/* RELAY MODULE Copyright (C) 2016-2018 by Xose PĂ©rez */ #include #include #include #include #include typedef struct { // Configuration variables unsigned char pin; // GPIO pin for the relay unsigned char type; // RELAY_TYPE_NORMAL, RELAY_TYPE_INVERSE, RELAY_TYPE_LATCHED or RELAY_TYPE_LATCHED_INVERSE unsigned char reset_pin; // GPIO to reset the relay if RELAY_TYPE_LATCHED unsigned long delay_on; // Delay to turn relay ON unsigned long delay_off; // Delay to turn relay OFF unsigned char pulse; // RELAY_PULSE_NONE, RELAY_PULSE_OFF or RELAY_PULSE_ON unsigned long pulse_ms; // Pulse length in millis // Status variables bool current_status; // Holds the current (physical) status of the relay bool target_status; // Holds the target status unsigned long fw_start; // Flood window start time unsigned char fw_count; // Number of changes within the current flood window unsigned long change_time; // Scheduled time to change bool report; // Whether to report to own topic bool group_report; // Whether to report to group topic // Helping objects Ticker pulseTicker; // Holds the pulse back timer } relay_t; std::vector _relays; bool _relayRecursive = false; Ticker _relaySaveTicker; // ----------------------------------------------------------------------------- // RELAY PROVIDERS // ----------------------------------------------------------------------------- void _relayProviderStatus(unsigned char id, bool status) { // Check relay ID if (id >= _relays.size()) return; // Store new current status _relays[id].current_status = status; #if RELAY_PROVIDER == RELAY_PROVIDER_RFBRIDGE rfbStatus(id, status); #endif #if RELAY_PROVIDER == RELAY_PROVIDER_DUAL // Calculate mask unsigned char mask=0; for (unsigned char i=0; i<_relays.size(); i++) { if (_relays[i].current_status) mask = mask + (1 << i); } // Send it to F330 Serial.flush(); Serial.write(0xA0); Serial.write(0x04); Serial.write(mask); Serial.write(0xA1); Serial.flush(); #endif #if RELAY_PROVIDER == RELAY_PROVIDER_STM Serial.flush(); Serial.write(0xA0); Serial.write(id + 1); Serial.write(status); Serial.write(0xA1 + status + id); Serial.flush(); #endif #if RELAY_PROVIDER == RELAY_PROVIDER_LIGHT // If the number of relays matches the number of light channels // assume each relay controls one channel. // If the number of relays is the number of channels plus 1 // assume the first one controls all the channels and // the rest one channel each. // Otherwise every relay controls all channels. // TODO: this won't work with a mixed of dummy and real relays // but this option is not allowed atm (YANGNI) if (_relays.size() == lightChannels()) { lightState(id, status); lightState(true); } else if (_relays.size() == lightChannels() + 1) { if (id == 0) { lightState(status); } else { lightState(id-1, status); } } else { lightState(status); } lightUpdate(true, true); #endif #if RELAY_PROVIDER == RELAY_PROVIDER_RELAY if (_relays[id].type == RELAY_TYPE_NORMAL) { digitalWrite(_relays[id].pin, status); } else if (_relays[id].type == RELAY_TYPE_INVERSE) { digitalWrite(_relays[id].pin, !status); } else if (_relays[id].type == RELAY_TYPE_LATCHED || _relays[id].type == RELAY_TYPE_LATCHED_INVERSE) { bool pulse = RELAY_TYPE_LATCHED ? HIGH : LOW; digitalWrite(_relays[id].pin, !pulse); digitalWrite(_relays[id].reset_pin, !pulse); if (status) { digitalWrite(_relays[id].pin, pulse); } else { digitalWrite(_relays[id].reset_pin, pulse); } nice_delay(RELAY_LATCHING_PULSE); digitalWrite(_relays[id].pin, !pulse); digitalWrite(_relays[id].reset_pin, !pulse); } #endif } /** * Walks the relay vector processing only those relays * that have to change to the requested mode * @bool mode Requested mode */ void _relayProcess(bool mode) { unsigned long current_time = millis(); for (unsigned char id = 0; id < _relays.size(); id++) { bool target = _relays[id].target_status; // Only process the relays we have to change if (target == _relays[id].current_status) continue; // Only process the relays we have change to the requested mode if (target != mode) continue; // Only process if the change_time has arrived if (current_time < _relays[id].change_time) continue; DEBUG_MSG_P(PSTR("[RELAY] #%d set to %s\n"), id, target ? "ON" : "OFF"); // Call the provider to perform the action _relayProviderStatus(id, target); // Send to Broker #if BROKER_SUPPORT brokerPublish(MQTT_TOPIC_RELAY, id, target ? "1" : "0"); #endif // Send MQTT #if MQTT_SUPPORT relayMQTT(id); #endif if (!_relayRecursive) { relayPulse(id); _relaySaveTicker.once_ms(RELAY_SAVE_DELAY, relaySave); #if WEB_SUPPORT wsSend(_relayWebSocketUpdate); #endif } #if DOMOTICZ_SUPPORT domoticzSendRelay(id); #endif #if INFLUXDB_SUPPORT relayInfluxDB(id); #endif #if THINGSPEAK_SUPPORT tspkEnqueueRelay(id, target); tspkFlush(); #endif // Flag relay-based LEDs to update status #if LED_SUPPORT ledUpdate(true); #endif _relays[id].report = false; _relays[id].group_report = false; } } // ----------------------------------------------------------------------------- // RELAY // ----------------------------------------------------------------------------- void relayPulse(unsigned char id) { _relays[id].pulseTicker.detach(); byte mode = _relays[id].pulse; if (mode == RELAY_PULSE_NONE) return; unsigned long ms = _relays[id].pulse_ms; if (ms == 0) return; bool status = relayStatus(id); bool pulseStatus = (mode == RELAY_PULSE_ON); if (pulseStatus != status) { DEBUG_MSG_P(PSTR("[RELAY] Scheduling relay #%d back in %lums (pulse)\n"), id, ms); _relays[id].pulseTicker.once_ms(ms, relayToggle, id); // Reconfigure after dynamic pulse _relays[id].pulse = getSetting("relayPulse", id, RELAY_PULSE_MODE).toInt(); _relays[id].pulse_ms = 1000 * getSetting("relayTime", id, RELAY_PULSE_MODE).toFloat(); } } bool relayStatus(unsigned char id, bool status, bool report, bool group_report) { if (id >= _relays.size()) return false; bool changed = false; if (_relays[id].current_status == status) { if (_relays[id].target_status != status) { DEBUG_MSG_P(PSTR("[RELAY] #%d scheduled change cancelled\n"), id); _relays[id].target_status = status; _relays[id].report = false; _relays[id].group_report = false; changed = true; } // For RFBridge, keep sending the message even if the status is already the required #if RELAY_PROVIDER == RELAY_PROVIDER_RFBRIDGE rfbStatus(id, status); #endif // Update the pulse counter if the relay is already in the non-normal state (#454) relayPulse(id); } else { unsigned int current_time = millis(); unsigned int fw_end = _relays[id].fw_start + 1000 * RELAY_FLOOD_WINDOW; unsigned long delay = status ? _relays[id].delay_on : _relays[id].delay_off; _relays[id].fw_count++; _relays[id].change_time = current_time + delay; // If current_time is off-limits the floodWindow... if (current_time < _relays[id].fw_start || fw_end <= current_time) { // We reset the floodWindow _relays[id].fw_start = current_time; _relays[id].fw_count = 1; // If current_time is in the floodWindow and there have been too many requests... } else if (_relays[id].fw_count >= RELAY_FLOOD_CHANGES) { // We schedule the changes to the end of the floodWindow // unless it's already delayed beyond that point if (fw_end - delay > current_time) { _relays[id].change_time = fw_end; } } _relays[id].target_status = status; if (report) _relays[id].report = true; if (group_report) _relays[id].group_report = true; relaySync(id); DEBUG_MSG_P(PSTR("[RELAY] #%d scheduled %s in %u ms\n"), id, status ? "ON" : "OFF", (_relays[id].change_time - current_time)); changed = true; } return changed; } bool relayStatus(unsigned char id, bool status) { return relayStatus(id, status, true, true); } bool relayStatus(unsigned char id) { // Check relay ID if (id >= _relays.size()) return false; // Get status from storage return _relays[id].current_status; } void relaySync(unsigned char id) { // No sync if none or only one relay if (_relays.size() < 2) return; // Do not go on if we are comming from a previous sync if (_relayRecursive) return; // Flag sync mode _relayRecursive = true; byte relaySync = getSetting("relaySync", RELAY_SYNC).toInt(); bool status = _relays[id].target_status; // If RELAY_SYNC_SAME all relays should have the same state if (relaySync == RELAY_SYNC_SAME) { for (unsigned short i=0; i<_relays.size(); i++) { if (i != id) relayStatus(i, status); } // If NONE_OR_ONE or ONE and setting ON we should set OFF all the others } else if (status) { if (relaySync != RELAY_SYNC_ANY) { for (unsigned short i=0; i<_relays.size(); i++) { if (i != id) relayStatus(i, false); } } // If ONLY_ONE and setting OFF we should set ON the other one } else { if (relaySync == RELAY_SYNC_ONE) { unsigned char i = (id + 1) % _relays.size(); relayStatus(i, true); } } // Unflag sync mode _relayRecursive = false; } void relaySave() { unsigned char bit = 1; unsigned char mask = 0; for (unsigned int i=0; i < _relays.size(); i++) { if (relayStatus(i)) mask += bit; bit += bit; } EEPROMr.write(EEPROM_RELAY_STATUS, mask); DEBUG_MSG_P(PSTR("[RELAY] Saving mask: %d\n"), mask); EEPROMr.commit(); } void relayToggle(unsigned char id, bool report, bool group_report) { if (id >= _relays.size()) return; relayStatus(id, !relayStatus(id), report, group_report); } void relayToggle(unsigned char id) { relayToggle(id, true, true); } unsigned char relayCount() { return _relays.size(); } unsigned char relayParsePayload(const char * payload) { // Payload could be "OFF", "ON", "TOGGLE" // or its number equivalents: 0, 1 or 2 if (payload[0] == '0') return 0; if (payload[0] == '1') return 1; if (payload[0] == '2') return 2; // trim payload char * p = ltrim((char *)payload); // to lower unsigned int l = strlen(p); if (l>6) l=6; for (unsigned char i=0; i 1) { root["multirelayVisible"] = 1; root["relaySync"] = getSetting("relaySync", RELAY_SYNC); } root["relayVisible"] = 1; } void _relayWebSocketOnAction(uint32_t client_id, const char * action, JsonObject& data) { if (strcmp(action, "relay") != 0) return; if (data.containsKey("status")) { unsigned char value = relayParsePayload(data["status"]); if (value == 3) { wsSend(_relayWebSocketUpdate); } else if (value < 3) { unsigned int relayID = 0; if (data.containsKey("id")) { String value = data["id"]; relayID = value.toInt(); } // Action to perform if (value == 0) { relayStatus(relayID, false); } else if (value == 1) { relayStatus(relayID, true); } else if (value == 2) { relayToggle(relayID); } } } } void relaySetupWS() { wsOnSendRegister(_relayWebSocketOnStart); wsOnActionRegister(_relayWebSocketOnAction); wsOnAfterParseRegister(_relayConfigure); wsOnReceiveRegister(_relayWebSocketOnReceive); } #endif // WEB_SUPPORT //------------------------------------------------------------------------------ // REST API //------------------------------------------------------------------------------ #if WEB_SUPPORT void relaySetupAPI() { // API entry points (protected with apikey) for (unsigned int relayID=0; relayID= _relays.size()) return; // Send state topic if (_relays[id].report) { _relays[id].report = false; mqttSend(MQTT_TOPIC_RELAY, id, _relays[id].current_status ? "1" : "0"); } // Check group topic if (_relays[id].group_report) { _relays[id].group_report = false; String t = getSetting("mqttGroup", id, ""); if (t.length() > 0) { bool status = relayStatus(id); if (getSetting("mqttGroupInv", id, 0).toInt() == 1) status = !status; mqttSendRaw(t.c_str(), status ? "1" : "0"); } } } void relayMQTT() { for (unsigned int id=0; id < _relays.size(); id++) { mqttSend(MQTT_TOPIC_RELAY, id, _relays[id].current_status ? "1" : "0"); } } void relayStatusWrap(unsigned char id, unsigned char value, bool is_group_topic) { switch (value) { case 0: relayStatus(id, false, mqttForward(), !is_group_topic); break; case 1: relayStatus(id, true, mqttForward(), !is_group_topic); break; case 2: relayToggle(id, true, true); break; default: _relays[id].report = true; relayMQTT(id); break; } } void relayMQTTCallback(unsigned int type, const char * topic, const char * payload) { if (type == MQTT_CONNECT_EVENT) { // Send status on connect #if not HEARTBEAT_REPORT_RELAY relayMQTT(); #endif // Subscribe to own /set topic char relay_topic[strlen(MQTT_TOPIC_RELAY) + 3]; snprintf_P(relay_topic, sizeof(relay_topic), PSTR("%s/+"), MQTT_TOPIC_RELAY); mqttSubscribe(relay_topic); // Subscribe to pulse topic char pulse_topic[strlen(MQTT_TOPIC_PULSE) + 3]; snprintf_P(pulse_topic, sizeof(pulse_topic), PSTR("%s/+"), MQTT_TOPIC_PULSE); mqttSubscribe(pulse_topic); // Subscribe to group topics for (unsigned int i=0; i < _relays.size(); i++) { String t = getSetting("mqttGroup", i, ""); if (t.length() > 0) mqttSubscribeRaw(t.c_str()); } } if (type == MQTT_MESSAGE_EVENT) { String t = mqttMagnitude((char *) topic); // magnitude is relay/#/pulse if (t.startsWith(MQTT_TOPIC_PULSE)) { unsigned int id = t.substring(strlen(MQTT_TOPIC_PULSE)+1).toInt(); if (id >= relayCount()) { DEBUG_MSG_P(PSTR("[RELAY] Wrong relayID (%d)\n"), id); return; } unsigned long pulse = 1000 * String(payload).toFloat(); if (0 == pulse) return; if (RELAY_PULSE_NONE != _relays[id].pulse) { DEBUG_MSG_P(PSTR("[RELAY] Overriding relay #%d pulse settings\n"), id); } _relays[id].pulse_ms = pulse; _relays[id].pulse = relayStatus(id) ? RELAY_PULSE_ON : RELAY_PULSE_OFF; relayToggle(id, true, false); return; } // magnitude is relay/# if (t.startsWith(MQTT_TOPIC_RELAY)) { // Get relay ID unsigned int id = t.substring(strlen(MQTT_TOPIC_RELAY)+1).toInt(); if (id >= relayCount()) { DEBUG_MSG_P(PSTR("[RELAY] Wrong relayID (%d)\n"), id); return; } // Get value unsigned char value = relayParsePayload(payload); if (value == 0xFF) return; relayStatusWrap(id, value, false); return; } // Check group topics for (unsigned int i=0; i < _relays.size(); i++) { String t = getSetting("mqttGroup", i, ""); if ((t.length() > 0) && t.equals(topic)) { unsigned char value = relayParsePayload(payload); if (value == 0xFF) return; if (value < 2) { if (getSetting("mqttGroupInv", i, 0).toInt() == 1) { value = 1 - value; } } DEBUG_MSG_P(PSTR("[RELAY] Matched group topic for relayID %d\n"), i); relayStatusWrap(i, value, true); } } } if (type == MQTT_DISCONNECT_EVENT) { for (unsigned int i=0; i < _relays.size(); i++){ int reaction = getSetting("relayOnDisc", i, 0).toInt(); if (1 == reaction) { // switch relay OFF DEBUG_MSG_P(PSTR("[RELAY] Reset relay (%d) due to MQTT disconnection\n"), i); relayStatusWrap(i, false, false); } else if(2 == reaction) { // switch relay ON DEBUG_MSG_P(PSTR("[RELAY] Set relay (%d) due to MQTT disconnection\n"), i); relayStatusWrap(i, true, false); } } } } void relaySetupMQTT() { mqttRegister(relayMQTTCallback); } #endif //------------------------------------------------------------------------------ // InfluxDB //------------------------------------------------------------------------------ #if INFLUXDB_SUPPORT void relayInfluxDB(unsigned char id) { if (id >= _relays.size()) return; idbSend(MQTT_TOPIC_RELAY, id, relayStatus(id) ? "1" : "0"); } #endif //------------------------------------------------------------------------------ // Settings //------------------------------------------------------------------------------ #if TERMINAL_SUPPORT void _relayInitCommands() { settingsRegisterCommand(F("RELAY"), [](Embedis* e) { if (e->argc < 2) { DEBUG_MSG_P(PSTR("-ERROR: Wrong arguments\n")); return; } int id = String(e->argv[1]).toInt(); if (id >= relayCount()) { DEBUG_MSG_P(PSTR("-ERROR: Wrong relayID (%d)\n"), id); return; } if (e->argc > 2) { int value = String(e->argv[2]).toInt(); if (value == 2) { relayToggle(id); } else { relayStatus(id, value == 1); } } DEBUG_MSG_P(PSTR("Status: %s\n"), _relays[id].target_status ? "true" : "false"); if (_relays[id].pulse != RELAY_PULSE_NONE) { DEBUG_MSG_P(PSTR("Pulse: %s\n"), (_relays[id].pulse == RELAY_PULSE_ON) ? "ON" : "OFF"); DEBUG_MSG_P(PSTR("Pulse time: %d\n"), _relays[id].pulse_ms); } DEBUG_MSG_P(PSTR("+OK\n")); }); } #endif // TERMINAL_SUPPORT //------------------------------------------------------------------------------ // Setup //------------------------------------------------------------------------------ void _relayLoop() { _relayProcess(false); _relayProcess(true); } void relaySetup() { // Dummy relays for AI Light, Magic Home LED Controller, H801, // Sonoff Dual and Sonoff RF Bridge #if DUMMY_RELAY_COUNT > 0 unsigned int _delay_on[8] = {RELAY1_DELAY_ON, RELAY2_DELAY_ON, RELAY3_DELAY_ON, RELAY4_DELAY_ON, RELAY5_DELAY_ON, RELAY6_DELAY_ON, RELAY7_DELAY_ON, RELAY8_DELAY_ON}; unsigned int _delay_off[8] = {RELAY1_DELAY_OFF, RELAY2_DELAY_OFF, RELAY3_DELAY_OFF, RELAY4_DELAY_OFF, RELAY5_DELAY_OFF, RELAY6_DELAY_OFF, RELAY7_DELAY_OFF, RELAY8_DELAY_OFF}; for (unsigned char i=0; i < DUMMY_RELAY_COUNT; i++) { _relays.push_back((relay_t) {0, RELAY_TYPE_NORMAL,0,_delay_on[i], _delay_off[i]}); } #else #if RELAY1_PIN != GPIO_NONE _relays.push_back((relay_t) { RELAY1_PIN, RELAY1_TYPE, RELAY1_RESET_PIN, RELAY1_DELAY_ON, RELAY1_DELAY_OFF }); #endif #if RELAY2_PIN != GPIO_NONE _relays.push_back((relay_t) { RELAY2_PIN, RELAY2_TYPE, RELAY2_RESET_PIN, RELAY2_DELAY_ON, RELAY2_DELAY_OFF }); #endif #if RELAY3_PIN != GPIO_NONE _relays.push_back((relay_t) { RELAY3_PIN, RELAY3_TYPE, RELAY3_RESET_PIN, RELAY3_DELAY_ON, RELAY3_DELAY_OFF }); #endif #if RELAY4_PIN != GPIO_NONE _relays.push_back((relay_t) { RELAY4_PIN, RELAY4_TYPE, RELAY4_RESET_PIN, RELAY4_DELAY_ON, RELAY4_DELAY_OFF }); #endif #if RELAY5_PIN != GPIO_NONE _relays.push_back((relay_t) { RELAY5_PIN, RELAY5_TYPE, RELAY5_RESET_PIN, RELAY5_DELAY_ON, RELAY5_DELAY_OFF }); #endif #if RELAY6_PIN != GPIO_NONE _relays.push_back((relay_t) { RELAY6_PIN, RELAY6_TYPE, RELAY6_RESET_PIN, RELAY6_DELAY_ON, RELAY6_DELAY_OFF }); #endif #if RELAY7_PIN != GPIO_NONE _relays.push_back((relay_t) { RELAY7_PIN, RELAY7_TYPE, RELAY7_RESET_PIN, RELAY7_DELAY_ON, RELAY7_DELAY_OFF }); #endif #if RELAY8_PIN != GPIO_NONE _relays.push_back((relay_t) { RELAY8_PIN, RELAY8_TYPE, RELAY8_RESET_PIN, RELAY8_DELAY_ON, RELAY8_DELAY_OFF }); #endif #endif _relayBackwards(); _relayConfigure(); _relayBoot(); _relayLoop(); espurnaRegisterLoop(_relayLoop); #if WEB_SUPPORT relaySetupAPI(); relaySetupWS(); #endif #if MQTT_SUPPORT relaySetupMQTT(); #endif #if TERMINAL_SUPPORT _relayInitCommands(); #endif DEBUG_MSG_P(PSTR("[RELAY] Number of relays: %d\n"), _relays.size()); }