Browse Source

Merge pull request #749 from Skaronator/master

Implement RGBW correctly
rfm69
Xose Pérez 6 years ago
committed by GitHub
parent
commit
2f972fce43
No known key found for this signature in database GPG Key ID: 4AEE18F83AFDEB23
2 changed files with 239 additions and 277 deletions
  1. +3
    -1
      code/espurna/config/general.h
  2. +236
    -276
      code/espurna/light.ino

+ 3
- 1
code/espurna/config/general.h View File

@ -622,7 +622,6 @@ PROGMEM const char* const custom_reset_string[] = {
// Light module // Light module
#define MQTT_TOPIC_CHANNEL "channel" #define MQTT_TOPIC_CHANNEL "channel"
#define MQTT_TOPIC_COLOR "color" // DEPRECATED, use RGB instead
#define MQTT_TOPIC_COLOR_RGB "rgb" #define MQTT_TOPIC_COLOR_RGB "rgb"
#define MQTT_TOPIC_COLOR_HSV "hsv" #define MQTT_TOPIC_COLOR_HSV "hsv"
#define MQTT_TOPIC_ANIM_MODE "anim_mode" #define MQTT_TOPIC_ANIM_MODE "anim_mode"
@ -717,6 +716,9 @@ PROGMEM const char* const custom_reset_string[] = {
#endif #endif
#define LIGHT_MAX_BRIGHTNESS 255 // Maximun brightness value #define LIGHT_MAX_BRIGHTNESS 255 // Maximun brightness value
//#define LIGHT_MIN_MIREDS 153 // NOT USED (yet)! // Default to the Philips Hue value that HA has always assumed
//#define LIGHT_MAX_MIREDS 500 // NOT USED (yet)! // https://developers.meethue.com/documentation/core-concepts
#define LIGHT_DEFAULT_MIREDS 153 // Default value used by MQTT. This value is __NEVRER__ applied!
#define LIGHT_STEP 32 // Step size #define LIGHT_STEP 32 // Step size
#define LIGHT_USE_COLOR 1 // Use 3 first channels as RGB #define LIGHT_USE_COLOR 1 // Use 3 first channels as RGB
#define LIGHT_USE_WHITE 0 // Use white channel whenever RGB have the same value #define LIGHT_USE_WHITE 0 // Use white channel whenever RGB have the same value


+ 236
- 276
code/espurna/light.ino View File

@ -28,7 +28,8 @@ typedef struct {
unsigned char pin; unsigned char pin;
bool reverse; bool reverse;
bool state; bool state;
unsigned char value; // target or nominal value
unsigned char inputValue; // value that has been inputted
unsigned char value; // normalized value including brightness
unsigned char shadow; // represented value unsigned char shadow; // represented value
double current; // transition value double current; // transition value
} channel_t; } channel_t;
@ -41,7 +42,8 @@ bool _light_has_color = false;
bool _light_use_white = false; bool _light_use_white = false;
bool _light_use_gamma = false; bool _light_use_gamma = false;
unsigned long _light_steps_left = 1; unsigned long _light_steps_left = 1;
unsigned int _light_brightness = LIGHT_MAX_BRIGHTNESS;
unsigned char _light_brightness = LIGHT_MAX_BRIGHTNESS;
unsigned int _light_mireds = LIGHT_DEFAULT_MIREDS;
#if LIGHT_PROVIDER == LIGHT_PROVIDER_MY92XX #if LIGHT_PROVIDER == LIGHT_PROVIDER_MY92XX
#include <my92xx.h> #include <my92xx.h>
@ -74,99 +76,111 @@ const unsigned char _light_gamma_table[] = {
// UTILS // UTILS
// ----------------------------------------------------------------------------- // -----------------------------------------------------------------------------
void _fromLong(unsigned long value, bool brightness) {
void _setRGBInputValue(unsigned char red, unsigned char green, unsigned char blue) {
_light_channel[0].inputValue = red;
_light_channel[1].inputValue = green;
_light_channel[2].inputValue = blue;
}
void _generateBrightness() {
double brightness = (double) _light_brightness / LIGHT_MAX_BRIGHTNESS;
// Convert RGB to RGBW
if (_light_has_color && _light_use_white) {
unsigned char white, max_in, max_out;
double factor = 0;
white = std::min(_light_channel[0].inputValue, std::min(_light_channel[1].inputValue, _light_channel[2].inputValue));
max_in = std::max(_light_channel[0].inputValue, std::max(_light_channel[1].inputValue, _light_channel[2].inputValue));
for (unsigned int i=0; i < 3; i++) {
_light_channel[i].value = _light_channel[i].inputValue - white;
}
_light_channel[3].value = white;
max_out = std::max(std::max(_light_channel[0].value, _light_channel[1].value), std::max(_light_channel[2].value, _light_channel[3].value));
if (max_out > 0) {
factor = (double) (max_in / max_out);
}
// Scale up to equal input values. So [250,150,50] -> [200,100,0,50] -> [250, 125, 0, 63]
for (unsigned int i=0; i < 4; i++) {
_light_channel[i].value = round((double) _light_channel[i].value * factor * brightness);
}
// Don't apply brightness, it is already in the inputValue:
if (_light_channel.size() == 5) {
_light_channel[4].value = _light_channel[4].inputValue;
}
} else {
// Don't apply brightness, it is already in the inputValue:
for (unsigned char i=0; i < _light_channel.size(); i++) {
_light_channel[i].value = _light_channel[i].inputValue;
}
}
}
// -----------------------------------------------------------------------------
// Input Values
// -----------------------------------------------------------------------------
void _fromLong(unsigned long value, bool brightness) {
if (brightness) { if (brightness) {
_light_channel[0].value = (value >> 24) & 0xFF;
_light_channel[1].value = (value >> 16) & 0xFF;
_light_channel[2].value = (value >> 8) & 0xFF;
_setRGBInputValue((value >> 24) & 0xFF, (value >> 16) & 0xFF, (value >> 8) & 0xFF);
_light_brightness = (value & 0xFF) * LIGHT_MAX_BRIGHTNESS / 255; _light_brightness = (value & 0xFF) * LIGHT_MAX_BRIGHTNESS / 255;
} else { } else {
_light_channel[0].value = (value >> 16) & 0xFF;
_light_channel[1].value = (value >> 8) & 0xFF;
_light_channel[2].value = (value) & 0xFF;
_setRGBInputValue((value >> 16) & 0xFF, (value >> 8) & 0xFF, (value) & 0xFF);
} }
} }
void _fromRGB(const char * rgb) { void _fromRGB(const char * rgb) {
char * p = (char *) rgb; char * p = (char *) rgb;
if (strlen(p) == 0) return; if (strlen(p) == 0) return;
// if color begins with a # then assume HEX RGB
if (p[0] == '#') {
switch (p[0]) {
case '#': // HEX Value
if (_light_has_color) { if (_light_has_color) {
++p; ++p;
unsigned long value = strtoul(p, NULL, 16); unsigned long value = strtoul(p, NULL, 16);
// RGBA values are interpreted like RGB + brightness // RGBA values are interpreted like RGB + brightness
_fromLong(value, strlen(p) > 7); _fromLong(value, strlen(p) > 7);
} }
// it's a temperature in mireds
} else if (p[0] == 'M') {
break;
case 'M': // Mired Value
if (_light_has_color) { if (_light_has_color) {
unsigned long mireds = atol(p + 1); unsigned long mireds = atol(p + 1);
_fromMireds(mireds); _fromMireds(mireds);
} }
// it's a temperature in kelvin
} else if (p[0] == 'K') {
break;
case 'K': // Kelvin Value
if (_light_has_color) { if (_light_has_color) {
unsigned long kelvin = atol(p + 1); unsigned long kelvin = atol(p + 1);
_fromKelvin(kelvin); _fromKelvin(kelvin);
} }
// otherwise assume decimal values separated by commas
} else {
break;
default: // assume decimal values separated by commas
char * tok; char * tok;
unsigned char count = 0; unsigned char count = 0;
unsigned char channels = _light_channel.size(); unsigned char channels = _light_channel.size();
tok = strtok(p, ","); tok = strtok(p, ",");
while (tok != NULL) { while (tok != NULL) {
_light_channel[count].value = atoi(tok);
_light_channel[count].inputValue = atoi(tok);
if (++count == channels) break; if (++count == channels) break;
tok = strtok(NULL, ","); tok = strtok(NULL, ",");
} }
// RGB but less than 3 values received
// RGB but less than 3 values received, assume it is 0
if (_light_has_color && (count < 3)) { if (_light_has_color && (count < 3)) {
_light_channel[1].value = _light_channel[0].value;
_light_channel[2].value = _light_channel[0].value;
// check channel 1 and 2:
for (int i = 1; i <= 2; i++) {
if (count < (i+1)) {
_light_channel[i].inputValue = 0;
}
}
} }
break;
} }
}
void _toRGB(char * rgb, size_t len, bool applyBrightness) {
if (!_light_has_color) return;
float b = applyBrightness ? (float) _light_brightness / LIGHT_MAX_BRIGHTNESS : 1;
unsigned long value = 0;
value += _light_channel[0].value * b;
value <<= 8;
value += _light_channel[1].value * b;
value <<= 8;
value += _light_channel[2].value * b;
snprintf_P(rgb, len, PSTR("#%06X"), value);
}
void _toRGB(char * rgb, size_t len) {
_toRGB(rgb, len, false);
} }
// HSV string is expected to be "H,S,V", where: // HSV string is expected to be "H,S,V", where:
@ -193,86 +207,122 @@ void _fromHSV(const char * hsv) {
// HSV to RGB transformation ----------------------------------------------- // HSV to RGB transformation -----------------------------------------------
//INPUT: [0,100,57]
//IS: [145,0,0]
//SHOULD: [255,0,0]
double h = (value[0] == 360) ? 0 : (double) value[0] / 60.0; double h = (value[0] == 360) ? 0 : (double) value[0] / 60.0;
double f = (h - floor(h)); double f = (h - floor(h));
double s = (double) value[1] / 100.0; double s = (double) value[1] / 100.0;
unsigned char v = round((double) value[2] * 255.0 / 100.0);
unsigned char p = round(v * (1.0 - s));
unsigned char q = round(v * (1.0 - s * f));
unsigned char t = round(v * (1.0 - s * (1.0 - f)));
_light_brightness = round((double) value[2] * 2.55); // (255/100)
unsigned char p = round(255 * (1.0 - s));
unsigned char q = round(255 * (1.0 - s * f));
unsigned char t = round(255 * (1.0 - s * (1.0 - f)));
switch (int(h)) { switch (int(h)) {
case 0: case 0:
_light_channel[0].value = v;
_light_channel[1].value = t;
_light_channel[2].value = p;
_setRGBInputValue(255, t, p);
break; break;
case 1: case 1:
_light_channel[0].value = q;
_light_channel[1].value = v;
_light_channel[2].value = p;
_setRGBInputValue(q, 255, p);
break; break;
case 2: case 2:
_light_channel[0].value = p;
_light_channel[1].value = v;
_light_channel[2].value = t;
_setRGBInputValue(p, 255, t);
break; break;
case 3: case 3:
_light_channel[0].value = p;
_light_channel[1].value = q;
_light_channel[2].value = v;
_setRGBInputValue(p, q, 255);
break; break;
case 4: case 4:
_light_channel[0].value = t;
_light_channel[1].value = p;
_light_channel[2].value = v;
_setRGBInputValue(t, p, 255);
break; break;
case 5: case 5:
_light_channel[0].value = v;
_light_channel[1].value = p;
_light_channel[2].value = q;
_setRGBInputValue(255, p, q);
break; break;
default: default:
_light_channel[0].value = 0;
_light_channel[1].value = 0;
_light_channel[2].value = 0;
_setRGBInputValue(0,0,0);
break; break;
} }
}
_light_brightness = LIGHT_MAX_BRIGHTNESS;
// Thanks to Sacha Telgenhof for sharing this code in his AiLight library
// https://github.com/stelgenhof/AiLight
void _fromKelvin(unsigned long kelvin, bool setMireds) {
// Check we have RGB channels
if (!_light_has_color) return;
if (setMireds) {
_light_mireds = round(1000000UL / kelvin);
}
// Calculate colors
unsigned int red = (kelvin <= 66)
? LIGHT_MAX_VALUE
: 329.698727446 * pow((kelvin - 60), -0.1332047592);
unsigned int green = (kelvin <= 66)
? 99.4708025861 * log(kelvin) - 161.1195681661
: 288.1221695283 * pow(kelvin, -0.0755148492);
unsigned int blue = (kelvin >= 66)
? LIGHT_MAX_VALUE
: ((kelvin <= 19)
? 0
: 138.5177312231 * log(kelvin - 10) - 305.0447927307);
_setRGBInputValue(
constrain(red, 0, LIGHT_MAX_VALUE),
constrain(green, 0, LIGHT_MAX_VALUE),
constrain(blue, 0, LIGHT_MAX_VALUE)
);
} }
void _toHSV(char * hsv, size_t len) {
void _fromKelvin(unsigned long kelvin) {
_fromKelvin(kelvin, true);
}
if (!_light_has_color) return;
// Color temperature is measured in mireds (kelvin = 1e6/mired)
void _fromMireds(unsigned long mireds) {
if (mireds == 0) mireds = 1;
_light_mireds = mireds;
unsigned long kelvin = constrain(1000000UL / mireds, 1000, 40000) / 100;
_fromKelvin(kelvin, false);
}
// -----------------------------------------------------------------------------
// Output Values
// -----------------------------------------------------------------------------
void _toRGB(char * rgb, size_t len) {
unsigned long value = 0;
value += _light_channel[0].inputValue;
value <<= 8;
value += _light_channel[1].inputValue;
value <<= 8;
value += _light_channel[2].inputValue;
double min, max;
double h, s, v;
snprintf_P(rgb, len, PSTR("#%06X"), value);
}
double r = (double) _light_channel[0].value / 255.0;
double g = (double) _light_channel[1].value / 255.0;
double b = (double) _light_channel[2].value / 255.0;
void _toHSV(char * hsv, size_t len) {
double min, max, h, s, v;
double brightness = (double) _light_brightness / LIGHT_MAX_BRIGHTNESS;
double r = (double) (_light_channel[0].inputValue * brightness) / 255.0;
double g = (double) (_light_channel[1].inputValue * brightness) / 255.0;
double b = (double) (_light_channel[2].inputValue * brightness) / 255.0;
min = (r < g) ? r : g;
min = (min < b) ? min : b;
max = (r > g) ? r : g;
max = (max > b) ? max : b;
min = std::min(r, std::min(g, b));
max = std::max(r, std::max(g, b));
v = 100.0 * max; v = 100.0 * max;
if (v == 0) { if (v == 0) {
h = s = 0; h = s = 0;
} else { } else {
s = 100.0 * (max - min) / max; s = 100.0 * (max - min) / max;
if (s == 0) { if (s == 0) {
h = 0; h = 0;
} else { } else {
if (max == r) { if (max == r) {
if (g >= b) { if (g >= b) {
h = 0.0 + 60.0 * (g - b) / (max - min); h = 0.0 + 60.0 * (g - b) / (max - min);
@ -285,77 +335,33 @@ void _toHSV(char * hsv, size_t len) {
h = 240.0 + 60.0 * (r - g) / (max - min); h = 240.0 + 60.0 * (r - g) / (max - min);
} }
} }
} }
// String // String
snprintf_P(hsv, len, PSTR("%d,%d,%d"), round(h), round(s), round(v)); snprintf_P(hsv, len, PSTR("%d,%d,%d"), round(h), round(s), round(v));
} }
void _toLong(char * color, size_t len, bool applyBrightness) {
void _toLong(char * color, size_t len) {
if (!_light_has_color) return; if (!_light_has_color) return;
float b = applyBrightness ? (float) _light_brightness / LIGHT_MAX_BRIGHTNESS : 1;
snprintf_P(color, len, PSTR("%d,%d,%d"), snprintf_P(color, len, PSTR("%d,%d,%d"),
(int) (_light_channel[0].value * b),
(int) (_light_channel[1].value * b),
(int) (_light_channel[2].value * b)
(int) _light_channel[0].inputValue,
(int) _light_channel[1].inputValue,
(int) _light_channel[2].inputValue
); );
}
void _toLong(char * color, size_t len) {
_toLong(color, len, false);
} }
void _toCSV(char * buffer, size_t len, bool applyBrightness) { void _toCSV(char * buffer, size_t len, bool applyBrightness) {
char num[10]; char num[10];
float b = applyBrightness ? (float) _light_brightness / LIGHT_MAX_BRIGHTNESS : 1; float b = applyBrightness ? (float) _light_brightness / LIGHT_MAX_BRIGHTNESS : 1;
for (unsigned char i=0; i<_light_channel.size(); i++) { for (unsigned char i=0; i<_light_channel.size(); i++) {
itoa(_light_channel[i].value * b, num, 10);
itoa(_light_channel[i].inputValue * b, num, 10);
if (i>0) strncat(buffer, ",", len--); if (i>0) strncat(buffer, ",", len--);
strncat(buffer, num, len); strncat(buffer, num, len);
len = len - strlen(num); len = len - strlen(num);
} }
} }
// Thanks to Sacha Telgenhof for sharing this code in his AiLight library
// https://github.com/stelgenhof/AiLight
void _fromKelvin(unsigned long kelvin) {
// Check we have RGB channels
if (!_light_has_color) return;
// Calculate colors
unsigned int red = (kelvin <= 66)
? LIGHT_MAX_VALUE
: 329.698727446 * pow((kelvin - 60), -0.1332047592);
unsigned int green = (kelvin <= 66)
? 99.4708025861 * log(kelvin) - 161.1195681661
: 288.1221695283 * pow(kelvin, -0.0755148492);
unsigned int blue = (kelvin >= 66)
? LIGHT_MAX_VALUE
: ((kelvin <= 19)
? 0
: 138.5177312231 * log(kelvin - 10) - 305.0447927307);
// Save values
_light_channel[0].value = constrain(red, 0, LIGHT_MAX_VALUE);
_light_channel[1].value = constrain(green, 0, LIGHT_MAX_VALUE);
_light_channel[2].value = constrain(blue, 0, LIGHT_MAX_VALUE);
}
// Color temperature is measured in mireds (kelvin = 1e6/mired)
void _fromMireds(unsigned long mireds) {
if (mireds == 0) mireds = 1;
unsigned long kelvin = constrain(1000000UL / mireds, 1000, 40000) / 100;
_fromKelvin(kelvin);
}
// ----------------------------------------------------------------------------- // -----------------------------------------------------------------------------
// PROVIDER // PROVIDER
// ----------------------------------------------------------------------------- // -----------------------------------------------------------------------------
@ -375,7 +381,6 @@ unsigned int _toPWM(unsigned char id) {
} }
void _shadow() { void _shadow() {
// Update transition ticker // Update transition ticker
_light_steps_left--; _light_steps_left--;
if (_light_steps_left == 0) _light_transition_ticker.detach(); if (_light_steps_left == 0) _light_transition_ticker.detach();
@ -383,14 +388,7 @@ void _shadow() {
// Transitions // Transitions
unsigned char target; unsigned char target;
for (unsigned int i=0; i < _light_channel.size(); i++) { for (unsigned int i=0; i < _light_channel.size(); i++) {
if (_light_state && _light_channel[i].state) {
target = _light_channel[i].value;
if ((_light_brightness < LIGHT_MAX_BRIGHTNESS) && _light_has_color && (i < 3)) {
target *= ((float) _light_brightness / LIGHT_MAX_BRIGHTNESS);
}
} else {
target = 0;
}
target = _light_state ? _light_channel[i].value : 0;
if (_light_steps_left == 0) { if (_light_steps_left == 0) {
_light_channel[i].current = target; _light_channel[i].current = target;
} else { } else {
@ -399,17 +397,6 @@ void _shadow() {
} }
_light_channel[i].shadow = _light_channel[i].current; _light_channel[i].shadow = _light_channel[i].current;
} }
// Use white channel for same RGB
if (_light_use_white && _light_has_color) {
if (_light_channel[0].shadow == _light_channel[1].shadow && _light_channel[1].shadow == _light_channel[2].shadow ) {
_light_channel[3].shadow = _light_channel[0].shadow * ((float) _light_brightness / LIGHT_MAX_BRIGHTNESS);
_light_channel[2].shadow = 0;
_light_channel[1].shadow = 0;
_light_channel[0].shadow = 0;
}
}
} }
void _lightProviderUpdate() { void _lightProviderUpdate() {
@ -443,7 +430,7 @@ void _lightProviderUpdate() {
void _lightColorSave() { void _lightColorSave() {
for (unsigned int i=0; i < _light_channel.size(); i++) { for (unsigned int i=0; i < _light_channel.size(); i++) {
setSetting("ch", i, _light_channel[i].value);
setSetting("ch", i, _light_channel[i].inputValue);
} }
setSetting("brightness", _light_brightness); setSetting("brightness", _light_brightness);
saveSettings(); saveSettings();
@ -451,7 +438,7 @@ void _lightColorSave() {
void _lightColorRestore() { void _lightColorRestore() {
for (unsigned int i=0; i < _light_channel.size(); i++) { for (unsigned int i=0; i < _light_channel.size(); i++) {
_light_channel[i].value = getSetting("ch", i, i==0 ? 255 : 0).toInt();
_light_channel[i].inputValue = getSetting("ch", i, i==0 ? 255 : 0).toInt();
} }
_light_brightness = getSetting("brightness", LIGHT_MAX_BRIGHTNESS).toInt(); _light_brightness = getSetting("brightness", LIGHT_MAX_BRIGHTNESS).toInt();
lightUpdate(false, false); lightUpdate(false, false);
@ -472,7 +459,6 @@ void _lightMQTTCallback(unsigned int type, const char * topic, const char * payl
mqttSubscribe(MQTT_TOPIC_BRIGHTNESS); mqttSubscribe(MQTT_TOPIC_BRIGHTNESS);
mqttSubscribe(MQTT_TOPIC_MIRED); mqttSubscribe(MQTT_TOPIC_MIRED);
mqttSubscribe(MQTT_TOPIC_KELVIN); mqttSubscribe(MQTT_TOPIC_KELVIN);
mqttSubscribe(MQTT_TOPIC_COLOR); // DEPRECATE
mqttSubscribe(MQTT_TOPIC_COLOR_RGB); mqttSubscribe(MQTT_TOPIC_COLOR_RGB);
mqttSubscribe(MQTT_TOPIC_COLOR_HSV); mqttSubscribe(MQTT_TOPIC_COLOR_HSV);
} }
@ -514,7 +500,7 @@ void _lightMQTTCallback(unsigned int type, const char * topic, const char * payl
} }
// Color // Color
if (t.equals(MQTT_TOPIC_COLOR) || t.equals(MQTT_TOPIC_COLOR_RGB)) { // DEPRECATE MQTT_TOPIC_COLOR
if (t.equals(MQTT_TOPIC_COLOR_RGB)) {
lightColor(payload, true); lightColor(payload, true);
lightUpdate(true, mqttForward()); lightUpdate(true, mqttForward());
return; return;
@ -549,19 +535,18 @@ void _lightMQTTCallback(unsigned int type, const char * topic, const char * payl
} }
void lightMQTT() { void lightMQTT() {
char buffer[20]; char buffer[20];
if (_light_has_color) { if (_light_has_color) {
// Color // Color
if (getSetting("useCSS", LIGHT_USE_CSS).toInt() == 1) { if (getSetting("useCSS", LIGHT_USE_CSS).toInt() == 1) {
_toRGB(buffer, sizeof(buffer), false);
_toRGB(buffer, sizeof(buffer));
} else { } else {
_toLong(buffer, sizeof(buffer), false);
_toLong(buffer, sizeof(buffer));
} }
mqttSend(MQTT_TOPIC_COLOR, buffer); // DEPRECATE
mqttSend(MQTT_TOPIC_COLOR_RGB, buffer); mqttSend(MQTT_TOPIC_COLOR_RGB, buffer);
_toHSV(buffer, sizeof(buffer)); _toHSV(buffer, sizeof(buffer));
mqttSend(MQTT_TOPIC_COLOR_HSV, buffer); mqttSend(MQTT_TOPIC_COLOR_HSV, buffer);
@ -569,11 +554,14 @@ void lightMQTT() {
snprintf_P(buffer, sizeof(buffer), PSTR("%d"), _light_brightness); snprintf_P(buffer, sizeof(buffer), PSTR("%d"), _light_brightness);
mqttSend(MQTT_TOPIC_BRIGHTNESS, buffer); mqttSend(MQTT_TOPIC_BRIGHTNESS, buffer);
// Mireds
snprintf_P(buffer, sizeof(buffer), PSTR("%d"), _light_mireds);
mqttSend(MQTT_TOPIC_MIRED, buffer);
} }
// Channels // Channels
for (unsigned int i=0; i < _light_channel.size(); i++) { for (unsigned int i=0; i < _light_channel.size(); i++) {
itoa(_light_channel[i].value, buffer, 10);
itoa(_light_channel[i].inputValue, buffer, 10);
mqttSend(MQTT_TOPIC_CHANNEL, i, buffer); mqttSend(MQTT_TOPIC_CHANNEL, i, buffer);
} }
@ -599,7 +587,7 @@ void lightMQTTGroup() {
void lightBroker() { void lightBroker() {
char buffer[10]; char buffer[10];
for (unsigned int i=0; i < _light_channel.size(); i++) { for (unsigned int i=0; i < _light_channel.size(); i++) {
itoa(_light_channel[i].value, buffer, 10);
itoa(_light_channel[i].inputValue, buffer, 10);
brokerPublish(MQTT_TOPIC_CHANNEL, i, buffer); brokerPublish(MQTT_TOPIC_CHANNEL, i, buffer);
} }
} }
@ -618,12 +606,10 @@ bool lightHasColor() {
return _light_has_color; return _light_has_color;
} }
unsigned char lightWhiteChannels() {
return _light_channel.size() % 3;
}
void lightUpdate(bool save, bool forward, bool group_forward) { void lightUpdate(bool save, bool forward, bool group_forward) {
_generateBrightness();
// Configure color transition // Configure color transition
_light_steps_left = _light_use_transitions ? _light_transition_time / LIGHT_TRANSITION_STEP : 1; _light_steps_left = _light_use_transitions ? _light_transition_time / LIGHT_TRANSITION_STEP : 1;
_light_transition_ticker.attach_ms(LIGHT_TRANSITION_STEP, _lightProviderUpdate); _light_transition_ticker.attach_ms(LIGHT_TRANSITION_STEP, _lightProviderUpdate);
@ -697,7 +683,7 @@ void lightColor(unsigned long color) {
String lightColor(bool rgb) { String lightColor(bool rgb) {
char str[12]; char str[12];
if (rgb) { if (rgb) {
_toRGB(str, sizeof(str), false);
_toRGB(str, sizeof(str));
} else { } else {
_toHSV(str, sizeof(str)); _toHSV(str, sizeof(str));
} }
@ -710,14 +696,14 @@ String lightColor() {
unsigned int lightChannel(unsigned char id) { unsigned int lightChannel(unsigned char id) {
if (id <= _light_channel.size()) { if (id <= _light_channel.size()) {
return _light_channel[id].value;
return _light_channel[id].inputValue;
} }
return 0; return 0;
} }
void lightChannel(unsigned char id, unsigned int value) { void lightChannel(unsigned char id, unsigned int value) {
if (id <= _light_channel.size()) { if (id <= _light_channel.size()) {
_light_channel[id].value = constrain(value, 0, LIGHT_MAX_VALUE);
_light_channel[id].inputValue = constrain(value, 0, LIGHT_MAX_VALUE);
} }
} }
@ -765,15 +751,13 @@ void _lightWebSocketOnSend(JsonObject& root) {
} }
} }
JsonArray& channels = root.createNestedArray("channels"); JsonArray& channels = root.createNestedArray("channels");
for (unsigned char id=0; id < lightChannels(); id++) {
for (unsigned char id=0; id < _light_channel.size(); id++) {
channels.add(lightChannel(id)); channels.add(lightChannel(id));
} }
} }
void _lightWebSocketOnAction(uint32_t client_id, const char * action, JsonObject& data) { void _lightWebSocketOnAction(uint32_t client_id, const char * action, JsonObject& data) {
if (_light_has_color) { if (_light_has_color) {
if (strcmp(action, "color") == 0) { if (strcmp(action, "color") == 0) {
if (data.containsKey("rgb")) { if (data.containsKey("rgb")) {
lightColor(data["rgb"], true); lightColor(data["rgb"], true);
@ -788,7 +772,6 @@ void _lightWebSocketOnAction(uint32_t client_id, const char * action, JsonObject
lightUpdate(true, true); lightUpdate(true, true);
} }
} }
} }
if (strcmp(action, "channel") == 0) { if (strcmp(action, "channel") == 0) {
@ -797,99 +780,76 @@ void _lightWebSocketOnAction(uint32_t client_id, const char * action, JsonObject
lightUpdate(true, true); lightUpdate(true, true);
} }
} }
} }
void _lightAPISetup() { void _lightAPISetup() {
// API entry points (protected with apikey)
if (_light_has_color) {
// DEPRECATE
apiRegister(MQTT_TOPIC_COLOR,
[](char * buffer, size_t len) {
if (getSetting("useCSS", LIGHT_USE_CSS).toInt() == 1) {
_toRGB(buffer, len, false);
} else {
_toLong(buffer, len, false);
}
},
[](const char * payload) {
lightColor(payload, true);
lightUpdate(true, true);
}
);
apiRegister(MQTT_TOPIC_COLOR_RGB,
[](char * buffer, size_t len) {
if (getSetting("useCSS", LIGHT_USE_CSS).toInt() == 1) {
_toRGB(buffer, len, false);
} else {
_toLong(buffer, len, false);
}
},
[](const char * payload) {
lightColor(payload, true);
lightUpdate(true, true);
}
);
apiRegister(MQTT_TOPIC_COLOR_HSV,
[](char * buffer, size_t len) {
_toHSV(buffer, len);
},
[](const char * payload) {
lightColor(payload, false);
lightUpdate(true, true);
}
);
apiRegister(MQTT_TOPIC_BRIGHTNESS,
[](char * buffer, size_t len) {
snprintf_P(buffer, len, PSTR("%d"), _light_brightness);
},
[](const char * payload) {
lightBrightness(atoi(payload));
lightUpdate(true, true);
}
);
apiRegister(MQTT_TOPIC_KELVIN,
[](char * buffer, size_t len) {},
[](const char * payload) {
_fromKelvin(atol(payload));
lightUpdate(true, true);
}
);
apiRegister(MQTT_TOPIC_MIRED,
[](char * buffer, size_t len) {},
[](const char * payload) {
_fromMireds(atol(payload));
lightUpdate(true, true);
// API entry points (protected with apikey)
if (_light_has_color) {
apiRegister(MQTT_TOPIC_COLOR_RGB,
[](char * buffer, size_t len) {
if (getSetting("useCSS", LIGHT_USE_CSS).toInt() == 1) {
_toRGB(buffer, len);
} else {
_toLong(buffer, len);
} }
);
}
for (unsigned int id=0; id<lightChannels(); id++) {
char key[15];
snprintf_P(key, sizeof(key), PSTR("%s/%d"), MQTT_TOPIC_CHANNEL, id);
},
[](const char * payload) {
lightColor(payload, true);
lightUpdate(true, true);
}
);
apiRegister(key,
[id](char * buffer, size_t len) {
snprintf_P(buffer, len, PSTR("%d"), lightChannel(id));
},
[id](const char * payload) {
lightChannel(id, atoi(payload));
lightUpdate(true, true);
}
);
apiRegister(MQTT_TOPIC_COLOR_HSV,
[](char * buffer, size_t len) {
_toHSV(buffer, len);
},
[](const char * payload) {
lightColor(payload, false);
lightUpdate(true, true);
}
);
}
apiRegister(MQTT_TOPIC_BRIGHTNESS,
[](char * buffer, size_t len) {
snprintf_P(buffer, len, PSTR("%d"), _light_brightness);
},
[](const char * payload) {
lightBrightness(atoi(payload));
lightUpdate(true, true);
}
);
apiRegister(MQTT_TOPIC_KELVIN,
[](char * buffer, size_t len) {},
[](const char * payload) {
_fromKelvin(atol(payload));
lightUpdate(true, true);
}
);
apiRegister(MQTT_TOPIC_MIRED,
[](char * buffer, size_t len) {},
[](const char * payload) {
_fromMireds(atol(payload));
lightUpdate(true, true);
}
);
}
for (unsigned int id=0; id<_light_channel.size(); id++) {
char key[15];
snprintf_P(key, sizeof(key), PSTR("%s/%d"), MQTT_TOPIC_CHANNEL, id);
apiRegister(key,
[id](char * buffer, size_t len) {
snprintf_P(buffer, len, PSTR("%d"), lightChannel(id));
},
[id](const char * payload) {
lightChannel(id, atoi(payload));
lightUpdate(true, true);
}
);
}
} }
#endif // WEB_SUPPORT #endif // WEB_SUPPORT
@ -1055,8 +1015,8 @@ void lightSetup() {
DEBUG_MSG_P(PSTR("[LIGHT] LIGHT_PROVIDER = %d\n"), LIGHT_PROVIDER); DEBUG_MSG_P(PSTR("[LIGHT] LIGHT_PROVIDER = %d\n"), LIGHT_PROVIDER);
DEBUG_MSG_P(PSTR("[LIGHT] Number of channels: %d\n"), _light_channel.size()); DEBUG_MSG_P(PSTR("[LIGHT] Number of channels: %d\n"), _light_channel.size());
_lightColorRestore();
_lightConfigure(); _lightConfigure();
_lightColorRestore();
#if WEB_SUPPORT #if WEB_SUPPORT
_lightAPISetup(); _lightAPISetup();


Loading…
Cancel
Save