Browse Source

libs: renormalize line endings

Garland merge updated .gitattributes, fixup the difference before
merging anything else :>
mcspr-patch-1
Maxim Prokhorov 4 years ago
parent
commit
15e3806b28
5 changed files with 799 additions and 798 deletions
  1. +1
    -0
      .gitattributes
  2. +636
    -636
      code/espurna/fs_math.c
  3. +116
    -116
      code/espurna/libs/fs_math.h
  4. +45
    -45
      code/espurna/libs/pwm.h
  5. +1
    -1
      code/test/build/garland.h

+ 1
- 0
.gitattributes View File

@ -3,3 +3,4 @@
*.ini text eol=lf
*.h text eol=lf
*.cpp text eol=lf
*.c text eol=lf

+ 636
- 636
code/espurna/fs_math.c
File diff suppressed because it is too large
View File


+ 116
- 116
code/espurna/libs/fs_math.h View File

@ -1,116 +1,116 @@
/**
* This code is available at
* http://www.mindspring.com/~pfilandr/C/fs_math/
* and it is believed to be public domain.
*/
/* BEGIN fs_math.h */
/*
** Portable freestanding code.
*/
#ifndef H_FS_MATH_H
#define H_FS_MATH_H
double fs_sqrt(double x);
double fs_log(double x);
double fs_log10(double x);
/*
** exp(x) = 1 + x + x^2/2! + x^3/3! + ...
*/
double fs_exp(double x);
double fs_modf(double value, double *iptr);
double fs_fmod(double x, double y);
double fs_pow(double x, double y);
double fs_cos(double x);
/*
** C99
*/
double fs_log2(double x);
double fs_exp2(double x);
long double fs_powl(long double x, long double y);
long double fs_sqrtl(long double x);
long double fs_logl(long double x);
long double fs_expl(long double x);
long double fs_cosl(long double x);
long double fs_fmodl(long double x, long double y);
#endif
/* END fs_math.h */
#if 0
/*
> > Anybody know where I can get some source code for a
> > reasonably fast double
> > precision square root algorithm in C.
> > I'm looking for one that is not IEEE
> > compliant as I am running on a Z/OS mainframe.
> >
> > I would love to use the standard library but
> > unfortunatly I'm using a
> > stripped down version of C that looses the the runtime library
> > (we have to write our own).
>
> long double Ssqrt(long double x)
> {
> long double a, b;
> size_t c;
size_t is a bug here.
c needs to be a signed type:
long c;
> if (x > 0) {
> c = 0;
> while (x > 4) {
> x /= 4;
> ++c;
> }
> while (1.0 / 4 > x) {
> x *= 4;
> --c;
> }
> a = x;
> b = ((4 > a) + a) / 2;
Not a bug, but should be:
b = (1 + a) / 2;
> do {
> x = b;
> b = (a / x + x) / 2;
> } while (x > b);
> if (c > 0) {
The above line is why c needs to be a signed type,
otherwise the decremented values of c, are greater than zero,
and the function won't work if the initial value of x
is less than 0.25
> while (c--) {
> x *= 2;
> }
> } else {
> while (c++) {
> x /= 2;
> }
> }
> }
> return x;
> }
>
> >
> > That algorithm was actually 4 times slower
> > then the one below, and more
> > code. It was accurate though.
> >
>
> Sorry Pete, I wasn't looking very carefully.
> When I converted your function
> to double precision it's was much quicker, the best I've seen yet.
*/
#endif
/**
* This code is available at
* http://www.mindspring.com/~pfilandr/C/fs_math/
* and it is believed to be public domain.
*/
/* BEGIN fs_math.h */
/*
** Portable freestanding code.
*/
#ifndef H_FS_MATH_H
#define H_FS_MATH_H
double fs_sqrt(double x);
double fs_log(double x);
double fs_log10(double x);
/*
** exp(x) = 1 + x + x^2/2! + x^3/3! + ...
*/
double fs_exp(double x);
double fs_modf(double value, double *iptr);
double fs_fmod(double x, double y);
double fs_pow(double x, double y);
double fs_cos(double x);
/*
** C99
*/
double fs_log2(double x);
double fs_exp2(double x);
long double fs_powl(long double x, long double y);
long double fs_sqrtl(long double x);
long double fs_logl(long double x);
long double fs_expl(long double x);
long double fs_cosl(long double x);
long double fs_fmodl(long double x, long double y);
#endif
/* END fs_math.h */
#if 0
/*
> > Anybody know where I can get some source code for a
> > reasonably fast double
> > precision square root algorithm in C.
> > I'm looking for one that is not IEEE
> > compliant as I am running on a Z/OS mainframe.
> >
> > I would love to use the standard library but
> > unfortunatly I'm using a
> > stripped down version of C that looses the the runtime library
> > (we have to write our own).
>
> long double Ssqrt(long double x)
> {
> long double a, b;
> size_t c;
size_t is a bug here.
c needs to be a signed type:
long c;
> if (x > 0) {
> c = 0;
> while (x > 4) {
> x /= 4;
> ++c;
> }
> while (1.0 / 4 > x) {
> x *= 4;
> --c;
> }
> a = x;
> b = ((4 > a) + a) / 2;
Not a bug, but should be:
b = (1 + a) / 2;
> do {
> x = b;
> b = (a / x + x) / 2;
> } while (x > b);
> if (c > 0) {
The above line is why c needs to be a signed type,
otherwise the decremented values of c, are greater than zero,
and the function won't work if the initial value of x
is less than 0.25
> while (c--) {
> x *= 2;
> }
> } else {
> while (c++) {
> x /= 2;
> }
> }
> }
> return x;
> }
>
> >
> > That algorithm was actually 4 times slower
> > then the one below, and more
> > code. It was accurate though.
> >
>
> Sorry Pete, I wasn't looking very carefully.
> When I converted your function
> to double precision it's was much quicker, the best I've seen yet.
*/
#endif

+ 45
- 45
code/espurna/libs/pwm.h View File

@ -1,45 +1,45 @@
/*
* Copyright (C) 2016 Stefan Brüns <stefan.bruens@rwth-aachen.de>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#ifndef __PWM_H__
#define __PWM_H__
/*SUPPORT UP TO 8 PWM CHANNEL*/
#ifndef PWM_CHANNEL_NUM_MAX
#define PWM_CHANNEL_NUM_MAX 8
#endif
struct pwm_param {
uint32 period;
uint32 freq;
uint32 duty[PWM_CHANNEL_NUM_MAX]; //PWM_CHANNEL<=8
};
/* pwm_init should be called only once, for now */
void pwm_init(uint32 period, uint32 *duty,uint32 pwm_channel_num,uint32 (*pin_info_list)[3]);
void pwm_start(void);
void pwm_set_duty(uint32 duty, uint8 channel);
uint32 pwm_get_duty(uint8 channel);
void pwm_set_period(uint32 period);
uint32 pwm_get_period(void);
uint32 get_pwm_version(void);
void set_pwm_debug_en(uint8 print_en);
#endif
/*
* Copyright (C) 2016 Stefan Brüns <stefan.bruens@rwth-aachen.de>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#ifndef __PWM_H__
#define __PWM_H__
/*SUPPORT UP TO 8 PWM CHANNEL*/
#ifndef PWM_CHANNEL_NUM_MAX
#define PWM_CHANNEL_NUM_MAX 8
#endif
struct pwm_param {
uint32 period;
uint32 freq;
uint32 duty[PWM_CHANNEL_NUM_MAX]; //PWM_CHANNEL<=8
};
/* pwm_init should be called only once, for now */
void pwm_init(uint32 period, uint32 *duty,uint32 pwm_channel_num,uint32 (*pin_info_list)[3]);
void pwm_start(void);
void pwm_set_duty(uint32 duty, uint8 channel);
uint32 pwm_get_duty(uint8 channel);
void pwm_set_period(uint32 period);
uint32 pwm_get_period(void);
uint32 get_pwm_version(void);
void set_pwm_debug_en(uint8 print_en);
#endif

+ 1
- 1
code/test/build/garland.h View File

@ -1 +1 @@
#define GARLAND_SUPPORT 1
#define GARLAND_SUPPORT 1

Loading…
Cancel
Save