// ----------------------------------------------------------------------------- // CSE7766 based power monitor // Copyright (C) 2018 by Xose PĂ©rez // http://www.chipsea.com/UploadFiles/2017/08/11144342F01B5662.pdf // ----------------------------------------------------------------------------- #if SENSOR_SUPPORT && CSE7766_SUPPORT #pragma once #include "Arduino.h" #include "BaseSensor.h" #include class CSE7766Sensor : public BaseSensor { public: // --------------------------------------------------------------------- // Public // --------------------------------------------------------------------- CSE7766Sensor(): BaseSensor(), _data() { _count = 4; _sensor_id = SENSOR_CSE7766_ID; } ~CSE7766Sensor() { if (_serial) delete _serial; } // --------------------------------------------------------------------- void setRX(unsigned char pin_rx) { if (_pin_rx == pin_rx) return; _pin_rx = pin_rx; _dirty = true; } void setInverted(bool inverted) { if (_inverted == inverted) return; _inverted = inverted; _dirty = true; } // --------------------------------------------------------------------- unsigned char getRX() { return _pin_rx; } bool getInverted() { return _inverted; } // --------------------------------------------------------------------- // Sensor API // --------------------------------------------------------------------- // Initialization method, must be idempotent void begin() { if (!_dirty) return; if (_serial) delete _serial; _serial = new SoftwareSerial(_pin_rx, SW_SERIAL_UNUSED_PIN, _inverted, 32); _serial->enableIntTx(false); _serial->begin(CSE7766_BAUDRATE); _ready = true; _dirty = false; } // Descriptive name of the sensor String description() { char buffer[28]; snprintf(buffer, sizeof(buffer), "CSE7766 @ SwSerial(%u,NULL)", _pin_rx); return String(buffer); } // Descriptive name of the slot # index String slot(unsigned char index) { return description(); }; // Address of the sensor (it could be the GPIO or I2C address) String address(unsigned char index) { return String(_pin_rx); } // Loop-like method, call it in your main loop void tick() { _read(); } // Type for slot # index unsigned char type(unsigned char index) { if (index == 0) return MAGNITUDE_CURRENT; if (index == 1) return MAGNITUDE_VOLTAGE; if (index == 2) return MAGNITUDE_POWER_ACTIVE; if (index == 3) return MAGNITUDE_ENERGY; return MAGNITUDE_NONE; } // Current value for slot # index double value(unsigned char index) { if (index == 0) return _current; if (index == 1) return _voltage; if (index == 2) return _active; if (index == 3) return _energy; return 0; } protected: // --------------------------------------------------------------------- // Protected // --------------------------------------------------------------------- /** * " * Checksum is the sum of all data * except for packet header and packet tail lowering by 8bit (...) * " * @return bool */ bool _checksum() { unsigned char checksum = 0; for (unsigned char i = 2; i < 23; i++) { checksum += _data[i]; } return checksum == _data[23]; } void _process() { // Checksum if (!_checksum()) { _error = SENSOR_ERROR_CRC; #if SENSOR_DEBUG DEBUG_MSG_P(PSTR("[SENSOR] CSE7766: Checksum error")); #endif return; } // Calibration if (0xAA == _data[0]) { _error = SENSOR_ERROR_CALIBRATION; #if SENSOR_DEBUG DEBUG_MSG_P(PSTR("[SENSOR] CSE7766: Chip not calibrated")); #endif return; } if ((_data[0] & 0xFC) > 0xF0) { _error = SENSOR_ERROR_OTHER; #if SENSOR_DEBUG if (0xF1 == _data[0] & 0xF1) DEBUG_MSG_P(PSTR("[SENSOR] CSE7766: Abnormal coefficient storage area")); if (0xF2 == _data[0] & 0xF2) DEBUG_MSG_P(PSTR("[SENSOR] CSE7766: Power cycle exceeded range")); if (0xF4 == _data[0] & 0xF4) DEBUG_MSG_P(PSTR("[SENSOR] CSE7766: Current cycle exceeded range")); if (0xF8 == _data[0] & 0xF8) DEBUG_MSG_P(PSTR("[SENSOR] CSE7766: Voltage cycle exceeded range")); #endif return; } // Calibration coefficients if (0 == _coefV) { _coefV = (_data[2] << 16 | _data[3] << 8 | _data[4]) / 100; _coefV *= 100; _coefC = (_data[8] << 16 | _data[9] << 8 | _data[10]); _coefP = (_data[14] << 16 | _data[15] << 8 | _data[16]) / 1000; _coefP *= 1000; } // Adj: this looks like a sampling report uint8_t adj = _data[20]; // Calculate voltage _voltage = 0; if ((adj & 0x40) == 0x40) { unsigned long voltage_cycle = _data[5] << 16 | _data[6] << 8 | _data[7]; _voltage = _coefV / voltage_cycle / CSE7766_V2R; } // Calculate power _active = 0; if ((adj & 0x10) == 0x10) { if ((_data[0] & 0xF2) != 0xF2) { unsigned long power_cycle = _data[17] << 16 | _data[18] << 8 | _data[19]; _active = _coefP / power_cycle / CSE7766_V1R / CSE7766_V2R; } } // Calculate current _current = 0; if ((adj & 0x20) == 0x20) { if (_active > 0) { unsigned long current_cycle = _data[11] << 16 | _data[12] << 8 | _data[13]; _current = _coefC / current_cycle / CSE7766_V1R; } } // Calculate energy /* static unsigned long cf_pulses_last = 0; unsigned long cf_pulses = _data[21] << 8 | _data[22]; unsigned long frequency = cf_pulses - cf_pulses_last; cf_pulses_last = cf_pulses; _energy += (100000 * frequency * _coefP); */ } void _read() { _error = SENSOR_ERROR_OK; static unsigned char index = 0; static unsigned long last = millis(); while (_serial->available()) { // A 24 bytes message takes ~55ms to go through at 4800 bps // Reset counter if more than 1000ms have passed since last byte. if (millis() - last > CSE7766_SYNC_INTERVAL) index = 0; last = millis(); uint8_t byte = _serial->read(); // second byte in packet must be 0x5A if ((1 == index) && (0xA5 != byte)) { index = 0; } else { _data[index++] = byte; if (index > 23) { _serial->flush(); break; } } } // Process packet if (24 == index) { _process(); index = 0; } } // --------------------------------------------------------------------- unsigned int _pin_rx = CSE7766_PIN; bool _inverted = CSE7766_PIN_INVERSE; SoftwareSerial * _serial = NULL; double _active = 0; double _voltage = 0; double _current = 0; double _energy = 0; unsigned long _coefV = 0; unsigned long _coefC = 0; unsigned long _coefP = 0; unsigned char _data[24]; }; #endif // SENSOR_SUPPORT && CSE7766_SUPPORT