Browse Source

Some renaming

fastled
Xose Pérez 7 years ago
parent
commit
8b56ab8652
5 changed files with 342 additions and 294 deletions
  1. +1
    -1
      code/espurna/config/prototypes.h
  2. +12
    -10
      code/espurna/config/sensors.h
  3. +3
    -3
      code/espurna/sensor.ino
  4. +0
    -280
      code/espurna/sensors/EmonADS1115Sensor.h
  5. +326
    -0
      code/espurna/sensors/EmonADS1X15Sensor.h

+ 1
- 1
code/espurna/config/prototypes.h View File

@ -78,7 +78,7 @@ template<typename T> bool idbSend(const char * topic, unsigned char id, T payloa
#if DS18B20_SUPPORT
#include <OneWire.h>
#endif
#if EMON_ADS1115_SUPPORT
#if EMON_ADS1X15_SUPPORT & EMON_ADSX115_USE_I2CDEVLIB
#include <ADS1115.h>
#endif


+ 12
- 10
code/espurna/config/sensors.h View File

@ -181,21 +181,23 @@
#define EMON_ADC121_REFERENCE_VOLTAGE 3.3 // Reference voltage of the ADC
//--------------------------------------------------------------------------------
// Energy Monitor based on ADS1115
// Enable support by passing EMON_ADS1115_SUPPORT=1 build flag
// Energy Monitor based on ADS1X15
// Enable support by passing EMON_ADS1X15_SUPPORT=1 build flag
//--------------------------------------------------------------------------------
#ifndef EMON_ADS1115_SUPPORT
#define EMON_ADS1115_SUPPORT 1 // Do not build support by default
#ifndef EMON_ADS1X15_SUPPORT
#define EMON_ADS1X15_SUPPORT 1 // Do not build support by default
#endif
#define EMON_ADS1115_PORT_MASK 0x08 // A0=1 A1=2 A2=4 A4=8
#define EMON_ADS1115_I2C_ADDRESS 0x48 // I2C address of the ADS1115
#define EMON_ADSX115_USE_I2CDEVLIB 1 // Use I2CDevLib
#define EMON_ADS1115_CURRENT_RATIO 30 // Current ratio in the clamp (30V/1A)
#define EMON_ADS1115_ADC_BITS 16 // ADC depth
#define EMON_ADS1115_GAIN ADS1115_PGA_4P096
#define EMON_ADS1115_REFERENCE_VOLTAGE 8.192 // Double the gain for peak-to-peak
#define EMON_ADS1X15_ADS1115 1 // 0 for ADS10115, 1 for ADS1115
#define EMON_ADS1X15_PORT_MASK 0x08 // A0=1 A1=2 A2=4 A4=8
#define EMON_ADS1X15_I2C_ADDRESS 0x48 // I2C address of the ADS1115
#define EMON_ADS1X15_CURRENT_RATIO 30 // Current ratio in the clamp (30V/1A)
#define EMON_ADS1X15_ADC_BITS 16 // ADC depth
#define EMON_ADS1X15_REFERENCE_VOLTAGE 8.192 // Double the gain for peak-to-peak
//--------------------------------------------------------------------------------
// Internal power montior


+ 3
- 3
code/espurna/sensor.ino View File

@ -248,9 +248,9 @@ void sensorInit() {
sensorRegister(new EmonADC121Sensor(EMON_ADC121_I2C_ADDRESS, EMON_MAINS_VOLTAGE, EMON_ADC121_ADC_BITS, EMON_ADC121_REFERENCE_VOLTAGE, EMON_ADC121_CURRENT_RATIO));
#endif
#if EMON_ADS1115_SUPPORT
#include "sensors/EmonADS1115Sensor.h"
sensorRegister(new EmonADS1115Sensor(EMON_ADS1115_I2C_ADDRESS, EMON_ADS1115_PORT_MASK, EMON_MAINS_VOLTAGE, EMON_ADS1115_ADC_BITS, EMON_ADS1115_REFERENCE_VOLTAGE, EMON_ADS1115_CURRENT_RATIO));
#if EMON_ADS1X15_SUPPORT
#include "sensors/EmonADS1X15Sensor.h"
sensorRegister(new EmonADS1X15Sensor(EMON_ADS1X15_I2C_ADDRESS, EMON_ADS1X15_ADS1115, EMON_ADS1X15_PORT_MASK, EMON_MAINS_VOLTAGE, EMON_ADS1X15_ADC_BITS, EMON_ADS1X15_REFERENCE_VOLTAGE, EMON_ADS1X15_CURRENT_RATIO));
#endif
#if COUNTER_SUPPORT


+ 0
- 280
code/espurna/sensors/EmonADS1115Sensor.h View File

@ -1,280 +0,0 @@
// -----------------------------------------------------------------------------
// Energy monitor sensor
// -----------------------------------------------------------------------------
#pragma once
#include "Arduino.h"
#include "BaseSensor.h"
#include "EmonSensor.h"
#include <ADS1115.h>
/*
#if I2C_USE_BRZO
#include <brzo_i2c.h>
#else
#include <Wire.h>
#endif
#define ADS1015_CONVERSIONDELAY (1)
#define ADS1115_CONVERSIONDELAY (8)
#define ADS1015_BIT_SHIFT (4)
#define ADS1115_BIT_SHIFT (0)
#define ADS1015_REG_POINTER_MASK (0x03)
#define ADS1015_REG_POINTER_CONVERT (0x00)
#define ADS1015_REG_POINTER_CONFIG (0x01)
#define ADS1015_REG_POINTER_LOWTHRESH (0x02)
#define ADS1015_REG_POINTER_HITHRESH (0x03)
#define ADS1015_REG_CONFIG_OS_MASK (0x8000)
#define ADS1015_REG_CONFIG_OS_SINGLE (0x8000) // Write: Set to start a single-conversion
#define ADS1015_REG_CONFIG_OS_BUSY (0x0000) // Read: Bit = 0 when conversion is in progress
#define ADS1015_REG_CONFIG_OS_NOTBUSY (0x8000) // Read: Bit = 1 when device is not performing a conversion
#define ADS1015_REG_CONFIG_MUX_MASK (0x7000)
#define ADS1015_REG_CONFIG_MUX_DIFF_0_1 (0x0000) // Differential P = AIN0, N = AIN1 (default)
#define ADS1015_REG_CONFIG_MUX_DIFF_0_3 (0x1000) // Differential P = AIN0, N = AIN3
#define ADS1015_REG_CONFIG_MUX_DIFF_1_3 (0x2000) // Differential P = AIN1, N = AIN3
#define ADS1015_REG_CONFIG_MUX_DIFF_2_3 (0x3000) // Differential P = AIN2, N = AIN3
#define ADS1015_REG_CONFIG_MUX_SINGLE_0 (0x4000) // Single-ended AIN0
#define ADS1015_REG_CONFIG_MUX_SINGLE_1 (0x5000) // Single-ended AIN1
#define ADS1015_REG_CONFIG_MUX_SINGLE_2 (0x6000) // Single-ended AIN2
#define ADS1015_REG_CONFIG_MUX_SINGLE_3 (0x7000) // Single-ended AIN3
#define ADS1015_REG_CONFIG_PGA_MASK (0x0E00)
#define ADS1015_REG_CONFIG_PGA_6_144V (0x0000) // +/-6.144V range = Gain 2/3
#define ADS1015_REG_CONFIG_PGA_4_096V (0x0200) // +/-4.096V range = Gain 1
#define ADS1015_REG_CONFIG_PGA_2_048V (0x0400) // +/-2.048V range = Gain 2 (default)
#define ADS1015_REG_CONFIG_PGA_1_024V (0x0600) // +/-1.024V range = Gain 4
#define ADS1015_REG_CONFIG_PGA_0_512V (0x0800) // +/-0.512V range = Gain 8
#define ADS1015_REG_CONFIG_PGA_0_256V (0x0A00) // +/-0.256V range = Gain 16
#define ADS1015_REG_CONFIG_MODE_MASK (0x0100)
#define ADS1015_REG_CONFIG_MODE_CONTIN (0x0000) // Continuous conversion mode
#define ADS1015_REG_CONFIG_MODE_SINGLE (0x0100) // Power-down single-shot mode (default)
#define ADS1015_REG_CONFIG_DR_MASK (0x00E0)
#define ADS1015_REG_CONFIG_DR_128SPS (0x0000) // 128 samples per second
#define ADS1015_REG_CONFIG_DR_250SPS (0x0020) // 250 samples per second
#define ADS1015_REG_CONFIG_DR_490SPS (0x0040) // 490 samples per second
#define ADS1015_REG_CONFIG_DR_920SPS (0x0060) // 920 samples per second
#define ADS1015_REG_CONFIG_DR_1600SPS (0x0080) // 1600 samples per second (default)
#define ADS1015_REG_CONFIG_DR_2400SPS (0x00A0) // 2400 samples per second
#define ADS1015_REG_CONFIG_DR_3300SPS (0x00C0) // 3300 samples per second
#define ADS1015_REG_CONFIG_CMODE_MASK (0x0010)
#define ADS1015_REG_CONFIG_CMODE_TRAD (0x0000) // Traditional comparator with hysteresis (default)
#define ADS1015_REG_CONFIG_CMODE_WINDOW (0x0010) // Window comparator
#define ADS1015_REG_CONFIG_CPOL_MASK (0x0008)
#define ADS1015_REG_CONFIG_CPOL_ACTVLOW (0x0000) // ALERT/RDY pin is low when active (default)
#define ADS1015_REG_CONFIG_CPOL_ACTVHI (0x0008) // ALERT/RDY pin is high when active
#define ADS1015_REG_CONFIG_CLAT_MASK (0x0004) // Determines if ALERT/RDY pin latches once asserted
#define ADS1015_REG_CONFIG_CLAT_NONLAT (0x0000) // Non-latching comparator (default)
#define ADS1015_REG_CONFIG_CLAT_LATCH (0x0004) // Latching comparator
#define ADS1015_REG_CONFIG_CQUE_MASK (0x0003)
#define ADS1015_REG_CONFIG_CQUE_1CONV (0x0000) // Assert ALERT/RDY after one conversions
#define ADS1015_REG_CONFIG_CQUE_2CONV (0x0001) // Assert ALERT/RDY after two conversions
#define ADS1015_REG_CONFIG_CQUE_4CONV (0x0002) // Assert ALERT/RDY after four conversions
#define ADS1015_REG_CONFIG_CQUE_NONE (0x0003) // Disable the comparator and put ALERT/RDY in high state (default)
*/
#define EMON_ADS1115_CHANNELS 4
#define EMON_ADS1115_MAGNITUDES_PER_PORT 2
class EmonADS1115Sensor : public EmonSensor {
public:
EmonADS1115Sensor(unsigned char address, unsigned char mask, double voltage, unsigned char bits, double ref, double ratio): EmonSensor(voltage, bits, ref, ratio) {
// Cache
_address = address;
_mask = mask;
_ports = 0;
while (mask) {
if (mask & 0x01) ++_ports;
mask = mask >> 1;
}
_count = _ports * EMON_ADS1115_MAGNITUDES_PER_PORT;
// Initialize
_ads = new ADS1115(_address);
_ads->initialize();
_ads->setMode(ADS1115_MODE_CONTINUOUS);
_ads->setRate(ADS1115_RATE_860);
_ads->setGain(ADS1115_PGA_4P096);
// warmup
for (unsigned char port=0; port<_ports; port++) {
unsigned char channel = getChannel(port);
_ads->setMultiplexer(channel + 4);
read(channel, _pivot[channel]);
}
}
// Descriptive name of the sensor
String name() {
char buffer[30];
snprintf(buffer, sizeof(buffer), "EMON @ ADS1115 @ I2C (0x%02X)", _address);
return String(buffer);
}
// Descriptive name of the slot # index
String slot(unsigned char index) {
char buffer[35];
unsigned char channel = getChannel(index % _ports);
snprintf(buffer, sizeof(buffer), "EMON @ ADS1115 (A%d) @ I2C (0x%02X)", channel, _address);
return String(buffer);
}
// Type for slot # index
magnitude_t type(unsigned char index) {
if (index < _count) {
_error = SENSOR_ERROR_OK;
unsigned char magnitude = index / _ports;
if (magnitude == 0) return MAGNITUDE_CURRENT;
if (magnitude == 1) return MAGNITUDE_POWER_APPARENT;
//if (magnitude == 2) return MAGNITUDE_ENERGY;
//if (magnitude == 3) return MAGNITUDE_ENERGY_DELTA;
}
_error = SENSOR_ERROR_OUT_OF_RANGE;
return MAGNITUDE_NONE;
}
void pre() {
//static unsigned long last = 0;
for (unsigned char port=0; port<_ports; port++) {
unsigned char channel = getChannel(port);
_ads->setMultiplexer(channel + 4);
_current[port] = read(channel, _pivot[channel]);
//if (last > 0) {
// _delta[port] = _current[port] * _voltage * (millis() - last) / 1000;
//}
//_energy[port] += _delta[port];
}
//last = millis();
}
// Current value for slot # index
double value(unsigned char index) {
if (index < _count) {
_error = SENSOR_ERROR_OK;
unsigned char port = index % _ports;
unsigned char magnitude = index / _ports;
if (magnitude == 0) return _current[port];
if (magnitude == 1) return _current[port] * _voltage;
//if (magnitude == 2) return _energy[port];
//if (magnitude == 3) return _delta[port];
}
_error = SENSOR_ERROR_OUT_OF_RANGE;
return 0;
}
protected:
unsigned char getChannel(unsigned char port) {
unsigned char count = 0;
unsigned char bit = 1;
for (unsigned char channel=0; channel<EMON_ADS1115_CHANNELS; channel++) {
if ((_mask & bit) == bit) {
if (count == port) return channel;
++count;
}
bit <<= 1;
}
return 0;
}
unsigned int readADC(unsigned char channel) {
return _ads->getConversion();
}
/*
unsigned int readADC(unsigned char channel) {
if (channel > 3) return 0;
channel = 3;
unsigned int value;
// Start with default values
uint16_t config = 0;
config |= ADS1015_REG_CONFIG_CQUE_NONE; // Disable the comparator (default val)
config |= ADS1015_REG_CONFIG_CLAT_NONLAT; // Non-latching (default val)
config |= ADS1015_REG_CONFIG_CPOL_ACTVLOW; // Alert/Rdy active low (default val)
config |= ADS1015_REG_CONFIG_CMODE_TRAD; // Traditional comparator (default val)
config |= ADS1015_REG_CONFIG_DR_1600SPS; // 1600 samples per second (default)
config |= ADS1015_REG_CONFIG_MODE_SINGLE; // Single-shot mode (default)
config |= ADS1015_REG_CONFIG_OS_SINGLE; // Set 'start single-conversion' bit
config |= EMON_ADS1115_GAIN; // Set PGA/voltage range
config |= ((channel + 4) << 12); // Set single-ended input channel
Serial.println(config);
// Write config register to the ADC
#if I2C_USE_BRZO
uint8_t buffer[3];
buffer[0] = ADS1015_REG_POINTER_CONFIG;
buffer[1] = config >> 8;
buffer[2] = config & 0xFF;
brzo_i2c_start_transaction(_address, I2C_SCL_FREQUENCY);
brzo_i2c_write(buffer, 3, false);
//brzo_i2c_end_transaction();
#else
Wire.beginTransmission(_address);
Wire.write((uint8_t) ADS1015_REG_POINTER_CONFIG);
Wire.write((uint8_t) (config >> 8));
Wire.write((uint8_t) (config & 0xFF));
Wire.endTransmission();
#endif
// Wait for the conversion to complete
unsigned long start = millis();
while (millis() - start < ADS1115_CONVERSIONDELAY) delay(1);
// Read the conversion results
// Shift 12-bit results right 4 bits for the ADS1015
#if I2C_USE_BRZO
buffer[0] = ADS1015_REG_POINTER_CONVERT;
//brzo_i2c_start_transaction(_address, I2C_SCL_FREQUENCY);
brzo_i2c_write(buffer, 1, false);
brzo_i2c_read(buffer, 2, false);
brzo_i2c_end_transaction();
value = (buffer[0] & 0x0F) << 8;
value |= buffer[1];
#else
Wire.beginTransmission(_address);
Wire.write(ADS1015_REG_POINTER_CONVERT);
Wire.endTransmission();
Wire.requestFrom(_address, (unsigned char) 2);
value = Wire.read() << 8;
value |= Wire.read();
#endif
return value;
}
*/
ADS1115 * _ads;
unsigned char _address;
unsigned char _mask;
unsigned char _ports;
double _pivot[EMON_ADS1115_CHANNELS] = {0};
double _current[EMON_ADS1115_CHANNELS] = {0};
//unsigned long _energy[EMON_ADS1115_CHANNELS] = {0};
//unsigned long _delta[EMON_ADS1115_CHANNELS] = {0};
};

+ 326
- 0
code/espurna/sensors/EmonADS1X15Sensor.h View File

@ -0,0 +1,326 @@
// -----------------------------------------------------------------------------
// Energy monitor sensor
// -----------------------------------------------------------------------------
#pragma once
#include "Arduino.h"
#include "BaseSensor.h"
#include "EmonSensor.h"
#if EMON_ADSX115_USE_I2CDEVLIB
#include <ADS1115.h>
#else
#if I2C_USE_BRZO
#include <brzo_i2c.h>
#else
#include <Wire.h>
#endif
#endif
#define ADS1015_CONVERSIONDELAY (1)
#define ADS1115_CONVERSIONDELAY (8)
#define ADS1015_BIT_SHIFT (4)
#define ADS1115_BIT_SHIFT (0)
#define ADS1X15_REG_POINTER_MASK (0x03)
#define ADS1X15_REG_POINTER_CONVERT (0x00)
#define ADS1X15_REG_POINTER_CONFIG (0x01)
#define ADS1X15_REG_POINTER_LOWTHRESH (0x02)
#define ADS1X15_REG_POINTER_HITHRESH (0x03)
#define ADS1X15_REG_CONFIG_OS_MASK (0x8000)
#define ADS1X15_REG_CONFIG_OS_SINGLE (0x8000) // Write: Set to start a single-conversion
#define ADS1X15_REG_CONFIG_OS_BUSY (0x0000) // Read: Bit = 0 when conversion is in progress
#define ADS1X15_REG_CONFIG_OS_NOTBUSY (0x8000) // Read: Bit = 1 when device is not performing a conversion
#define ADS1X15_REG_CONFIG_MUX_MASK (0x7000)
#define ADS1X15_REG_CONFIG_MUX_DIFF_0_1 (0x0000) // Differential P = AIN0, N = AIN1 (default)
#define ADS1X15_REG_CONFIG_MUX_DIFF_0_3 (0x1000) // Differential P = AIN0, N = AIN3
#define ADS1X15_REG_CONFIG_MUX_DIFF_1_3 (0x2000) // Differential P = AIN1, N = AIN3
#define ADS1X15_REG_CONFIG_MUX_DIFF_2_3 (0x3000) // Differential P = AIN2, N = AIN3
#define ADS1X15_REG_CONFIG_MUX_SINGLE_0 (0x4000) // Single-ended AIN0
#define ADS1X15_REG_CONFIG_MUX_SINGLE_1 (0x5000) // Single-ended AIN1
#define ADS1X15_REG_CONFIG_MUX_SINGLE_2 (0x6000) // Single-ended AIN2
#define ADS1X15_REG_CONFIG_MUX_SINGLE_3 (0x7000) // Single-ended AIN3
#define ADS1X15_REG_CONFIG_PGA_MASK (0x0E00)
#define ADS1X15_REG_CONFIG_PGA_6_144V (0x0000) // +/-6.144V range = Gain 2/3
#define ADS1X15_REG_CONFIG_PGA_4_096V (0x0200) // +/-4.096V range = Gain 1
#define ADS1X15_REG_CONFIG_PGA_2_048V (0x0400) // +/-2.048V range = Gain 2 (default)
#define ADS1X15_REG_CONFIG_PGA_1_024V (0x0600) // +/-1.024V range = Gain 4
#define ADS1X15_REG_CONFIG_PGA_0_512V (0x0800) // +/-0.512V range = Gain 8
#define ADS1X15_REG_CONFIG_PGA_0_256V (0x0A00) // +/-0.256V range = Gain 16
#define ADS1X15_REG_CONFIG_MODE_MASK (0x0100)
#define ADS1X15_REG_CONFIG_MODE_CONTIN (0x0000) // Continuous conversion mode
#define ADS1X15_REG_CONFIG_MODE_SINGLE (0x0100) // Power-down single-shot mode (default)
#define ADS1X15_REG_CONFIG_DR_MASK (0x00E0)
#define ADS1015_REG_CONFIG_DR_128SPS (0x0000) // 128 samples per second
#define ADS1015_REG_CONFIG_DR_250SPS (0x0020) // 250 samples per second
#define ADS1015_REG_CONFIG_DR_490SPS (0x0040) // 490 samples per second
#define ADS1015_REG_CONFIG_DR_920SPS (0x0060) // 920 samples per second
#define ADS1015_REG_CONFIG_DR_1600SPS (0x0080) // 1600 samples per second (default)
#define ADS1015_REG_CONFIG_DR_2400SPS (0x00A0) // 2400 samples per second
#define ADS1015_REG_CONFIG_DR_3300SPS (0x00C0) // 3300 samples per second
#define ADS1115_REG_CONFIG_DR_8SPS (0x0000) // 8 samples per second
#define ADS1115_REG_CONFIG_DR_16SPS (0x0020) // 16 samples per second
#define ADS1115_REG_CONFIG_DR_32SPS (0x0040) // 32 samples per second
#define ADS1115_REG_CONFIG_DR_64SPS (0x0060) // 64 samples per second
#define ADS1115_REG_CONFIG_DR_128SPS (0x0080) // 128 samples per second (default)
#define ADS1115_REG_CONFIG_DR_250SPS (0x00A0) // 250 samples per second
#define ADS1115_REG_CONFIG_DR_475SPS (0x00C0) // 475 samples per second
#define ADS1115_REG_CONFIG_DR_860SPS (0x00E0) // 860 samples per second
#define ADS1X15_REG_CONFIG_CMODE_MASK (0x0010)
#define ADS1X15_REG_CONFIG_CMODE_TRAD (0x0000) // Traditional comparator with hysteresis (default)
#define ADS1X15_REG_CONFIG_CMODE_WINDOW (0x0010) // Window comparator
#define ADS1X15_REG_CONFIG_CPOL_MASK (0x0008)
#define ADS1X15_REG_CONFIG_CPOL_ACTVLOW (0x0000) // ALERT/RDY pin is low when active (default)
#define ADS1X15_REG_CONFIG_CPOL_ACTVHI (0x0008) // ALERT/RDY pin is high when active
#define ADS1X15_REG_CONFIG_CLAT_MASK (0x0004) // Determines if ALERT/RDY pin latches once asserted
#define ADS1X15_REG_CONFIG_CLAT_NONLAT (0x0000) // Non-latching comparator (default)
#define ADS1X15_REG_CONFIG_CLAT_LATCH (0x0004) // Latching comparator
#define ADS1X15_REG_CONFIG_CQUE_MASK (0x0003)
#define ADS1X15_REG_CONFIG_CQUE_1CONV (0x0000) // Assert ALERT/RDY after one conversions
#define ADS1X15_REG_CONFIG_CQUE_2CONV (0x0001) // Assert ALERT/RDY after two conversions
#define ADS1X15_REG_CONFIG_CQUE_4CONV (0x0002) // Assert ALERT/RDY after four conversions
#define ADS1X15_REG_CONFIG_CQUE_NONE (0x0003) // Disable the comparator and put ALERT/RDY in high state (default)
#define ADS1X15_CHANNELS 4
#define EMON_ADS1X15_MAGNITUDES_PER_PORT 2
class EmonADS1X15Sensor : public EmonSensor {
public:
EmonADS1X15Sensor(unsigned char address, bool is_ads1115, unsigned char mask, double voltage, unsigned char bits, double ref, double ratio): EmonSensor(voltage, bits, ref, ratio) {
// Cache
_is_ads1115 = is_ads1115;
_address = address;
_mask = mask;
_ports = 0;
while (mask) {
if (mask & 0x01) ++_ports;
mask = mask >> 1;
}
_count = _ports * EMON_ADS1X15_MAGNITUDES_PER_PORT;
// initialize
init();
// warmup
warmup();
}
// Descriptive name of the sensor
String name() {
char buffer[30];
snprintf(buffer, sizeof(buffer), "EMON @ ADS1%d15 @ I2C (0x%02X)", _is_ads1115 ? 1 : 0, _address);
return String(buffer);
}
// Descriptive name of the slot # index
String slot(unsigned char index) {
char buffer[35];
unsigned char channel = getChannel(index % _ports);
snprintf(buffer, sizeof(buffer), "EMON @ ADS1%d15 (A%d) @ I2C (0x%02X)", _is_ads1115 ? 1 : 0, channel, _address);
return String(buffer);
}
// Type for slot # index
magnitude_t type(unsigned char index) {
if (index < _count) {
_error = SENSOR_ERROR_OK;
unsigned char magnitude = index / _ports;
if (magnitude == 0) return MAGNITUDE_CURRENT;
if (magnitude == 1) return MAGNITUDE_POWER_APPARENT;
//if (magnitude == 2) return MAGNITUDE_ENERGY;
//if (magnitude == 3) return MAGNITUDE_ENERGY_DELTA;
}
_error = SENSOR_ERROR_OUT_OF_RANGE;
return MAGNITUDE_NONE;
}
void pre() {
//static unsigned long last = 0;
for (unsigned char port=0; port<_ports; port++) {
unsigned char channel = getChannel(port);
_current[port] = getCurrent(channel);
//if (last > 0) {
// _delta[port] = _current[port] * _voltage * (millis() - last) / 1000;
//}
//_energy[port] += _delta[port];
}
//last = millis();
}
// Current value for slot # index
double value(unsigned char index) {
if (index < _count) {
_error = SENSOR_ERROR_OK;
unsigned char port = index % _ports;
unsigned char magnitude = index / _ports;
if (magnitude == 0) return _current[port];
if (magnitude == 1) return _current[port] * _voltage;
//if (magnitude == 2) return _energy[port];
//if (magnitude == 3) return _delta[port];
}
_error = SENSOR_ERROR_OUT_OF_RANGE;
return 0;
}
protected:
unsigned char getChannel(unsigned char port) {
unsigned char count = 0;
unsigned char bit = 1;
for (unsigned char channel=0; channel<ADS1X15_CHANNELS; channel++) {
if ((_mask & bit) == bit) {
if (count == port) return channel;
++count;
}
bit <<= 1;
}
return 0;
}
void warmup() {
for (unsigned char port=0; port<_ports; port++) {
unsigned char channel = getChannel(port);
getCurrent(channel);
}
}
//----------------------------------------------------------------------
// I2C
//----------------------------------------------------------------------
void init() {
#if EMON_ADSX115_USE_I2CDEVLIB
_ads = new ADS1115(_address);
_ads->initialize();
_ads->setMode(ADS1115_MODE_CONTINUOUS);
_ads->setRate(ADS1115_RATE_860);
_ads->setGain(ADS1115_PGA_4P096);
#endif
}
#if EMON_ADSX115_USE_I2CDEVLIB == 0
void setChannel(unsigned char channel, bool continuous) {
// Start with default values
uint16_t config = 0;
config |= ADS1X15_REG_CONFIG_PGA_4_096V; // Set PGA/voltage range
if (continuous) {
config |= ADS1X15_REG_CONFIG_MODE_CONTIN; // Continuous mode (default)
} else {
config |= ADS1X15_REG_CONFIG_MODE_SINGLE; // Single-shot mode
config |= ADS1X15_REG_CONFIG_OS_SINGLE; // Set 'start single-conversion' bit
}
config |= ADS1X15_REG_CONFIG_DR_MASK; // Always at max speed
config |= ADS1X15_REG_CONFIG_CMODE_TRAD; // Traditional comparator (default val)
config |= ADS1X15_REG_CONFIG_CPOL_ACTVLOW; // Alert/Rdy active low (default val)
config |= ADS1X15_REG_CONFIG_CLAT_NONLAT; // Non-latching (default val)
config |= ADS1X15_REG_CONFIG_CQUE_NONE; // Disable the comparator (default val)
config |= ((channel + 4) << 12); // Set single-ended input channel
// Write config register to the ADC
#if I2C_USE_BRZO
uint8_t buffer[3];
buffer[0] = ADS1X15_REG_POINTER_CONFIG;
buffer[1] = config >> 8;
buffer[2] = config & 0xFF;
brzo_i2c_start_transaction(_address, I2C_SCL_FREQUENCY);
brzo_i2c_write(buffer, 3, false);
brzo_i2c_end_transaction();
#else
Wire.beginTransmission(_address);
Wire.write((uint8_t) ADS1X15_REG_POINTER_CONFIG);
Wire.write((uint8_t) (config >> 8));
Wire.write((uint8_t) (config & 0xFF));
Wire.endTransmission();
#endif
}
#endif
double getCurrent(unsigned char channel) {
#if EMON_ADSX115_USE_I2CDEVLIB
_ads->setMultiplexer(channel + 4);
#else
// Force stop by setting single mode and back to continuous
static unsigned char previous = 9;
if (previous != channel) {
setChannel(previous, false);
delay(50);
previous = channel;
}
setChannel(channel, true);
#endif
return read(channel, _pivot[channel]);
}
unsigned int readADC(unsigned char channel) {
unsigned int value = 0;
#if EMON_ADSX115_USE_I2CDEVLIB
value = _ads->getConversion();
#elif I2C_USE_BRZO
uint8_t buffer[3];
buffer[0] = ADS1X15_REG_POINTER_CONVERT;
brzo_i2c_start_transaction(_address, I2C_SCL_FREQUENCY);
brzo_i2c_write(buffer, 1, false);
brzo_i2c_read(buffer, 2, false);
brzo_i2c_end_transaction();
value |= buffer[0] << 8;
value |= buffer[1];
#else
Wire.beginTransmission(_address);
Wire.write(ADS1X15_REG_POINTER_CONVERT);
Wire.endTransmission();
Wire.requestFrom(_address, (unsigned char) 2);
value |= Wire.read() << 8;
value |= Wire.read();
#endif
if (!_is_ads1115) value >>= ADS1015_BIT_SHIFT;
delayMicroseconds(500);
return value;
}
#if EMON_ADSX115_USE_I2CDEVLIB
ADS1115 * _ads;
#endif
bool _is_ads1115 = true;
unsigned char _address;
unsigned char _mask;
unsigned char _ports;
double _pivot[ADS1X15_CHANNELS] = {0};
double _current[ADS1X15_CHANNELS] = {0};
//unsigned long _energy[ADS1X15_CHANNELS] = {0};
//unsigned long _delta[ADS1X15_CHANNELS] = {0};
};

Loading…
Cancel
Save