method
- sum += (filtered * filtered);
-
- }
- time_span = millis() - time_span;
-
- // Quick fix
- if (_pivot[channel] < min || max < _pivot[channel]) {
- _pivot[channel] = (max + min) / 2.0;
- }
-
- // Calculate current
- double rms = _samples > 0 ? sqrt(sum / _samples) : 0;
- double current = _current_factor[channel] * rms;
- current = (double) (int(current * _multiplier[channel]) - 1) / _multiplier[channel];
- if (current < 0) current = 0;
-
- #if SENSOR_DEBUG
- DEBUG_MSG("[EMON] Channel: %d\n", channel);
- DEBUG_MSG("[EMON] Total samples: %d\n", _samples);
- DEBUG_MSG("[EMON] Total time (ms): %d\n", time_span);
- DEBUG_MSG("[EMON] Sample frequency (Hz): %d\n", int(1000 * _samples / time_span));
- DEBUG_MSG("[EMON] Max value: %d\n", max);
- DEBUG_MSG("[EMON] Min value: %d\n", min);
- DEBUG_MSG("[EMON] Midpoint value: %d\n", int(_pivot[channel]));
- DEBUG_MSG("[EMON] RMS value: %d\n", int(rms));
- DEBUG_MSG("[EMON] Current (mA): %d\n", int(current));
- #endif
-
- // Check timing
- if ((time_span > EMON_MAX_TIME)
- || ((time_span < EMON_MAX_TIME) && (_samples < EMON_MAX_SAMPLES))) {
- _samples = (_samples * EMON_MAX_TIME) / time_span;
- }
-
- return current;
-
- }
-
- unsigned char _channels = 0; // Number of ADC channels available
- unsigned char _magnitudes = 0; // Number of magnitudes per channel
- unsigned long _samples = EMON_MAX_SAMPLES; // Samples (dynamically modificable)
-
- unsigned char _resolution = 10; // ADC resolution in bits
- unsigned long _adc_counts; // Max count
-
- double _voltage = EMON_MAINS_VOLTAGE; // Mains voltage
- double _reference = EMON_REFERENCE_VOLTAGE; // ADC reference voltage (100%)
-
- double * _current_ratio; // Ratio ampers in main loop to voltage in secondary (per channel)
- double * _current_factor; // Calculated, reads (RMS) to current (per channel)
- uint16_t * _multiplier; // Calculated, error (per channel)
-
- double * _pivot; // Moving average mid point (per channel)
- double * _current; // Last current reading (per channel)
- #if EMON_REPORT_ENERGY
- uint32_t * _energy; // Aggregated energy (per channel)
- #endif
-
-
-
- };
|