Browse Source

Rework RGBW implementation and cleanup script

rfm69
Niklas Wagner 6 years ago
parent
commit
2bc1e6f97a
2 changed files with 217 additions and 294 deletions
  1. +3
    -1
      code/espurna/config/general.h
  2. +214
    -293
      code/espurna/light.ino

+ 3
- 1
code/espurna/config/general.h View File

@ -597,7 +597,6 @@ PROGMEM const char* const custom_reset_string[] = {
// Light module // Light module
#define MQTT_TOPIC_CHANNEL "channel" #define MQTT_TOPIC_CHANNEL "channel"
#define MQTT_TOPIC_COLOR "color" // DEPRECATED, use RGB instead
#define MQTT_TOPIC_COLOR_RGB "rgb" #define MQTT_TOPIC_COLOR_RGB "rgb"
#define MQTT_TOPIC_COLOR_HSV "hsv" #define MQTT_TOPIC_COLOR_HSV "hsv"
#define MQTT_TOPIC_ANIM_MODE "anim_mode" #define MQTT_TOPIC_ANIM_MODE "anim_mode"
@ -692,6 +691,9 @@ PROGMEM const char* const custom_reset_string[] = {
#endif #endif
#define LIGHT_MAX_BRIGHTNESS 255 // Maximun brightness value #define LIGHT_MAX_BRIGHTNESS 255 // Maximun brightness value
//#define LIGHT_MIN_MIREDS 153 // NOT USED (yet)! // Default to the Philips Hue value that HA has always assumed
//#define LIGHT_MAX_MIREDS 500 // NOT USED (yet)! // https://developers.meethue.com/documentation/core-concepts
#define LIGHT_DEFAULT_MIREDS 153 // Default value used by MQTT. This value is __NEVRER__ applied!
#define LIGHT_STEP 32 // Step size #define LIGHT_STEP 32 // Step size
#define LIGHT_USE_COLOR 1 // Use 3 first channels as RGB #define LIGHT_USE_COLOR 1 // Use 3 first channels as RGB
#define LIGHT_USE_WHITE 0 // Use white channel whenever RGB have the same value #define LIGHT_USE_WHITE 0 // Use white channel whenever RGB have the same value


+ 214
- 293
code/espurna/light.ino View File

@ -28,9 +28,8 @@ typedef struct {
unsigned char pin; unsigned char pin;
bool reverse; bool reverse;
bool state; bool state;
unsigned char value; // target or nominal value
unsigned char original; // original value before RGBW calculation
bool useOriginal; // determine if it should use the original or value variable
unsigned char inputValue; // value that has been inputted
unsigned char value; // normalized value including brightness
unsigned char shadow; // represented value unsigned char shadow; // represented value
double current; // transition value double current; // transition value
} channel_t; } channel_t;
@ -42,7 +41,8 @@ bool _light_has_color = false;
bool _light_use_white = false; bool _light_use_white = false;
bool _light_use_gamma = false; bool _light_use_gamma = false;
unsigned long _light_steps_left = 1; unsigned long _light_steps_left = 1;
unsigned int _light_brightness = LIGHT_MAX_BRIGHTNESS;
unsigned char _light_brightness = LIGHT_MAX_BRIGHTNESS;
unsigned int _light_mireds = LIGHT_DEFAULT_MIREDS;
#if LIGHT_PROVIDER == LIGHT_PROVIDER_MY92XX #if LIGHT_PROVIDER == LIGHT_PROVIDER_MY92XX
#include <my92xx.h> #include <my92xx.h>
@ -75,72 +75,64 @@ const unsigned char _light_gamma_table[] = {
// UTILS // UTILS
// ----------------------------------------------------------------------------- // -----------------------------------------------------------------------------
// Returns the "correct" value for each channel
unsigned char _getChannel(char i) {
if (_light_channel[i].useOriginal) {
// Reset value when user disable the white channel without rebooting:
if (!_light_use_white) {
_light_channel[i].value = _light_channel[i].original;
_light_channel[i].useOriginal = false;
_light_channel[i].original = 0;
return _light_channel[i].value;
}
return _light_channel[i].original;
}
return _light_channel[i].value;
void _setRGBInputValue(unsigned char red, unsigned char green, unsigned char blue) {
_light_channel[0].inputValue = red;
_light_channel[1].inputValue = green;
_light_channel[2].inputValue = blue;
} }
void _setWhite() {
if (!_light_use_white) return;
void _generateBrightness() {
double brightness = (double) _light_brightness / LIGHT_MAX_BRIGHTNESS;
unsigned int white, max_in, max_out;
double factor = 0;
// Convert RGB to RGBW
if (_light_has_color && _light_use_white) {
unsigned char white, max_in, max_out;
double factor = 0;
white = std::min(_light_channel[0].value, std::min(_light_channel[1].value, _light_channel[2].value));
max_in = std::max(_light_channel[0].value, std::max(_light_channel[1].value, _light_channel[2].value));
white = std::min(_light_channel[0].inputValue, std::min(_light_channel[1].inputValue, _light_channel[2].inputValue));
max_in = std::max(_light_channel[0].inputValue, std::max(_light_channel[1].inputValue, _light_channel[2].inputValue));
for (unsigned int i=0; i < 3; i++) {
_light_channel[i].useOriginal = true;
_light_channel[i].original = _light_channel[i].value;
_light_channel[i].value -= white;
}
_light_channel[3].value = white;
for (unsigned int i=0; i < 3; i++) {
_light_channel[i].value = _light_channel[i].inputValue - white;
}
_light_channel[3].value = white;
max_out = std::max(std::max(_light_channel[0].value, _light_channel[1].value), std::max(_light_channel[2].value, _light_channel[3].value));
max_out = std::max(std::max(_light_channel[0].value, _light_channel[1].value), std::max(_light_channel[2].value, _light_channel[3].value));
if (max_out > 0) {
factor = (double) (max_in / max_out);
}
if (max_out > 0) {
factor = (double) (max_in / max_out);
}
for (unsigned int i=0; i < 4; i++) {
_light_channel[i].value = round(_light_channel[i].value * factor);;
// Scale up to equal input values. So [250,150,50] -> [200,100,0,50] -> [250, 125, 0, 63]
for (unsigned int i=0; i < 4; i++) {
_light_channel[i].value = round((double) _light_channel[i].value * factor * brightness);
}
// Don't apply brightness, it is already in the inputValue:
if (_light_channel.size() == 5) {
_light_channel[4].value = _light_channel[4].inputValue;
}
} else {
// Don't apply brightness, it is already in the inputValue:
for (unsigned char i=0; i < _light_channel.size(); i++) {
_light_channel[i].value = _light_channel[i].inputValue;
}
} }
} }
//Return 4 (RGBW) or 3 (RGB)
unsigned char _getRGBChannelWidth() {
return _light_use_white ? 4 : 3;
}
// -----------------------------------------------------------------------------
// Input Values
// -----------------------------------------------------------------------------
void _fromLong(unsigned long value, bool brightness) { void _fromLong(unsigned long value, bool brightness) {
if (brightness) { if (brightness) {
_light_channel[0].value = (value >> 24) & 0xFF;
_light_channel[1].value = (value >> 16) & 0xFF;
_light_channel[2].value = (value >> 8) & 0xFF;
_setRGBInputValue((value >> 24) & 0xFF, (value >> 16) & 0xFF, (value >> 8) & 0xFF);
_light_brightness = (value & 0xFF) * LIGHT_MAX_BRIGHTNESS / 255; _light_brightness = (value & 0xFF) * LIGHT_MAX_BRIGHTNESS / 255;
} else { } else {
_light_channel[0].value = (value >> 16) & 0xFF;
_light_channel[1].value = (value >> 8) & 0xFF;
_light_channel[2].value = (value) & 0xFF;
_setRGBInputValue((value >> 16) & 0xFF, (value >> 8) & 0xFF, (value) & 0xFF);
} }
} }
void _fromRGB(const char * rgb) { void _fromRGB(const char * rgb) {
char * p = (char *) rgb; char * p = (char *) rgb;
if (strlen(p) == 0) return; if (strlen(p) == 0) return;
@ -151,21 +143,18 @@ void _fromRGB(const char * rgb) {
unsigned long value = strtoul(p, NULL, 16); unsigned long value = strtoul(p, NULL, 16);
// RGBA values are interpreted like RGB + brightness // RGBA values are interpreted like RGB + brightness
_fromLong(value, strlen(p) > 7); _fromLong(value, strlen(p) > 7);
_setWhite();
} }
break; break;
case 'M': // Mired Value case 'M': // Mired Value
if (_light_has_color) { if (_light_has_color) {
unsigned long mireds = atol(p + 1); unsigned long mireds = atol(p + 1);
_fromMireds(mireds); _fromMireds(mireds);
//_setWhite();
} }
break; break;
case 'K': // Kelvin Value case 'K': // Kelvin Value
if (_light_has_color) { if (_light_has_color) {
unsigned long kelvin = atol(p + 1); unsigned long kelvin = atol(p + 1);
_fromKelvin(kelvin); _fromKelvin(kelvin);
//_setWhite();
} }
break; break;
default: // assume decimal values separated by commas default: // assume decimal values separated by commas
@ -175,43 +164,24 @@ void _fromRGB(const char * rgb) {
tok = strtok(p, ","); tok = strtok(p, ",");
while (tok != NULL) { while (tok != NULL) {
_light_channel[count].value = atoi(tok);
_light_channel[count].inputValue = atoi(tok);
if (++count == channels) break; if (++count == channels) break;
tok = strtok(NULL, ","); tok = strtok(NULL, ",");
} }
// RGB but less than 3 values received
// RGB but less than 3 values received, assume it is 0
if (_light_has_color && (count < 3)) { if (_light_has_color && (count < 3)) {
_light_channel[1].value = _light_channel[0].value;
_light_channel[2].value = _light_channel[0].value;
// check channel 1 and 2:
for (int i = 1; i <= 2; i++) {
if (count < (i+1)) {
_light_channel[i].inputValue = 0;
}
}
} }
_setWhite();
break; break;
} }
} }
void _toRGB(char * rgb, size_t len, bool applyBrightness) {
if (!_light_has_color) return;
float b = applyBrightness ? (float) _light_brightness / LIGHT_MAX_BRIGHTNESS : 1;
unsigned long value = 0;
value += _getChannel(0) * b;
value <<= 8;
value += _getChannel(1) * b;
value <<= 8;
value += _getChannel(2) * b;
snprintf_P(rgb, len, PSTR("#%06X"), value);
}
void _toRGB(char * rgb, size_t len) {
_toRGB(rgb, len, false);
}
// HSV string is expected to be "H,S,V", where: // HSV string is expected to be "H,S,V", where:
// 0 <= H <= 360 // 0 <= H <= 360
// 0 <= S <= 100 // 0 <= S <= 100
@ -236,72 +206,113 @@ void _fromHSV(const char * hsv) {
// HSV to RGB transformation ----------------------------------------------- // HSV to RGB transformation -----------------------------------------------
//INPUT: [0,100,57]
//IS: [145,0,0]
//SHOULD: [255,0,0]
double h = (value[0] == 360) ? 0 : (double) value[0] / 60.0; double h = (value[0] == 360) ? 0 : (double) value[0] / 60.0;
double f = (h - floor(h)); double f = (h - floor(h));
double s = (double) value[1] / 100.0; double s = (double) value[1] / 100.0;
unsigned char v = round((double) value[2] * 255.0 / 100.0);
unsigned char p = round(v * (1.0 - s));
unsigned char q = round(v * (1.0 - s * f));
unsigned char t = round(v * (1.0 - s * (1.0 - f)));
_light_brightness = round((double) value[2] * 2.55); // (255/100)
unsigned char p = round(255 * (1.0 - s));
unsigned char q = round(255 * (1.0 - s * f));
unsigned char t = round(255 * (1.0 - s * (1.0 - f)));
switch (int(h)) { switch (int(h)) {
case 0: case 0:
_light_channel[0].value = v;
_light_channel[1].value = t;
_light_channel[2].value = p;
_setRGBInputValue(255, t, p);
break; break;
case 1: case 1:
_light_channel[0].value = q;
_light_channel[1].value = v;
_light_channel[2].value = p;
_setRGBInputValue(q, 255, p);
break; break;
case 2: case 2:
_light_channel[0].value = p;
_light_channel[1].value = v;
_light_channel[2].value = t;
_setRGBInputValue(p, 255, t);
break; break;
case 3: case 3:
_light_channel[0].value = p;
_light_channel[1].value = q;
_light_channel[2].value = v;
_setRGBInputValue(p, q, 255);
break; break;
case 4: case 4:
_light_channel[0].value = t;
_light_channel[1].value = p;
_light_channel[2].value = v;
_setRGBInputValue(t, p, 255);
break; break;
case 5: case 5:
_light_channel[0].value = v;
_light_channel[1].value = p;
_light_channel[2].value = q;
_setRGBInputValue(255, p, q);
break; break;
default: default:
_light_channel[0].value = 0;
_light_channel[1].value = 0;
_light_channel[2].value = 0;
_setRGBInputValue(0,0,0);
break; break;
} }
}
_setWhite();
// Thanks to Sacha Telgenhof for sharing this code in his AiLight library
// https://github.com/stelgenhof/AiLight
void _fromKelvin(unsigned long kelvin, bool setMireds) {
_light_brightness = LIGHT_MAX_BRIGHTNESS;
// Check we have RGB channels
if (!_light_has_color) return;
if (setMireds) {
_light_mireds = round(1000000UL / kelvin);
}
// Calculate colors
unsigned int red = (kelvin <= 66)
? LIGHT_MAX_VALUE
: 329.698727446 * pow((kelvin - 60), -0.1332047592);
unsigned int green = (kelvin <= 66)
? 99.4708025861 * log(kelvin) - 161.1195681661
: 288.1221695283 * pow(kelvin, -0.0755148492);
unsigned int blue = (kelvin >= 66)
? LIGHT_MAX_VALUE
: ((kelvin <= 19)
? 0
: 138.5177312231 * log(kelvin - 10) - 305.0447927307);
_setRGBInputValue(
constrain(red, 0, LIGHT_MAX_VALUE),
constrain(green, 0, LIGHT_MAX_VALUE),
constrain(blue, 0, LIGHT_MAX_VALUE)
);
} }
void _toHSV(char * hsv, size_t len) {
void _fromKelvin(unsigned long kelvin) {
_fromKelvin(kelvin, true);
}
if (!_light_has_color) return;
// Color temperature is measured in mireds (kelvin = 1e6/mired)
void _fromMireds(unsigned long mireds) {
if (mireds == 0) mireds = 1;
_light_mireds = mireds;
unsigned long kelvin = constrain(1000000UL / mireds, 1000, 40000) / 100;
_fromKelvin(kelvin, false);
}
// -----------------------------------------------------------------------------
// Output Values
// -----------------------------------------------------------------------------
void _toRGB(char * rgb, size_t len) {
unsigned long value = 0;
value += _light_channel[0].inputValue;
value <<= 8;
value += _light_channel[1].inputValue;
value <<= 8;
value += _light_channel[2].inputValue;
snprintf_P(rgb, len, PSTR("#%06X"), value);
}
double min, max;
double h, s, v;
void _toHSV(char * hsv, size_t len) {
double min, max, h, s, v;
double brightness = (double) _light_brightness / LIGHT_MAX_BRIGHTNESS;
double r = (double) _getChannel(0) / 255.0;
double g = (double) _getChannel(1) / 255.0;
double b = (double) _getChannel(2) / 255.0;
double r = (double) (_light_channel[0].inputValue * brightness) / 255.0;
double g = (double) (_light_channel[1].inputValue * brightness) / 255.0;
double b = (double) (_light_channel[2].inputValue * brightness) / 255.0;
min = (r < g) ? r : g;
min = (min < b) ? min : b;
max = (r > g) ? r : g;
max = (max > b) ? max : b;
min = std::min(r, std::min(g, b));
max = std::max(r, std::max(g, b));
v = 100.0 * max; v = 100.0 * max;
if (v == 0) { if (v == 0) {
@ -329,69 +340,27 @@ void _toHSV(char * hsv, size_t len) {
snprintf_P(hsv, len, PSTR("%d,%d,%d"), round(h), round(s), round(v)); snprintf_P(hsv, len, PSTR("%d,%d,%d"), round(h), round(s), round(v));
} }
void _toLong(char * color, size_t len, bool applyBrightness) {
void _toLong(char * color, size_t len) {
if (!_light_has_color) return; if (!_light_has_color) return;
float b = applyBrightness ? (float) _light_brightness / LIGHT_MAX_BRIGHTNESS : 1;
snprintf_P(color, len, PSTR("%d,%d,%d"), snprintf_P(color, len, PSTR("%d,%d,%d"),
(int) (_getChannel(0) * b),
(int) (_getChannel(1) * b),
(int) (_getChannel(2) * b)
(int) _light_channel[0].inputValue,
(int) _light_channel[1].inputValue,
(int) _light_channel[2].inputValue
); );
}
void _toLong(char * color, size_t len) {
_toLong(color, len, false);
} }
void _toCSV(char * buffer, size_t len, bool applyBrightness) { void _toCSV(char * buffer, size_t len, bool applyBrightness) {
char num[10]; char num[10];
float b = applyBrightness ? (float) _light_brightness / LIGHT_MAX_BRIGHTNESS : 1; float b = applyBrightness ? (float) _light_brightness / LIGHT_MAX_BRIGHTNESS : 1;
for (unsigned char i=0; i<_light_channel.size(); i++) { for (unsigned char i=0; i<_light_channel.size(); i++) {
itoa(_light_channel[i].value * b, num, 10);
itoa(_light_channel[i].inputValue * b, num, 10);
if (i>0) strncat(buffer, ",", len--); if (i>0) strncat(buffer, ",", len--);
strncat(buffer, num, len); strncat(buffer, num, len);
len = len - strlen(num); len = len - strlen(num);
} }
} }
// Thanks to Sacha Telgenhof for sharing this code in his AiLight library
// https://github.com/stelgenhof/AiLight
void _fromKelvin(unsigned long kelvin) {
// Check we have RGB channels
if (!_light_has_color) return;
// Calculate colors
unsigned int red = (kelvin <= 66)
? LIGHT_MAX_VALUE
: 329.698727446 * pow((kelvin - 60), -0.1332047592);
unsigned int green = (kelvin <= 66)
? 99.4708025861 * log(kelvin) - 161.1195681661
: 288.1221695283 * pow(kelvin, -0.0755148492);
unsigned int blue = (kelvin >= 66)
? LIGHT_MAX_VALUE
: ((kelvin <= 19)
? 0
: 138.5177312231 * log(kelvin - 10) - 305.0447927307);
// Save values
_light_channel[0].value = constrain(red, 0, LIGHT_MAX_VALUE);
_light_channel[1].value = constrain(green, 0, LIGHT_MAX_VALUE);
_light_channel[2].value = constrain(blue, 0, LIGHT_MAX_VALUE);
}
// Color temperature is measured in mireds (kelvin = 1e6/mired)
void _fromMireds(unsigned long mireds) {
if (mireds == 0) mireds = 1;
unsigned long kelvin = constrain(1000000UL / mireds, 1000, 40000) / 100;
_fromKelvin(kelvin);
}
// ----------------------------------------------------------------------------- // -----------------------------------------------------------------------------
// PROVIDER // PROVIDER
// ----------------------------------------------------------------------------- // -----------------------------------------------------------------------------
@ -406,30 +375,19 @@ unsigned int _toPWM(unsigned long value, bool gamma, bool reverse) {
// Returns a PWM value for the given channel ID // Returns a PWM value for the given channel ID
unsigned int _toPWM(unsigned char id) { unsigned int _toPWM(unsigned char id) {
bool useGamma = _light_use_gamma && _light_has_color && (id < _getRGBChannelWidth());
bool useGamma = _light_use_gamma && _light_has_color && (id < 3);
return _toPWM(_light_channel[id].shadow, useGamma, _light_channel[id].reverse); return _toPWM(_light_channel[id].shadow, useGamma, _light_channel[id].reverse);
} }
void _shadow() { void _shadow() {
// Update transition ticker // Update transition ticker
_light_steps_left--; _light_steps_left--;
if (_light_steps_left == 0) _light_transition_ticker.detach(); if (_light_steps_left == 0) _light_transition_ticker.detach();
// Update 4 Channels if RGBW else 3
unsigned char channels = _getRGBChannelWidth();
// Transitions // Transitions
unsigned char target; unsigned char target;
for (unsigned int i=0; i < _light_channel.size(); i++) { for (unsigned int i=0; i < _light_channel.size(); i++) {
if (_light_state && _light_channel[i].state) {
target = _light_channel[i].value;
if ((_light_brightness < LIGHT_MAX_BRIGHTNESS) && _light_has_color && (i < channels)) {
target *= ((float) _light_brightness / LIGHT_MAX_BRIGHTNESS);
}
} else {
target = 0;
}
target = _light_state ? _light_channel[i].value : 0;
if (_light_steps_left == 0) { if (_light_steps_left == 0) {
_light_channel[i].current = target; _light_channel[i].current = target;
} else { } else {
@ -470,16 +428,8 @@ void _lightProviderUpdate() {
// ----------------------------------------------------------------------------- // -----------------------------------------------------------------------------
void _lightColorSave() { void _lightColorSave() {
// TODO: Remove this once this code was in a stable release
// This force set ch3 to 0 which could be not zero when you update from a old version
if (_light_use_white) {
setSetting("ch", 3, 0);
}
for (unsigned int i=0; i < _light_channel.size(); i++) { for (unsigned int i=0; i < _light_channel.size(); i++) {
if (_light_use_white && (i == 3)) continue; //Don't save white channel.
setSetting("ch", i, _getChannel(i));
setSetting("ch", i, _light_channel[i].inputValue);
} }
setSetting("brightness", _light_brightness); setSetting("brightness", _light_brightness);
saveSettings(); saveSettings();
@ -487,10 +437,8 @@ void _lightColorSave() {
void _lightColorRestore() { void _lightColorRestore() {
for (unsigned int i=0; i < _light_channel.size(); i++) { for (unsigned int i=0; i < _light_channel.size(); i++) {
_light_channel[i].value = getSetting("ch", i, i==0 ? 255 : 0).toInt();
_light_channel[i].inputValue = getSetting("ch", i, i==0 ? 255 : 0).toInt();
} }
_setWhite();
_light_brightness = getSetting("brightness", LIGHT_MAX_BRIGHTNESS).toInt(); _light_brightness = getSetting("brightness", LIGHT_MAX_BRIGHTNESS).toInt();
lightUpdate(false, false); lightUpdate(false, false);
} }
@ -510,7 +458,6 @@ void _lightMQTTCallback(unsigned int type, const char * topic, const char * payl
mqttSubscribe(MQTT_TOPIC_BRIGHTNESS); mqttSubscribe(MQTT_TOPIC_BRIGHTNESS);
mqttSubscribe(MQTT_TOPIC_MIRED); mqttSubscribe(MQTT_TOPIC_MIRED);
mqttSubscribe(MQTT_TOPIC_KELVIN); mqttSubscribe(MQTT_TOPIC_KELVIN);
mqttSubscribe(MQTT_TOPIC_COLOR); // DEPRECATE
mqttSubscribe(MQTT_TOPIC_COLOR_RGB); mqttSubscribe(MQTT_TOPIC_COLOR_RGB);
mqttSubscribe(MQTT_TOPIC_COLOR_HSV); mqttSubscribe(MQTT_TOPIC_COLOR_HSV);
} }
@ -552,7 +499,7 @@ void _lightMQTTCallback(unsigned int type, const char * topic, const char * payl
} }
// Color // Color
if (t.equals(MQTT_TOPIC_COLOR) || t.equals(MQTT_TOPIC_COLOR_RGB)) { // DEPRECATE MQTT_TOPIC_COLOR
if (t.equals(MQTT_TOPIC_COLOR_RGB)) {
lightColor(payload, true); lightColor(payload, true);
lightUpdate(true, mqttForward()); lightUpdate(true, mqttForward());
return; return;
@ -587,19 +534,18 @@ void _lightMQTTCallback(unsigned int type, const char * topic, const char * payl
} }
void lightMQTT() { void lightMQTT() {
char buffer[20]; char buffer[20];
if (_light_has_color) { if (_light_has_color) {
// Color // Color
if (getSetting("useCSS", LIGHT_USE_CSS).toInt() == 1) { if (getSetting("useCSS", LIGHT_USE_CSS).toInt() == 1) {
_toRGB(buffer, sizeof(buffer), false);
_toRGB(buffer, sizeof(buffer));
} else { } else {
_toLong(buffer, sizeof(buffer), false);
_toLong(buffer, sizeof(buffer));
} }
mqttSend(MQTT_TOPIC_COLOR, buffer); // DEPRECATE
mqttSend(MQTT_TOPIC_COLOR_RGB, buffer); mqttSend(MQTT_TOPIC_COLOR_RGB, buffer);
_toHSV(buffer, sizeof(buffer)); _toHSV(buffer, sizeof(buffer));
mqttSend(MQTT_TOPIC_COLOR_HSV, buffer); mqttSend(MQTT_TOPIC_COLOR_HSV, buffer);
@ -607,11 +553,14 @@ void lightMQTT() {
snprintf_P(buffer, sizeof(buffer), PSTR("%d"), _light_brightness); snprintf_P(buffer, sizeof(buffer), PSTR("%d"), _light_brightness);
mqttSend(MQTT_TOPIC_BRIGHTNESS, buffer); mqttSend(MQTT_TOPIC_BRIGHTNESS, buffer);
// Mireds
snprintf_P(buffer, sizeof(buffer), PSTR("%d"), _light_mireds);
mqttSend(MQTT_TOPIC_MIRED, buffer);
} }
// Channels // Channels
for (unsigned int i=0; i < _light_channel.size(); i++) { for (unsigned int i=0; i < _light_channel.size(); i++) {
itoa(_light_channel[i].value, buffer, 10);
itoa(_light_channel[i].inputValue, buffer, 10);
mqttSend(MQTT_TOPIC_CHANNEL, i, buffer); mqttSend(MQTT_TOPIC_CHANNEL, i, buffer);
} }
@ -637,7 +586,7 @@ void lightMQTTGroup() {
void lightBroker() { void lightBroker() {
char buffer[10]; char buffer[10];
for (unsigned int i=0; i < _light_channel.size(); i++) { for (unsigned int i=0; i < _light_channel.size(); i++) {
itoa(_light_channel[i].value, buffer, 10);
itoa(_light_channel[i].inputValue, buffer, 10);
brokerPublish(MQTT_TOPIC_CHANNEL, i, buffer); brokerPublish(MQTT_TOPIC_CHANNEL, i, buffer);
} }
} }
@ -656,12 +605,10 @@ bool lightHasColor() {
return _light_has_color; return _light_has_color;
} }
unsigned char lightWhiteChannels() {
return _light_channel.size() % 3;
}
void lightUpdate(bool save, bool forward, bool group_forward) { void lightUpdate(bool save, bool forward, bool group_forward) {
_generateBrightness();
// Configure color transition // Configure color transition
_light_steps_left = _light_use_transitions ? LIGHT_TRANSITION_STEPS : 1; _light_steps_left = _light_use_transitions ? LIGHT_TRANSITION_STEPS : 1;
_light_transition_ticker.attach_ms(LIGHT_TRANSITION_STEP, _lightProviderUpdate); _light_transition_ticker.attach_ms(LIGHT_TRANSITION_STEP, _lightProviderUpdate);
@ -735,7 +682,7 @@ void lightColor(unsigned long color) {
String lightColor(bool rgb) { String lightColor(bool rgb) {
char str[12]; char str[12];
if (rgb) { if (rgb) {
_toRGB(str, sizeof(str), false);
_toRGB(str, sizeof(str));
} else { } else {
_toHSV(str, sizeof(str)); _toHSV(str, sizeof(str));
} }
@ -748,14 +695,14 @@ String lightColor() {
unsigned int lightChannel(unsigned char id) { unsigned int lightChannel(unsigned char id) {
if (id <= _light_channel.size()) { if (id <= _light_channel.size()) {
return _light_channel[id].value;
return _light_channel[id].inputValue;
} }
return 0; return 0;
} }
void lightChannel(unsigned char id, unsigned int value) { void lightChannel(unsigned char id, unsigned int value) {
if (id <= _light_channel.size()) { if (id <= _light_channel.size()) {
_light_channel[id].value = constrain(value, 0, LIGHT_MAX_VALUE);
_light_channel[id].inputValue = constrain(value, 0, LIGHT_MAX_VALUE);
} }
} }
@ -796,15 +743,13 @@ void _lightWebSocketOnSend(JsonObject& root) {
} }
} }
JsonArray& channels = root.createNestedArray("channels"); JsonArray& channels = root.createNestedArray("channels");
for (unsigned char id=0; id < lightChannels(); id++) {
for (unsigned char id=0; id < _light_channel.size(); id++) {
channels.add(lightChannel(id)); channels.add(lightChannel(id));
} }
} }
void _lightWebSocketOnAction(uint32_t client_id, const char * action, JsonObject& data) { void _lightWebSocketOnAction(uint32_t client_id, const char * action, JsonObject& data) {
if (_light_has_color) { if (_light_has_color) {
if (strcmp(action, "color") == 0) { if (strcmp(action, "color") == 0) {
if (data.containsKey("rgb")) { if (data.containsKey("rgb")) {
lightColor(data["rgb"], true); lightColor(data["rgb"], true);
@ -819,7 +764,6 @@ void _lightWebSocketOnAction(uint32_t client_id, const char * action, JsonObject
lightUpdate(true, true); lightUpdate(true, true);
} }
} }
} }
if (strcmp(action, "channel") == 0) { if (strcmp(action, "channel") == 0) {
@ -828,99 +772,76 @@ void _lightWebSocketOnAction(uint32_t client_id, const char * action, JsonObject
lightUpdate(true, true); lightUpdate(true, true);
} }
} }
} }
void _lightAPISetup() { void _lightAPISetup() {
// API entry points (protected with apikey)
if (_light_has_color) {
// DEPRECATE
apiRegister(MQTT_TOPIC_COLOR,
[](char * buffer, size_t len) {
if (getSetting("useCSS", LIGHT_USE_CSS).toInt() == 1) {
_toRGB(buffer, len, false);
} else {
_toLong(buffer, len, false);
}
},
[](const char * payload) {
lightColor(payload, true);
lightUpdate(true, true);
}
);
apiRegister(MQTT_TOPIC_COLOR_RGB,
[](char * buffer, size_t len) {
if (getSetting("useCSS", LIGHT_USE_CSS).toInt() == 1) {
_toRGB(buffer, len, false);
} else {
_toLong(buffer, len, false);
}
},
[](const char * payload) {
lightColor(payload, true);
lightUpdate(true, true);
}
);
apiRegister(MQTT_TOPIC_COLOR_HSV,
[](char * buffer, size_t len) {
_toHSV(buffer, len);
},
[](const char * payload) {
lightColor(payload, false);
lightUpdate(true, true);
}
);
apiRegister(MQTT_TOPIC_BRIGHTNESS,
[](char * buffer, size_t len) {
snprintf_P(buffer, len, PSTR("%d"), _light_brightness);
},
[](const char * payload) {
lightBrightness(atoi(payload));
lightUpdate(true, true);
}
);
apiRegister(MQTT_TOPIC_KELVIN,
[](char * buffer, size_t len) {},
[](const char * payload) {
_fromKelvin(atol(payload));
lightUpdate(true, true);
}
);
apiRegister(MQTT_TOPIC_MIRED,
[](char * buffer, size_t len) {},
[](const char * payload) {
_fromMireds(atol(payload));
lightUpdate(true, true);
// API entry points (protected with apikey)
if (_light_has_color) {
apiRegister(MQTT_TOPIC_COLOR_RGB,
[](char * buffer, size_t len) {
if (getSetting("useCSS", LIGHT_USE_CSS).toInt() == 1) {
_toRGB(buffer, len);
} else {
_toLong(buffer, len);
} }
);
}
for (unsigned int id=0; id<lightChannels(); id++) {
},
[](const char * payload) {
lightColor(payload, true);
lightUpdate(true, true);
}
);
char key[15];
snprintf_P(key, sizeof(key), PSTR("%s/%d"), MQTT_TOPIC_CHANNEL, id);
apiRegister(MQTT_TOPIC_COLOR_HSV,
[](char * buffer, size_t len) {
_toHSV(buffer, len);
},
[](const char * payload) {
lightColor(payload, false);
lightUpdate(true, true);
}
);
apiRegister(key,
[id](char * buffer, size_t len) {
snprintf_P(buffer, len, PSTR("%d"), lightChannel(id));
},
[id](const char * payload) {
lightChannel(id, atoi(payload));
lightUpdate(true, true);
}
);
apiRegister(MQTT_TOPIC_BRIGHTNESS,
[](char * buffer, size_t len) {
snprintf_P(buffer, len, PSTR("%d"), _light_brightness);
},
[](const char * payload) {
lightBrightness(atoi(payload));
lightUpdate(true, true);
}
);
}
apiRegister(MQTT_TOPIC_KELVIN,
[](char * buffer, size_t len) {},
[](const char * payload) {
_fromKelvin(atol(payload));
lightUpdate(true, true);
}
);
apiRegister(MQTT_TOPIC_MIRED,
[](char * buffer, size_t len) {},
[](const char * payload) {
_fromMireds(atol(payload));
lightUpdate(true, true);
}
);
}
for (unsigned int id=0; id<_light_channel.size(); id++) {
char key[15];
snprintf_P(key, sizeof(key), PSTR("%s/%d"), MQTT_TOPIC_CHANNEL, id);
apiRegister(key,
[id](char * buffer, size_t len) {
snprintf_P(buffer, len, PSTR("%d"), lightChannel(id));
},
[id](const char * payload) {
lightChannel(id, atoi(payload));
lightUpdate(true, true);
}
);
}
} }
#endif // WEB_SUPPORT #endif // WEB_SUPPORT


Loading…
Cancel
Save