Browse Source

Merge with upstream

fastled
Oscar Rovira 7 years ago
parent
commit
9712e54b72
12 changed files with 441 additions and 366 deletions
  1. +1
    -3
      code/espurna/config/prototypes.h
  2. +14
    -11
      code/espurna/config/sensors.h
  3. +6
    -8
      code/espurna/filters/BaseFilter.h
  4. +10
    -10
      code/espurna/filters/MedianFilter.h
  5. +3
    -3
      code/espurna/filters/MovingAverageFilter.h
  6. +3
    -3
      code/espurna/sensor.ino
  7. +35
    -21
      code/espurna/sensors/EmonADC121Sensor.h
  8. +0
    -280
      code/espurna/sensors/EmonADS1115Sensor.h
  9. +319
    -0
      code/espurna/sensors/EmonADS1X15Sensor.h
  10. +33
    -18
      code/espurna/sensors/EmonAnalogSensor.h
  11. +17
    -8
      code/espurna/sensors/EmonSensor.h
  12. +0
    -1
      code/platformio.ini

+ 1
- 3
code/espurna/config/prototypes.h View File

@ -78,9 +78,7 @@ template<typename T> bool idbSend(const char * topic, unsigned char id, T payloa
#if DS18B20_SUPPORT
#include <OneWire.h>
#endif
#if EMON_ADS1115_SUPPORT
#include <ADS1115.h>
#endif
#if PMSX003_SUPPORT
#include <SoftwareSerial.h>
#include <PMS.h>


+ 14
- 11
code/espurna/config/sensors.h View File

@ -143,9 +143,12 @@
//--------------------------------------------------------------------------------
#define EMON_MAX_SAMPLES 1000 // Max number of samples to get
#define EMON_MAX_TIME 500 // Max time in ms to sample
#define EMON_MAX_TIME 250 // Max time in ms to sample
#define EMON_FILTER_SPEED 512 // Mobile average filter speed
#define EMON_MAINS_VOLTAGE 230 // Mains voltage
#define EMON_REPORT_CURRENT 0 // Calculate current
#define EMON_REPORT_POWER 1 // Calculate power
#define EMON_REPORT_ENERGY 1 // Calculate energy
//--------------------------------------------------------------------------------
// Energy Monitor based on interval analog GPIO
@ -181,21 +184,21 @@
#define EMON_ADC121_REFERENCE_VOLTAGE 3.3 // Reference voltage of the ADC
//--------------------------------------------------------------------------------
// Energy Monitor based on ADS1115
// Enable support by passing EMON_ADS1115_SUPPORT=1 build flag
// Energy Monitor based on ADS1X15
// Enable support by passing EMON_ADS1X15_SUPPORT=1 build flag
//--------------------------------------------------------------------------------
#ifndef EMON_ADS1115_SUPPORT
#define EMON_ADS1115_SUPPORT 0 // Do not build support by default
#ifndef EMON_ADS1X15_SUPPORT
#define EMON_ADS1X15_SUPPORT 0 // Do not build support by default
#endif
#define EMON_ADS1115_PORT_MASK 0x08 // A0=1 A1=2 A2=4 A4=8
#define EMON_ADS1115_I2C_ADDRESS 0x48 // I2C address of the ADS1115
#define EMON_ADS1X15_ADS1115 1 // 0 for ADS10115, 1 for ADS1115
#define EMON_ADS1X15_PORT_MASK 0x08 // A0=1 A1=2 A2=4 A4=8
#define EMON_ADS1X15_I2C_ADDRESS 0x48 // I2C address of the ADS1115
#define EMON_ADS1115_CURRENT_RATIO 30 // Current ratio in the clamp (30V/1A)
#define EMON_ADS1115_ADC_BITS 16 // ADC depth
#define EMON_ADS1115_GAIN ADS1115_PGA_4P096
#define EMON_ADS1115_REFERENCE_VOLTAGE 8.192 // Double the gain for peak-to-peak
#define EMON_ADS1X15_CURRENT_RATIO 30 // Current ratio in the clamp (30V/1A)
#define EMON_ADS1X15_ADC_BITS 16 // ADC depth
#define EMON_ADS1X15_REFERENCE_VOLTAGE 8.192 // Double the gain for peak-to-peak
//--------------------------------------------------------------------------------
// Particle Monitor based on Plantower PMSX003


+ 6
- 8
code/espurna/filters/BaseFilter.h View File

@ -11,29 +11,27 @@ class BaseFilter {
public:
BaseFilter() {
_data = new std::vector<double>();
}
~BaseFilter() {
if (_data) delete _data;
}
virtual void add(double value) {
_data->push_back(value);
_data.push_back(value);
}
virtual unsigned char count() {
return _data->size();
return _data.size();
}
virtual void reset() {
_data->clear();
_data.clear();
}
virtual double max() {
double max = 0;
for (unsigned char i = 1; i < _data->size(); i++) {
if (max < _data->at(i)) max = _data->at(i);
for (unsigned char i = 1; i < _data.size(); i++) {
if (max < _data.at(i)) max = _data.at(i);
}
return max;
}
@ -44,6 +42,6 @@ class BaseFilter {
protected:
std::vector<double> *_data;
std::vector<double> _data;
};

+ 10
- 10
code/espurna/filters/MedianFilter.h View File

@ -11,8 +11,8 @@ class MedianFilter : public BaseFilter {
public:
virtual void reset() {
double last = _data->empty() ? 0 : _data->back();
_data->clear();
double last = _data.empty() ? 0 : _data.back();
_data.clear();
add(last);
}
@ -20,13 +20,13 @@ class MedianFilter : public BaseFilter {
double sum = 0;
if (_data->size() > 2) {
if (_data.size() > 2) {
for (unsigned char i = 1; i <= _data->size() - 2; i++) {
for (unsigned char i = 1; i <= _data.size() - 2; i++) {
double previous = _data->at(i-1);
double current = _data->at(i);
double next = _data->at(i+1);
double previous = _data.at(i-1);
double current = _data.at(i);
double next = _data.at(i+1);
if (previous > current) std::swap(previous, current);
if (current > next) std::swap(current, next);
@ -36,11 +36,11 @@ class MedianFilter : public BaseFilter {
}
sum /= (_data->size() - 2);
sum /= (_data.size() - 2);
} else if (_data->size() > 0) {
} else if (_data.size() > 0) {
sum = _data->front();
sum = _data.front();
}


+ 3
- 3
code/espurna/filters/MovingAverageFilter.h View File

@ -14,13 +14,13 @@ class MovingAverageFilter : public BaseFilter {
MovingAverageFilter(unsigned char size) {
_size = size;
for (unsigned char i=0; i<size; i++) {
_data->push_back(0);
_data.push_back(0);
}
}
virtual void add(double value) {
_sum = _sum + value - _data->at(_pointer);
_data->at(_pointer) = value;
_sum = _sum + value - _data.at(_pointer);
_data.at(_pointer) = value;
_pointer = (_pointer + 1) % _size;
}


+ 3
- 3
code/espurna/sensor.ino View File

@ -257,9 +257,9 @@ void sensorInit() {
sensorRegister(new EmonADC121Sensor(EMON_ADC121_I2C_ADDRESS, EMON_MAINS_VOLTAGE, EMON_ADC121_ADC_BITS, EMON_ADC121_REFERENCE_VOLTAGE, EMON_ADC121_CURRENT_RATIO));
#endif
#if EMON_ADS1115_SUPPORT
#include "sensors/EmonADS1115Sensor.h"
sensorRegister(new EmonADS1115Sensor(EMON_ADS1115_I2C_ADDRESS, EMON_ADS1115_PORT_MASK, EMON_MAINS_VOLTAGE, EMON_ADS1115_ADC_BITS, EMON_ADS1115_REFERENCE_VOLTAGE, EMON_ADS1115_CURRENT_RATIO));
#if EMON_ADS1X15_SUPPORT
#include "sensors/EmonADS1X15Sensor.h"
sensorRegister(new EmonADS1X15Sensor(EMON_ADS1X15_I2C_ADDRESS, EMON_ADS1X15_ADS1115, EMON_ADS1X15_PORT_MASK, EMON_MAINS_VOLTAGE, EMON_ADS1X15_ADC_BITS, EMON_ADS1X15_REFERENCE_VOLTAGE, EMON_ADS1X15_CURRENT_RATIO));
#endif
#if PMSX003_SUPPORT


+ 35
- 21
code/espurna/sensors/EmonADC121Sensor.h View File

@ -32,7 +32,7 @@ class EmonADC121Sensor : public EmonSensor {
// Cache
_address = address;
_count = 4;
_count = _magnitudes;
// Init sensor
#if I2C_USE_BRZO
@ -50,7 +50,7 @@ class EmonADC121Sensor : public EmonSensor {
#endif
// warmup
read(_address);
read(_address, _pivot);
}
@ -69,10 +69,16 @@ class EmonADC121Sensor : public EmonSensor {
// Type for slot # index
magnitude_t type(unsigned char index) {
_error = SENSOR_ERROR_OK;
if (index == 0) return MAGNITUDE_CURRENT;
if (index == 1) return MAGNITUDE_POWER_APPARENT;
if (index == 2) return MAGNITUDE_ENERGY;
if (index == 3) return MAGNITUDE_ENERGY_DELTA;
unsigned char i = 0;
#if EMON_REPORT_CURRENT
if (index == i++) return MAGNITUDE_CURRENT;
#endif
#if EMON_REPORT_POWER
if (index == i++) return MAGNITUDE_POWER_APPARENT;
#endif
#if EMON_REPORT_ENERGY
if (index == i) return MAGNITUDE_ENERGY;
#endif
_error = SENSOR_ERROR_OUT_OF_RANGE;
return MAGNITUDE_NONE;
}
@ -84,20 +90,25 @@ class EmonADC121Sensor : public EmonSensor {
// Cache the value
static unsigned long last = 0;
static double current = 0;
static unsigned long energy_delta = 0;
if ((last == 0) || (millis() - last > 1000)) {
current = read(_address);
energy_delta = current * _voltage * (millis() - last) / 1000;
_energy += energy_delta;
_current = read(0, _pivot);
#if EMON_REPORT_ENERGY
_energy += (_current * _voltage * (millis() - last) / 1000);
#endif
last = millis();
}
if (index == 0) return current;
if (index == 1) return current * _voltage;
if (index == 2) return _energy;
if (index == 3) return energy_delta;
// Report
unsigned char i = 0;
#if EMON_REPORT_CURRENT
if (index == i++) return _current;
#endif
#if EMON_REPORT_POWER
if (index == i++) return _current * _voltage;
#endif
#if EMON_REPORT_ENERGY
if (index == i) return _energy;
#endif
_error = SENSOR_ERROR_OUT_OF_RANGE;
return 0;
@ -113,17 +124,17 @@ class EmonADC121Sensor : public EmonSensor {
#if I2C_USE_BRZO
uint8_t buffer[2];
buffer[0] = ADC121_REG_RESULT;
brzo_i2c_start_transaction(channel, I2C_SCL_FREQUENCY);
brzo_i2c_start_transaction(_address, I2C_SCL_FREQUENCY);
brzo_i2c_write(buffer, 1, false);
brzo_i2c_read(buffer, 2, false);
brzo_i2c_end_transaction();
value = (buffer[0] & 0x0F) << 8;
value |= buffer[1];
#else
Wire.beginTransmission(channel);
Wire.beginTransmission(_address);
Wire.write(ADC121_REG_RESULT);
Wire.endTransmission();
Wire.requestFrom(channel, (unsigned char) 2);
Wire.requestFrom(_address, (unsigned char) 2);
value = (Wire.read() & 0x0F) << 8;
value = value + Wire.read();
#endif
@ -133,7 +144,10 @@ class EmonADC121Sensor : public EmonSensor {
}
unsigned char _address;
unsigned long _energy = 0;
double _pivot = 0;
double _current = 0;
#if EMON_REPORT_ENERGY
unsigned long _energy = 0;
#endif
};

+ 0
- 280
code/espurna/sensors/EmonADS1115Sensor.h View File

@ -1,280 +0,0 @@
// -----------------------------------------------------------------------------
// Energy monitor sensor
// -----------------------------------------------------------------------------
#pragma once
#include "Arduino.h"
#include "BaseSensor.h"
#include "EmonSensor.h"
#include <ADS1115.h>
/*
#if I2C_USE_BRZO
#include <brzo_i2c.h>
#else
#include <Wire.h>
#endif
#define ADS1015_CONVERSIONDELAY (1)
#define ADS1115_CONVERSIONDELAY (8)
#define ADS1015_BIT_SHIFT (4)
#define ADS1115_BIT_SHIFT (0)
#define ADS1015_REG_POINTER_MASK (0x03)
#define ADS1015_REG_POINTER_CONVERT (0x00)
#define ADS1015_REG_POINTER_CONFIG (0x01)
#define ADS1015_REG_POINTER_LOWTHRESH (0x02)
#define ADS1015_REG_POINTER_HITHRESH (0x03)
#define ADS1015_REG_CONFIG_OS_MASK (0x8000)
#define ADS1015_REG_CONFIG_OS_SINGLE (0x8000) // Write: Set to start a single-conversion
#define ADS1015_REG_CONFIG_OS_BUSY (0x0000) // Read: Bit = 0 when conversion is in progress
#define ADS1015_REG_CONFIG_OS_NOTBUSY (0x8000) // Read: Bit = 1 when device is not performing a conversion
#define ADS1015_REG_CONFIG_MUX_MASK (0x7000)
#define ADS1015_REG_CONFIG_MUX_DIFF_0_1 (0x0000) // Differential P = AIN0, N = AIN1 (default)
#define ADS1015_REG_CONFIG_MUX_DIFF_0_3 (0x1000) // Differential P = AIN0, N = AIN3
#define ADS1015_REG_CONFIG_MUX_DIFF_1_3 (0x2000) // Differential P = AIN1, N = AIN3
#define ADS1015_REG_CONFIG_MUX_DIFF_2_3 (0x3000) // Differential P = AIN2, N = AIN3
#define ADS1015_REG_CONFIG_MUX_SINGLE_0 (0x4000) // Single-ended AIN0
#define ADS1015_REG_CONFIG_MUX_SINGLE_1 (0x5000) // Single-ended AIN1
#define ADS1015_REG_CONFIG_MUX_SINGLE_2 (0x6000) // Single-ended AIN2
#define ADS1015_REG_CONFIG_MUX_SINGLE_3 (0x7000) // Single-ended AIN3
#define ADS1015_REG_CONFIG_PGA_MASK (0x0E00)
#define ADS1015_REG_CONFIG_PGA_6_144V (0x0000) // +/-6.144V range = Gain 2/3
#define ADS1015_REG_CONFIG_PGA_4_096V (0x0200) // +/-4.096V range = Gain 1
#define ADS1015_REG_CONFIG_PGA_2_048V (0x0400) // +/-2.048V range = Gain 2 (default)
#define ADS1015_REG_CONFIG_PGA_1_024V (0x0600) // +/-1.024V range = Gain 4
#define ADS1015_REG_CONFIG_PGA_0_512V (0x0800) // +/-0.512V range = Gain 8
#define ADS1015_REG_CONFIG_PGA_0_256V (0x0A00) // +/-0.256V range = Gain 16
#define ADS1015_REG_CONFIG_MODE_MASK (0x0100)
#define ADS1015_REG_CONFIG_MODE_CONTIN (0x0000) // Continuous conversion mode
#define ADS1015_REG_CONFIG_MODE_SINGLE (0x0100) // Power-down single-shot mode (default)
#define ADS1015_REG_CONFIG_DR_MASK (0x00E0)
#define ADS1015_REG_CONFIG_DR_128SPS (0x0000) // 128 samples per second
#define ADS1015_REG_CONFIG_DR_250SPS (0x0020) // 250 samples per second
#define ADS1015_REG_CONFIG_DR_490SPS (0x0040) // 490 samples per second
#define ADS1015_REG_CONFIG_DR_920SPS (0x0060) // 920 samples per second
#define ADS1015_REG_CONFIG_DR_1600SPS (0x0080) // 1600 samples per second (default)
#define ADS1015_REG_CONFIG_DR_2400SPS (0x00A0) // 2400 samples per second
#define ADS1015_REG_CONFIG_DR_3300SPS (0x00C0) // 3300 samples per second
#define ADS1015_REG_CONFIG_CMODE_MASK (0x0010)
#define ADS1015_REG_CONFIG_CMODE_TRAD (0x0000) // Traditional comparator with hysteresis (default)
#define ADS1015_REG_CONFIG_CMODE_WINDOW (0x0010) // Window comparator
#define ADS1015_REG_CONFIG_CPOL_MASK (0x0008)
#define ADS1015_REG_CONFIG_CPOL_ACTVLOW (0x0000) // ALERT/RDY pin is low when active (default)
#define ADS1015_REG_CONFIG_CPOL_ACTVHI (0x0008) // ALERT/RDY pin is high when active
#define ADS1015_REG_CONFIG_CLAT_MASK (0x0004) // Determines if ALERT/RDY pin latches once asserted
#define ADS1015_REG_CONFIG_CLAT_NONLAT (0x0000) // Non-latching comparator (default)
#define ADS1015_REG_CONFIG_CLAT_LATCH (0x0004) // Latching comparator
#define ADS1015_REG_CONFIG_CQUE_MASK (0x0003)
#define ADS1015_REG_CONFIG_CQUE_1CONV (0x0000) // Assert ALERT/RDY after one conversions
#define ADS1015_REG_CONFIG_CQUE_2CONV (0x0001) // Assert ALERT/RDY after two conversions
#define ADS1015_REG_CONFIG_CQUE_4CONV (0x0002) // Assert ALERT/RDY after four conversions
#define ADS1015_REG_CONFIG_CQUE_NONE (0x0003) // Disable the comparator and put ALERT/RDY in high state (default)
*/
#define EMON_ADS1115_CHANNELS 4
#define EMON_ADS1115_MAGNITUDES_PER_PORT 2
class EmonADS1115Sensor : public EmonSensor {
public:
EmonADS1115Sensor(unsigned char address, unsigned char mask, double voltage, unsigned char bits, double ref, double ratio): EmonSensor(voltage, bits, ref, ratio) {
// Cache
_address = address;
_mask = mask;
_ports = 0;
while (mask) {
if (mask & 0x01) ++_ports;
mask = mask >> 1;
}
_count = _ports * EMON_ADS1115_MAGNITUDES_PER_PORT;
// Initialize
_ads = new ADS1115(_address);
_ads->initialize();
_ads->setMode(ADS1115_MODE_SINGLESHOT);
_ads->setRate(ADS1115_RATE_860);
_ads->setGain(ADS1115_PGA_4P096);
_ads->setConversionReadyPinMode();
// warmup
read(_address);
}
// Descriptive name of the sensor
String name() {
char buffer[30];
snprintf(buffer, sizeof(buffer), "EMON @ ADS1115 @ I2C (0x%02X)", _address);
return String(buffer);
}
// Descriptive name of the slot # index
String slot(unsigned char index) {
char buffer[35];
unsigned char port = getChannel(index / EMON_ADS1115_MAGNITUDES_PER_PORT);
snprintf(buffer, sizeof(buffer), "EMON @ ADS1115 (A%d) @ I2C (0x%02X)", port, _address);
return String(buffer);
}
// Type for slot # index
magnitude_t type(unsigned char index) {
if (index < _count) {
_error = SENSOR_ERROR_OK;
unsigned char port = getChannel(index / EMON_ADS1115_MAGNITUDES_PER_PORT);
unsigned char magnitude = index % EMON_ADS1115_MAGNITUDES_PER_PORT;
if (magnitude == 0) return MAGNITUDE_CURRENT;
if (magnitude == 1) return MAGNITUDE_POWER_APPARENT;
//if (magnitude == 2) return MAGNITUDE_ENERGY;
//if (magnitude == 3) return MAGNITUDE_ENERGY_DELTA;
}
_error = SENSOR_ERROR_OUT_OF_RANGE;
return MAGNITUDE_NONE;
}
void pre() {
//static unsigned long last = 0;
for (unsigned char index=0; index<_ports; index++) {
unsigned char port = getChannel(index);
_current[port] = read(port);
//if (last > 0) {
// _delta[port] = _current[port] * _voltage * (millis() - last) / 1000;
//}
//_energy[port] += _delta[port];
}
//last = millis();
}
// Current value for slot # index
double value(unsigned char index) {
if (index < _count) {
_error = SENSOR_ERROR_OK;
unsigned char port = getChannel(index / EMON_ADS1115_MAGNITUDES_PER_PORT);
unsigned char magnitude = index % EMON_ADS1115_MAGNITUDES_PER_PORT;
if (magnitude == 0) return _current[port];
if (magnitude == 1) return _current[port] * _voltage;
//if (magnitude == 2) return _energy[port];
//if (magnitude == 3) return _delta[port];
}
_error = SENSOR_ERROR_OUT_OF_RANGE;
return 0;
}
protected:
unsigned char getChannel(unsigned char port) {
unsigned char count = 0;
unsigned char bit = 1;
for (unsigned char channel=0; channel<EMON_ADS1115_CHANNELS; channel++) {
if ((_mask & bit) == bit) {
if (count == port) return channel;
++count;
}
bit <<= 1;
}
return 0;
}
unsigned int readADC(unsigned char channel) {
if (channel < EMON_ADS1115_CHANNELS) {
_ads->setMultiplexer(channel + 4);
return _ads->getConversion(true);
}
return 0;
}
/*
unsigned int readADC(unsigned char channel) {
if (channel > 3) return 0;
channel = 3;
unsigned int value;
// Start with default values
uint16_t config = 0;
config |= ADS1015_REG_CONFIG_CQUE_NONE; // Disable the comparator (default val)
config |= ADS1015_REG_CONFIG_CLAT_NONLAT; // Non-latching (default val)
config |= ADS1015_REG_CONFIG_CPOL_ACTVLOW; // Alert/Rdy active low (default val)
config |= ADS1015_REG_CONFIG_CMODE_TRAD; // Traditional comparator (default val)
config |= ADS1015_REG_CONFIG_DR_1600SPS; // 1600 samples per second (default)
config |= ADS1015_REG_CONFIG_MODE_SINGLE; // Single-shot mode (default)
config |= ADS1015_REG_CONFIG_OS_SINGLE; // Set 'start single-conversion' bit
config |= EMON_ADS1115_GAIN; // Set PGA/voltage range
config |= ((channel + 4) << 12); // Set single-ended input channel
Serial.println(config);
// Write config register to the ADC
#if I2C_USE_BRZO
uint8_t buffer[3];
buffer[0] = ADS1015_REG_POINTER_CONFIG;
buffer[1] = config >> 8;
buffer[2] = config & 0xFF;
brzo_i2c_start_transaction(_address, I2C_SCL_FREQUENCY);
brzo_i2c_write(buffer, 3, false);
//brzo_i2c_end_transaction();
#else
Wire.beginTransmission(_address);
Wire.write((uint8_t) ADS1015_REG_POINTER_CONFIG);
Wire.write((uint8_t) (config >> 8));
Wire.write((uint8_t) (config & 0xFF));
Wire.endTransmission();
#endif
// Wait for the conversion to complete
unsigned long start = millis();
while (millis() - start < ADS1115_CONVERSIONDELAY) delay(1);
// Read the conversion results
// Shift 12-bit results right 4 bits for the ADS1015
#if I2C_USE_BRZO
buffer[0] = ADS1015_REG_POINTER_CONVERT;
//brzo_i2c_start_transaction(_address, I2C_SCL_FREQUENCY);
brzo_i2c_write(buffer, 1, false);
brzo_i2c_read(buffer, 2, false);
brzo_i2c_end_transaction();
value = (buffer[0] & 0x0F) << 8;
value |= buffer[1];
#else
Wire.beginTransmission(_address);
Wire.write(ADS1015_REG_POINTER_CONVERT);
Wire.endTransmission();
Wire.requestFrom(_address, (unsigned char) 2);
value = Wire.read() << 8;
value |= Wire.read();
#endif
return value;
}
*/
ADS1115 * _ads;
unsigned char _address;
unsigned char _mask;
unsigned char _ports;
double _current[EMON_ADS1115_CHANNELS] = {0, 0, 0, 0};
//unsigned long _energy[EMON_ADS1115_CHANNELS] = {0, 0, 0, 0};
//unsigned long _delta[EMON_ADS1115_CHANNELS] = {0, 0, 0, 0};
};

+ 319
- 0
code/espurna/sensors/EmonADS1X15Sensor.h View File

@ -0,0 +1,319 @@
// -----------------------------------------------------------------------------
// Energy monitor sensor
// -----------------------------------------------------------------------------
#pragma once
#include "Arduino.h"
#include "BaseSensor.h"
#include "EmonSensor.h"
#if I2C_USE_BRZO
#include <brzo_i2c.h>
#else
#include <Wire.h>
#endif
#define ADS1X15_CHANNELS (4)
#define ADS1015_CONVERSIONDELAY (1)
#define ADS1115_CONVERSIONDELAY (8)
#define ADS1015_BIT_SHIFT (4)
#define ADS1115_BIT_SHIFT (0)
#define ADS1X15_REG_POINTER_MASK (0x03)
#define ADS1X15_REG_POINTER_CONVERT (0x00)
#define ADS1X15_REG_POINTER_CONFIG (0x01)
#define ADS1X15_REG_POINTER_LOWTHRESH (0x02)
#define ADS1X15_REG_POINTER_HITHRESH (0x03)
#define ADS1X15_REG_CONFIG_OS_MASK (0x8000)
#define ADS1X15_REG_CONFIG_OS_SINGLE (0x8000) // Write: Set to start a single-conversion
#define ADS1X15_REG_CONFIG_OS_BUSY (0x0000) // Read: Bit = 0 when conversion is in progress
#define ADS1X15_REG_CONFIG_OS_NOTBUSY (0x8000) // Read: Bit = 1 when device is not performing a conversion
#define ADS1X15_REG_CONFIG_MUX_MASK (0x7000)
#define ADS1X15_REG_CONFIG_MUX_DIFF_0_1 (0x0000) // Differential P = AIN0, N = AIN1 (default)
#define ADS1X15_REG_CONFIG_MUX_DIFF_0_3 (0x1000) // Differential P = AIN0, N = AIN3
#define ADS1X15_REG_CONFIG_MUX_DIFF_1_3 (0x2000) // Differential P = AIN1, N = AIN3
#define ADS1X15_REG_CONFIG_MUX_DIFF_2_3 (0x3000) // Differential P = AIN2, N = AIN3
#define ADS1X15_REG_CONFIG_MUX_SINGLE_0 (0x4000) // Single-ended AIN0
#define ADS1X15_REG_CONFIG_MUX_SINGLE_1 (0x5000) // Single-ended AIN1
#define ADS1X15_REG_CONFIG_MUX_SINGLE_2 (0x6000) // Single-ended AIN2
#define ADS1X15_REG_CONFIG_MUX_SINGLE_3 (0x7000) // Single-ended AIN3
#define ADS1X15_REG_CONFIG_PGA_MASK (0x0E00)
#define ADS1X15_REG_CONFIG_PGA_6_144V (0x0000) // +/-6.144V range = Gain 2/3
#define ADS1X15_REG_CONFIG_PGA_4_096V (0x0200) // +/-4.096V range = Gain 1
#define ADS1X15_REG_CONFIG_PGA_2_048V (0x0400) // +/-2.048V range = Gain 2 (default)
#define ADS1X15_REG_CONFIG_PGA_1_024V (0x0600) // +/-1.024V range = Gain 4
#define ADS1X15_REG_CONFIG_PGA_0_512V (0x0800) // +/-0.512V range = Gain 8
#define ADS1X15_REG_CONFIG_PGA_0_256V (0x0A00) // +/-0.256V range = Gain 16
#define ADS1X15_REG_CONFIG_MODE_MASK (0x0100)
#define ADS1X15_REG_CONFIG_MODE_CONTIN (0x0000) // Continuous conversion mode
#define ADS1X15_REG_CONFIG_MODE_SINGLE (0x0100) // Power-down single-shot mode (default)
#define ADS1X15_REG_CONFIG_DR_MASK (0x00E0)
#define ADS1015_REG_CONFIG_DR_128SPS (0x0000) // 128 samples per second
#define ADS1015_REG_CONFIG_DR_250SPS (0x0020) // 250 samples per second
#define ADS1015_REG_CONFIG_DR_490SPS (0x0040) // 490 samples per second
#define ADS1015_REG_CONFIG_DR_920SPS (0x0060) // 920 samples per second
#define ADS1015_REG_CONFIG_DR_1600SPS (0x0080) // 1600 samples per second (default)
#define ADS1015_REG_CONFIG_DR_2400SPS (0x00A0) // 2400 samples per second
#define ADS1015_REG_CONFIG_DR_3300SPS (0x00C0) // 3300 samples per second
#define ADS1115_REG_CONFIG_DR_8SPS (0x0000) // 8 samples per second
#define ADS1115_REG_CONFIG_DR_16SPS (0x0020) // 16 samples per second
#define ADS1115_REG_CONFIG_DR_32SPS (0x0040) // 32 samples per second
#define ADS1115_REG_CONFIG_DR_64SPS (0x0060) // 64 samples per second
#define ADS1115_REG_CONFIG_DR_128SPS (0x0080) // 128 samples per second (default)
#define ADS1115_REG_CONFIG_DR_250SPS (0x00A0) // 250 samples per second
#define ADS1115_REG_CONFIG_DR_475SPS (0x00C0) // 475 samples per second
#define ADS1115_REG_CONFIG_DR_860SPS (0x00E0) // 860 samples per second
#define ADS1X15_REG_CONFIG_CMODE_MASK (0x0010)
#define ADS1X15_REG_CONFIG_CMODE_TRAD (0x0000) // Traditional comparator with hysteresis (default)
#define ADS1X15_REG_CONFIG_CMODE_WINDOW (0x0010) // Window comparator
#define ADS1X15_REG_CONFIG_CPOL_MASK (0x0008)
#define ADS1X15_REG_CONFIG_CPOL_ACTVLOW (0x0000) // ALERT/RDY pin is low when active (default)
#define ADS1X15_REG_CONFIG_CPOL_ACTVHI (0x0008) // ALERT/RDY pin is high when active
#define ADS1X15_REG_CONFIG_CLAT_MASK (0x0004) // Determines if ALERT/RDY pin latches once asserted
#define ADS1X15_REG_CONFIG_CLAT_NONLAT (0x0000) // Non-latching comparator (default)
#define ADS1X15_REG_CONFIG_CLAT_LATCH (0x0004) // Latching comparator
#define ADS1X15_REG_CONFIG_CQUE_MASK (0x0003)
#define ADS1X15_REG_CONFIG_CQUE_1CONV (0x0000) // Assert ALERT/RDY after one conversions
#define ADS1X15_REG_CONFIG_CQUE_2CONV (0x0001) // Assert ALERT/RDY after two conversions
#define ADS1X15_REG_CONFIG_CQUE_4CONV (0x0002) // Assert ALERT/RDY after four conversions
#define ADS1X15_REG_CONFIG_CQUE_NONE (0x0003) // Disable the comparator and put ALERT/RDY in high state (default)
class EmonADS1X15Sensor : public EmonSensor {
public:
EmonADS1X15Sensor(unsigned char address, bool is_ads1115, unsigned char mask, double voltage, unsigned char bits, double ref, double ratio): EmonSensor(voltage, bits, ref, ratio) {
// Cache
_is_ads1115 = is_ads1115;
_address = address;
_mask = mask;
_ports = 0;
while (mask) {
if (mask & 0x01) ++_ports;
mask = mask >> 1;
}
_count = _ports * _magnitudes;
// warmup
warmup();
}
// Descriptive name of the sensor
String name() {
char buffer[30];
snprintf(buffer, sizeof(buffer), "EMON @ ADS1%d15 @ I2C (0x%02X)", _is_ads1115 ? 1 : 0, _address);
return String(buffer);
}
// Descriptive name of the slot # index
String slot(unsigned char index) {
char buffer[35];
unsigned char channel = getChannel(index % _ports);
snprintf(buffer, sizeof(buffer), "EMON @ ADS1%d15 (A%d) @ I2C (0x%02X)", _is_ads1115 ? 1 : 0, channel, _address);
return String(buffer);
}
// Type for slot # index
magnitude_t type(unsigned char index) {
if (index < _count) {
_error = SENSOR_ERROR_OK;
unsigned char magnitude = index / _ports;
unsigned char i=0;
#if EMON_REPORT_CURRENT
if (magnitude == i++) return MAGNITUDE_CURRENT;
#endif
#if EMON_REPORT_POWER
if (magnitude == i++) return MAGNITUDE_POWER_APPARENT;
#endif
#if EMON_REPORT_ENERGY
if (magnitude == i) return MAGNITUDE_ENERGY;
#endif
}
_error = SENSOR_ERROR_OUT_OF_RANGE;
return MAGNITUDE_NONE;
}
void pre() {
static unsigned long last = 0;
for (unsigned char port=0; port<_ports; port++) {
unsigned char channel = getChannel(port);
_current[port] = getCurrent(channel);
#if EMON_REPORT_ENERGY
_energy[port] += (_current[port] * _voltage * (millis() - last) / 1000);
#endif
}
last = millis();
}
// Current value for slot # index
double value(unsigned char index) {
if (index < _count) {
_error = SENSOR_ERROR_OK;
unsigned char port = index % _ports;
unsigned char magnitude = index / _ports;
unsigned char i=0;
#if EMON_REPORT_CURRENT
if (magnitude == i++) return _current[port];
#endif
#if EMON_REPORT_POWER
if (magnitude == i++) return _current[port] * _voltage;
#endif
#if EMON_REPORT_ENERGY
if (magnitude == i) return _energy[port];
#endif
}
_error = SENSOR_ERROR_OUT_OF_RANGE;
return 0;
}
protected:
unsigned char getChannel(unsigned char port) {
unsigned char count = 0;
unsigned char bit = 1;
for (unsigned char channel=0; channel<ADS1X15_CHANNELS; channel++) {
if ((_mask & bit) == bit) {
if (count == port) return channel;
++count;
}
bit <<= 1;
}
return 0;
}
void warmup() {
for (unsigned char port=0; port<_ports; port++) {
unsigned char channel = getChannel(port);
getCurrent(channel);
}
}
//----------------------------------------------------------------------
// I2C
//----------------------------------------------------------------------
void setConfigRegistry(unsigned char channel, bool continuous, bool start) {
// Start with default values
uint16_t config = 0;
config |= ADS1X15_REG_CONFIG_PGA_4_096V; // Set PGA/voltage range (0x0200)
config |= ADS1X15_REG_CONFIG_DR_MASK; // Always at max speed (0x00E0)
//config |= ADS1X15_REG_CONFIG_CMODE_TRAD; // Traditional comparator (default val) (0x0000)
//config |= ADS1X15_REG_CONFIG_CPOL_ACTVLOW; // Alert/Rdy active low (default val) (0x0000)
//config |= ADS1X15_REG_CONFIG_CLAT_NONLAT; // Non-latching (default val) (0x0000)
config |= ADS1X15_REG_CONFIG_CQUE_NONE; // Disable the comparator (default val) (0x0003)
if (start) {
config |= ADS1X15_REG_CONFIG_OS_SINGLE; // Start a single-conversion (0x8000)
}
if (continuous) {
//config |= ADS1X15_REG_CONFIG_MODE_CONTIN; // Continuous mode (default) (0x0000)
} else {
config |= ADS1X15_REG_CONFIG_MODE_SINGLE; // Single-shot mode (0x0100)
}
config |= ((channel + 4) << 12); // Set single-ended input channel (0x4000 - 0x7000)
#if EMON_DEBUG
Serial.printf("[EMON] ADS1X115 Config Registry: %04X\n", config);
#endif
// Write config register to the ADC
#if I2C_USE_BRZO
uint8_t buffer[3];
buffer[0] = ADS1X15_REG_POINTER_CONFIG;
buffer[1] = config >> 8;
buffer[2] = config & 0xFF;
brzo_i2c_start_transaction(_address, I2C_SCL_FREQUENCY);
brzo_i2c_write(buffer, 3, false);
brzo_i2c_end_transaction();
#else
Wire.beginTransmission(_address);
Wire.write((uint8_t) ADS1X15_REG_POINTER_CONFIG);
Wire.write((uint8_t) (config >> 8));
Wire.write((uint8_t) (config & 0xFF));
Wire.endTransmission();
#endif
}
double getCurrent(unsigned char channel) {
// Force stop by setting single mode and back to continuous
static unsigned char previous = 9;
if (previous != channel) {
setConfigRegistry(channel, true, false);
setConfigRegistry(channel, false, false);
setConfigRegistry(channel, false, true);
delay(10);
readADC(channel);
previous = channel;
}
setConfigRegistry(channel, true, true);
return read(channel, _pivot[channel]);
}
unsigned int readADC(unsigned char channel) {
unsigned int value = 0;
#if I2C_USE_BRZO
uint8_t buffer[3];
buffer[0] = ADS1X15_REG_POINTER_CONVERT;
brzo_i2c_start_transaction(_address, I2C_SCL_FREQUENCY);
brzo_i2c_write(buffer, 1, false);
brzo_i2c_read(buffer, 2, false);
brzo_i2c_end_transaction();
value |= buffer[0] << 8;
value |= buffer[1];
#else
Wire.beginTransmission(_address);
Wire.write(ADS1X15_REG_POINTER_CONVERT);
Wire.endTransmission();
Wire.requestFrom(_address, (unsigned char) 2);
value |= Wire.read() << 8;
value |= Wire.read();
#endif
if (!_is_ads1115) value >>= ADS1015_BIT_SHIFT;
delayMicroseconds(500);
return value;
}
bool _is_ads1115 = true;
unsigned char _address;
unsigned char _mask;
unsigned char _ports;
double _pivot[ADS1X15_CHANNELS] = {0};
double _current[ADS1X15_CHANNELS] = {0};
#if EMON_REPORT_ENERGY
unsigned long _energy[ADS1X15_CHANNELS] = {0};
#endif
};

+ 33
- 18
code/espurna/sensors/EmonAnalogSensor.h View File

@ -16,13 +16,13 @@ class EmonAnalogSensor : public EmonSensor {
// Cache
_gpio = gpio;
_count = 4;
_count = _magnitudes;
// Prepare GPIO
pinMode(gpio, INPUT);
// warmup
read(_gpio);
read(_gpio, _pivot);
}
@ -41,10 +41,16 @@ class EmonAnalogSensor : public EmonSensor {
// Type for slot # index
magnitude_t type(unsigned char index) {
_error = SENSOR_ERROR_OK;
if (index == 0) return MAGNITUDE_CURRENT;
if (index == 1) return MAGNITUDE_POWER_APPARENT;
if (index == 2) return MAGNITUDE_ENERGY;
if (index == 3) return MAGNITUDE_ENERGY_DELTA;
unsigned char i=0;
#if EMON_REPORT_CURRENT
if (index == i++) return MAGNITUDE_CURRENT;
#endif
#if EMON_REPORT_POWER
if (index == i++) return MAGNITUDE_POWER_APPARENT;
#endif
#if EMON_REPORT_ENERGY
if (index == i) return MAGNITUDE_ENERGY;
#endif
_error = SENSOR_ERROR_OUT_OF_RANGE;
return MAGNITUDE_NONE;
}
@ -56,20 +62,25 @@ class EmonAnalogSensor : public EmonSensor {
// Cache the value
static unsigned long last = 0;
static double current = 0;
static unsigned long energy_delta = 0;
if ((last == 0) || (millis() - last > 1000)) {
current = read(_gpio);
energy_delta = current * _voltage * (millis() - last) / 1000;
_energy += energy_delta;
_current = read(0, _pivot);
#if EMON_REPORT_ENERGY
_energy += (_current * _voltage * (millis() - last) / 1000);
#endif
last = millis();
}
if (index == 0) return current;
if (index == 1) return current * _voltage;
if (index == 2) return _energy;
if (index == 3) return energy_delta;
// Report
unsigned char i=0;
#if EMON_REPORT_CURRENT
if (index == i++) return _current;
#endif
#if EMON_REPORT_POWER
if (index == i++) return _current * _voltage;
#endif
#if EMON_REPORT_ENERGY
if (index == i) return _energy;
#endif
_error = SENSOR_ERROR_OUT_OF_RANGE;
return 0;
@ -79,11 +90,15 @@ class EmonAnalogSensor : public EmonSensor {
protected:
unsigned int readADC(unsigned char channel) {
return analogRead(channel);
return analogRead(_gpio);
}
unsigned char _gpio;
unsigned long _energy = 0;
double _pivot = 0;
double _current;
#if EMON_REPORT_ENERGY
unsigned long _energy = 0;
#endif
};

+ 17
- 8
code/espurna/sensors/EmonSensor.h View File

@ -18,7 +18,16 @@ class EmonSensor : public BaseSensor {
// Cache
_voltage = voltage;
_adc_counts = 1 << bits;
_pivot = _adc_counts >> 1;
#if EMON_REPORT_CURRENT
++_magnitudes;
#endif
#if EMON_REPORT_POWER
++_magnitudes;
#endif
#if EMON_REPORT_ENERGY
++_magnitudes;
#endif
// Calculate factor
_current_factor = ratio * ref / _adc_counts;
@ -52,7 +61,7 @@ class EmonSensor : public BaseSensor {
}
}
double read(unsigned char channel) {
double read(unsigned char channel, double &pivot) {
int sample;
int max = 0;
@ -69,8 +78,8 @@ class EmonSensor : public BaseSensor {
if (sample < min) min = sample;
// Digital low pass filter extracts the VDC offset
_pivot = (_pivot + (sample - _pivot) / EMON_FILTER_SPEED);
filtered = sample - _pivot;
pivot = (pivot + (sample - pivot) / EMON_FILTER_SPEED);
filtered = sample - pivot;
// Root-mean-square method
sum += (filtered * filtered);
@ -79,8 +88,8 @@ class EmonSensor : public BaseSensor {
time_span = millis() - time_span;
// Quick fix
if (_pivot < min || max < _pivot) {
_pivot = (max + min) / 2.0;
if (pivot < min || max < pivot) {
pivot = (max + min) / 2.0;
}
// Calculate current
@ -95,7 +104,7 @@ class EmonSensor : public BaseSensor {
Serial.print("[EMON] Sample frequency (Hz): "); Serial.println(1000 * _samples / time_span);
Serial.print("[EMON] Max value: "); Serial.println(max);
Serial.print("[EMON] Min value: "); Serial.println(min);
Serial.print("[EMON] Midpoint value: "); Serial.println(_pivot);
Serial.print("[EMON] Midpoint value: "); Serial.println(pivot);
Serial.print("[EMON] RMS value: "); Serial.println(rms);
Serial.print("[EMON] Current: "); Serial.println(current);
#endif
@ -111,10 +120,10 @@ class EmonSensor : public BaseSensor {
}
double _voltage;
unsigned char _magnitudes = 0;
unsigned long _adc_counts;
unsigned int _multiplier = 1;
double _current_factor;
double _pivot;
unsigned long _samples = EMON_MAX_SAMPLES;


+ 0
- 1
code/platformio.ini View File

@ -21,7 +21,6 @@ lib_deps =
NtpClientLib
OneWire
Brzo I2C
I2Cdevlib-ADS1115
EspSoftwareSerial
PMS Library
https://bitbucket.org/xoseperez/justwifi.git#1.1.4


Loading…
Cancel
Save