// ----------------------------------------------------------------------------- // ECH1560 based power monitor // Copyright (C) 2017 by Xose PĂ©rez // ----------------------------------------------------------------------------- #pragma once #include "Arduino.h" #include "BaseSensor.h" class ECH1560Sensor : public BaseSensor { public: // --------------------------------------------------------------------- // Public // --------------------------------------------------------------------- ECH1560Sensor(): BaseSensor() { _count = 3; _sensor_id = SENSOR_ECH1560_ID; } ~ECH1560Sensor() { if (_interrupt_gpio != GPIO_NONE) detach(_interrupt_gpio); } // --------------------------------------------------------------------- void setCLK(unsigned char clk) { if (_clk == clk) return; _clk = clk; _dirty = true; } void setMISO(unsigned char miso) { if (_miso == miso) return; _miso = miso; _dirty = true; } void setInverted(bool inverted) { _inverted = inverted; } // --------------------------------------------------------------------- unsigned char getCLK() { return _clk; } unsigned char getMISO() { return _miso; } bool getInverted() { return _inverted; } // --------------------------------------------------------------------- // Sensor API // --------------------------------------------------------------------- // Initialization method, must be idempotent void begin() { if (!_dirty) return; _dirty = false; pinMode(_clk, INPUT); pinMode(_miso, INPUT); if (_interrupt_gpio != GPIO_NONE) detach(_interrupt_gpio); attach(this, _clk, RISING); } // Interrupt attach callback void attached(unsigned char gpio) { BaseSensor::attached(gpio); _interrupt_gpio = gpio; } // Interrupt detach callback void detached(unsigned char gpio) { BaseSensor::detached(gpio); if (_interrupt_gpio == gpio) _interrupt_gpio = GPIO_NONE; } void ICACHE_RAM_ATTR handleInterrupt() { _isr(); } // Descriptive name of the sensor String description() { char buffer[25]; snprintf(buffer, sizeof(buffer), "ECH1560 @ GPIO(%i,%i)", _clk, _miso); return String(buffer); } // Type for slot # index magnitude_t type(unsigned char index) { _error = SENSOR_ERROR_OK; if (index == 0) return MAGNITUDE_CURRENT; if (index == 1) return MAGNITUDE_VOLTAGE; if (index == 2) return MAGNITUDE_POWER_APPARENT; _error = SENSOR_ERROR_OUT_OF_RANGE; return MAGNITUDE_NONE; } // Current value for slot # index double value(unsigned char index) { _error = SENSOR_ERROR_OK; if (index == 0) return _current; if (index == 1) return _voltage; if (index == 2) return _apparent; _error = SENSOR_ERROR_OUT_OF_RANGE; return 0; } protected: // --------------------------------------------------------------------- // Protected // --------------------------------------------------------------------- void ICACHE_RAM_ATTR _isr() { // if we are trying to find the sync-time (CLK goes high for 1-2ms) if (_dosync == false) { _clk_count = 0; // register how long the ClkHigh is high to evaluate if we are at the part wher clk goes high for 1-2 ms while (digitalRead(_clk) == HIGH) { _clk_count += 1; delayMicroseconds(30); //can only use delayMicroseconds in an interrupt. } // if the Clk was high between 1 and 2 ms than, its a start of a SPI-transmission if (_clk_count >= 33 && _clk_count <= 67) { _dosync = true; } // we are in sync and logging CLK-highs } else { // increment an integer to keep track of how many bits we have read. _bits_count += 1; _nextbit = true; } } void _sync() { unsigned int byte1 = 0; unsigned int byte2 = 0; unsigned int byte3 = 0; _bits_count = 0; while (_bits_count < 40); // skip the uninteresting 5 first bytes _bits_count = 0; while (_bits_count < 24) { // loop through the next 3 Bytes (6-8) and save byte 6 and 7 in Ba and Bb if (_nextbit) { if (_bits_count < 9) { // first Byte/8 bits in Ba byte1 = byte1 << 1; if (digitalRead(_miso) == HIGH) byte1 |= 1; _nextbit = false; } else if (_bits_count < 17) { // bit 9-16 is byte 7, stor in Bb byte2 = byte2 << 1; if (digitalRead(_miso) == HIGH) byte2 |= 1; _nextbit = false; } } } if (byte2 != 3) { // if bit Bb is not 3, we have reached the important part, U is allready in Ba and Bb and next 8 Bytes will give us the Power. // voltage = 2 * (Ba + Bb / 255) _voltage = 2.0 * ((float) byte1 + (float) byte2 / 255.0); // power: _bits_count = 0; while (_bits_count < 40); // skip the uninteresting 5 first bytes _bits_count = 0; byte1 = 0; byte2 = 0; byte3 = 0; while (_bits_count < 24) { //store byte 6, 7 and 8 in Ba and Bb & Bc. if (_nextbit) { if (_bits_count < 9) { byte1 = byte1 << 1; if (digitalRead(_miso) == HIGH) byte1 |= 1; _nextbit = false; } else if (_bits_count < 17) { byte2 = byte2 << 1; if (digitalRead(_miso) == HIGH) byte2 |= 1; _nextbit = false; } else { byte3 = byte3 << 1; if (digitalRead(_miso) == HIGH) byte3 |= 1; _nextbit = false; } } } if (_inverted) { byte1 = 255 - byte1; byte2 = 255 - byte2; byte3 = 255 - byte3; } // power = (Ba*255+Bb+Bc/255)/2 _apparent = ( (float) byte1 * 255 + (float) byte2 + (float) byte3 / 255.0) / 2; _current = _apparent / _voltage; _dosync = false; } // If Bb is not 3 or something else than 0, something is wrong! if (byte2 == 0) _dosync = false; } // --------------------------------------------------------------------- unsigned char _clk = 0; unsigned char _miso = 0; unsigned char _interrupt_gpio = GPIO_NONE; bool _inverted = false; volatile long _bits_count = 0; volatile long _clk_count = 0; volatile bool _dosync = false; volatile bool _nextbit = true; double _apparent = 0; double _voltage = 0; double _current = 0; unsigned char _data[24]; };