/* SENSOR MODULE Copyright (C) 2016-2018 by Xose PĂ©rez */ #if SENSOR_SUPPORT #include #include "filters/MaxFilter.h" #include "filters/MedianFilter.h" #include "filters/MovingAverageFilter.h" #include "sensors/BaseSensor.h" typedef struct { BaseSensor * sensor; // Sensor object BaseFilter * filter; // Filter object unsigned char local; // Local index in its provider unsigned char type; // Type of measurement unsigned char global; // Global index in its type double current; // Current (last) value, unfiltered double filtered; // Filtered (averaged) value double reported; // Last reported value double min_change; // Minimum value change to report } sensor_magnitude_t; std::vector _sensors; std::vector _magnitudes; bool _sensors_ready = false; unsigned char _counts[MAGNITUDE_MAX]; bool _sensor_realtime = API_REAL_TIME_VALUES; unsigned long _sensor_read_interval = 1000 * SENSOR_READ_INTERVAL; unsigned char _sensor_report_every = SENSOR_REPORT_EVERY; unsigned char _sensor_power_units = SENSOR_POWER_UNITS; unsigned char _sensor_energy_units = SENSOR_ENERGY_UNITS; unsigned char _sensor_temperature_units = SENSOR_TEMPERATURE_UNITS; double _sensor_temperature_correction = SENSOR_TEMPERATURE_CORRECTION; // ----------------------------------------------------------------------------- // Private // ----------------------------------------------------------------------------- unsigned char _magnitudeDecimals(unsigned char type) { // Hardcoded decimals (these should be linked to the unit, instead of the magnitude) if (type == MAGNITUDE_ENERGY || type == MAGNITUDE_ENERGY_DELTA) { if (_sensor_energy_units == ENERGY_KWH) return 3; } if (type == MAGNITUDE_POWER_ACTIVE || type == MAGNITUDE_POWER_APPARENT || type == MAGNITUDE_POWER_REACTIVE) { if (_sensor_power_units == POWER_KILOWATTS) return 3; } if (type < MAGNITUDE_MAX) return pgm_read_byte(magnitude_decimals + type); return 0; } double _magnitudeProcess(unsigned char type, double value) { // Hardcoded conversions (these should be linked to the unit, instead of the magnitude) if (type == MAGNITUDE_TEMPERATURE) { if (_sensor_temperature_units == TMP_FAHRENHEIT) value = value * 1.8 + 32; value = value + _sensor_temperature_correction; } if (type == MAGNITUDE_ENERGY || type == MAGNITUDE_ENERGY_DELTA) { if (_sensor_energy_units == ENERGY_KWH) value = value / 3600000; } if (type == MAGNITUDE_POWER_ACTIVE || type == MAGNITUDE_POWER_APPARENT || type == MAGNITUDE_POWER_REACTIVE) { if (_sensor_power_units == POWER_KILOWATTS) value = value / 1000; } return roundTo(value, _magnitudeDecimals(type)); } // ----------------------------------------------------------------------------- #if WEB_SUPPORT void _sensorWebSocketSendData(JsonObject& root) { char buffer[10]; bool hasTemperature = false; JsonArray& list = root.createNestedArray("magnitudes"); for (unsigned char i=0; i<_magnitudes.size(); i++) { sensor_magnitude_t magnitude = _magnitudes[i]; unsigned char decimals = _magnitudeDecimals(magnitude.type); dtostrf(magnitude.current, 1-sizeof(buffer), decimals, buffer); JsonObject& element = list.createNestedObject(); element["index"] = int(magnitude.global); element["type"] = int(magnitude.type); element["value"] = String(buffer); element["units"] = magnitudeUnits(magnitude.type); element["description"] = magnitude.sensor->slot(magnitude.local); element["error"] = magnitude.sensor->error(); if (magnitude.type == MAGNITUDE_TEMPERATURE) hasTemperature = true; } if (hasTemperature) root["temperatureVisible"] = 1; } void _sensorWebSocketStart(JsonObject& root) { for (unsigned char i=0; i<_sensors.size(); i++) { BaseSensor * sensor = _sensors[i]; #if EMON_ANALOG_SUPPORT if (sensor->getID() == SENSOR_EMON_ANALOG_ID) { root["emonVisible"] = 1; root["pwrVisible"] = 1; root["pwrVoltage"] = ((EmonAnalogSensor *) sensor)->getVoltage(); } #endif #if HLW8012_SUPPORT if (sensor->getID() == SENSOR_HLW8012_ID) { root["hlwVisible"] = 1; root["pwrVisible"] = 1; } #endif #if V9261F_SUPPORT if (sensor->getID() == SENSOR_V9261F_ID) { root["pwrVisible"] = 1; } #endif #if ECH1560_SUPPORT if (sensor->getID() == SENSOR_ECH1560_ID) { root["pwrVisible"] = 1; } #endif #if PZEM004T_SUPPORT if (sensor->getID() == SENSOR_PZEM004T_ID) { root["pwrVisible"] = 1; } #endif } if (_magnitudes.size() > 0) { root["sensorsVisible"] = 1; //root["apiRealTime"] = _sensor_realtime; root["powerUnits"] = _sensor_power_units; root["energyUnits"] = _sensor_energy_units; root["tmpUnits"] = _sensor_temperature_units; root["tmpCorrection"] = _sensor_temperature_correction; root["snsRead"] = _sensor_read_interval / 1000; root["snsReport"] = _sensor_report_every; } /* // Sensors manifest JsonArray& manifest = root.createNestedArray("manifest"); #if BMX280_SUPPORT BMX280Sensor::manifest(manifest); #endif // Sensors configuration JsonArray& sensors = root.createNestedArray("sensors"); for (unsigned char i; i<_sensors.size(); i++) { JsonObject& sensor = sensors.createNestedObject(); sensor["index"] = i; sensor["id"] = _sensors[i]->getID(); _sensors[i]->getConfig(sensor); } */ } void _sensorAPISetup() { for (unsigned char magnitude_id=0; magnitude_id<_magnitudes.size(); magnitude_id++) { sensor_magnitude_t magnitude = _magnitudes[magnitude_id]; String topic = magnitudeTopic(magnitude.type); if (SENSOR_USE_INDEX || (_counts[magnitude.type] > 1)) topic = topic + "/" + String(magnitude.global); apiRegister(topic.c_str(), [magnitude_id](char * buffer, size_t len) { sensor_magnitude_t magnitude = _magnitudes[magnitude_id]; unsigned char decimals = _magnitudeDecimals(magnitude.type); double value = _sensor_realtime ? magnitude.current : magnitude.filtered; dtostrf(value, 1-len, decimals, buffer); }); } } #endif #if TERMINAL_SUPPORT void _sensorInitCommands() { settingsRegisterCommand(F("MAGNITUDES"), [](Embedis* e) { for (unsigned char i=0; i<_magnitudes.size(); i++) { sensor_magnitude_t magnitude = _magnitudes[i]; DEBUG_MSG_P(PSTR("[SENSOR] * %2d: %s @ %s (%s/%d)\n"), i, magnitudeTopic(magnitude.type).c_str(), magnitude.sensor->slot(magnitude.local).c_str(), magnitudeTopic(magnitude.type).c_str(), magnitude.global ); } DEBUG_MSG_P(PSTR("+OK\n")); }); } #endif void _sensorTick() { for (unsigned char i=0; i<_sensors.size(); i++) { _sensors[i]->tick(); } } void _sensorPre() { for (unsigned char i=0; i<_sensors.size(); i++) { _sensors[i]->pre(); if (!_sensors[i]->status()) { DEBUG_MSG_P(PSTR("[SENSOR] Error reading data from %s (error: %d)\n"), _sensors[i]->description().c_str(), _sensors[i]->error() ); } } } void _sensorPost() { for (unsigned char i=0; i<_sensors.size(); i++) { _sensors[i]->post(); } } // ----------------------------------------------------------------------------- // Sensor initialization // ----------------------------------------------------------------------------- void _sensorLoad() { /* This is temporal, in the future sensors will be initialized based on soft configuration (data stored in EEPROM config) so you will be able to define and configure new sensors on the fly At the time being, only enabled sensors (those with *_SUPPORT to 1) are being loaded and initialized here. If you want to add new sensors of the same type just duplicate the block and change the arguments for the set* methods. Check the DHT block below for an example */ #if ANALOG_SUPPORT { AnalogSensor * sensor = new AnalogSensor(); _sensors.push_back(sensor); } #endif #if BH1750_SUPPORT { BH1750Sensor * sensor = new BH1750Sensor(); sensor->setAddress(BH1750_ADDRESS); sensor->setMode(BH1750_MODE); _sensors.push_back(sensor); } #endif #if BMX280_SUPPORT { BMX280Sensor * sensor = new BMX280Sensor(); sensor->setAddress(BMX280_ADDRESS); _sensors.push_back(sensor); } #endif #if DALLAS_SUPPORT { DallasSensor * sensor = new DallasSensor(); sensor->setGPIO(DALLAS_PIN); _sensors.push_back(sensor); } #endif #if DHT_SUPPORT { DHTSensor * sensor = new DHTSensor(); sensor->setGPIO(DHT_PIN); sensor->setType(DHT_TYPE); _sensors.push_back(sensor); } #endif /* // Example on how to add a second DHT sensor // DHT2_PIN and DHT2_TYPE should be defined in sensors.h file #if DHT_SUPPORT { DHTSensor * sensor = new DHTSensor(); sensor->setGPIO(DHT2_PIN); sensor->setType(DHT2_TYPE); _sensors.push_back(sensor); } #endif */ #if DIGITAL_SUPPORT { DigitalSensor * sensor = new DigitalSensor(); sensor->setGPIO(DIGITAL_PIN); sensor->setMode(DIGITAL_PIN_MODE); sensor->setDefault(DIGITAL_DEFAULT_STATE); _sensors.push_back(sensor); } #endif #if ECH1560_SUPPORT { ECH1560Sensor * sensor = new ECH1560Sensor(); sensor->setCLK(ECH1560_CLK_PIN); sensor->setMISO(ECH1560_MISO_PIN); sensor->setInverted(ECH1560_INVERTED); _sensors.push_back(sensor); } #endif #if EMON_ADC121_SUPPORT { EmonADC121Sensor * sensor = new EmonADC121Sensor(); sensor->setAddress(EMON_ADC121_I2C_ADDRESS); sensor->setVoltage(EMON_MAINS_VOLTAGE); sensor->setReference(EMON_REFERENCE_VOLTAGE); sensor->setCurrentRatio(0, EMON_CURRENT_RATIO); _sensors.push_back(sensor); } #endif #if EMON_ADS1X15_SUPPORT { EmonADS1X15Sensor * sensor = new EmonADS1X15Sensor(); sensor->setAddress(EMON_ADS1X15_I2C_ADDRESS); sensor->setType(EMON_ADS1X15_TYPE); sensor->setMask(EMON_ADS1X15_MASK); sensor->setGain(EMON_ADS1X15_GAIN); sensor->setVoltage(EMON_MAINS_VOLTAGE); sensor->setCurrentRatio(0, EMON_CURRENT_RATIO); sensor->setCurrentRatio(1, EMON_CURRENT_RATIO); sensor->setCurrentRatio(2, EMON_CURRENT_RATIO); sensor->setCurrentRatio(3, EMON_CURRENT_RATIO); _sensors.push_back(sensor); } #endif #if EMON_ANALOG_SUPPORT { EmonAnalogSensor * sensor = new EmonAnalogSensor(); sensor->setVoltage(EMON_MAINS_VOLTAGE); sensor->setReference(EMON_REFERENCE_VOLTAGE); sensor->setCurrentRatio(0, EMON_CURRENT_RATIO); _sensors.push_back(sensor); } #endif #if EVENTS_SUPPORT { EventSensor * sensor = new EventSensor(); sensor->setGPIO(EVENTS_PIN); sensor->setMode(EVENTS_PIN_MODE); sensor->setDebounceTime(EVENTS_DEBOUNCE); sensor->setInterruptMode(EVENTS_INTERRUPT_MODE); _sensors.push_back(sensor); } #endif #if HLW8012_SUPPORT { HLW8012Sensor * sensor = new HLW8012Sensor(); sensor->setSEL(HLW8012_SEL_PIN); sensor->setCF(HLW8012_CF_PIN); sensor->setCF1(HLW8012_CF1_PIN); sensor->setSELCurrent(HLW8012_SEL_CURRENT); _sensors.push_back(sensor); } #endif #if MHZ19_SUPPORT { MHZ19Sensor * sensor = new MHZ19Sensor(); sensor->setRX(MHZ19_RX_PIN); sensor->setTX(MHZ19_TX_PIN); _sensors.push_back(sensor); } #endif #if PMSX003_SUPPORT { PMSX003Sensor * sensor = new PMSX003Sensor(); sensor->setRX(PMS_RX_PIN); sensor->setTX(PMS_TX_PIN); _sensors.push_back(sensor); } #endif #if PZEM004T_SUPPORT { PZEM004TSensor * sensor = new PZEM004TSensor(); #if PZEM004T_USE_SOFT sensor->setRX(PZEM004T_RX_PIN); sensor->setTX(PZEM004T_TX_PIN); #else sensor->setSerial(& PZEM004T_HW_PORT); #endif _sensors.push_back(sensor); } #endif #if SHT3X_I2C_SUPPORT { SHT3XI2CSensor * sensor = new SHT3XI2CSensor(); sensor->setAddress(SHT3X_I2C_ADDRESS); _sensors.push_back(sensor); } #endif #if SI7021_SUPPORT { SI7021Sensor * sensor = new SI7021Sensor(); sensor->setAddress(SI7021_ADDRESS); _sensors.push_back(sensor); } #endif #if V9261F_SUPPORT { V9261FSensor * sensor = new V9261FSensor(); sensor->setRX(V9261F_PIN); sensor->setInverted(V9261F_PIN_INVERSE); _sensors.push_back(sensor); } #endif } void _sensorCallback(unsigned char i, unsigned char type, const char * payload) { DEBUG_MSG_P(PSTR("[SENSOR] Sensor #%u callback, type %u, payload: '%s'\n"), i, type, payload); } void _sensorInit() { _sensors_ready = true; for (unsigned char i=0; i<_sensors.size(); i++) { // Do not process and already initialized sensor if (_sensors[i]->ready()) continue; DEBUG_MSG_P(PSTR("[SENSOR] Initializing %s\n"), _sensors[i]->description().c_str()); #if EMON_ANALOG_SUPPORT if (_sensors[i]->getID() == SENSOR_EMON_ANALOG_ID) { double value; EmonAnalogSensor * sensor = (EmonAnalogSensor *) _sensors[i]; if (value = (getSetting("pwrExpectedP", 0).toInt() == 0)) { value = getSetting("pwrRatioC", EMON_CURRENT_RATIO).toFloat(); if (value > 0) sensor->setCurrentRatio(0, value); } else { sensor->expectedPower(0, value); setSetting("pwrRatioC", sensor->getCurrentRatio(0)); } if (getSetting("pwrResetCalibration", 0).toInt() == 1) { sensor->setCurrentRatio(0, EMON_CURRENT_RATIO); delSetting("pwrRatioC"); } sensor->setVoltage(getSetting("pwrVoltage", EMON_MAINS_VOLTAGE).toInt()); } #endif // EMON_ANALOG_SUPPORT // Force sensor to reload config _sensors[i]->begin(); if (!_sensors[i]->ready()) { if (_sensors[i]->error() != 0) DEBUG_MSG_P(PSTR("[SENSOR] -> ERROR %d\n"), _sensors[i]->error()); _sensors_ready = false; continue; } // Initialize magnitudes _magnitudesInit(_sensors[i]); // Hook callback _sensors[i]->onEvent([i](unsigned char type, const char * payload) { _sensorCallback(i, type, payload); }); #if HLW8012_SUPPORT if (_sensors[i]->getID() == SENSOR_HLW8012_ID) { double value; HLW8012Sensor * sensor = (HLW8012Sensor *) _sensors[i]; if (value = getSetting("pwrExpectedC", 0).toFloat()) { sensor->expectedCurrent(value); setSetting("pwrRatioC", sensor->getCurrentRatio()); } else { value = getSetting("pwrRatioC", 0).toFloat(); if (value > 0) sensor->setCurrentRatio(value); } if (value = getSetting("pwrExpectedV", 0).toInt()) { sensor->expectedVoltage(value); setSetting("pwrRatioV", sensor->getVoltageRatio()); } else { value = getSetting("pwrRatioV", 0).toFloat(); if (value > 0) sensor->setVoltageRatio(value); } if (value = getSetting("pwrExpectedP", 0).toInt()) { sensor->expectedPower(value); setSetting("pwrRatioP", sensor->getPowerRatio()); } else { value = getSetting("pwrRatioP", 0).toFloat(); if (value > 0) sensor->setPowerRatio(value); } if (getSetting("pwrResetCalibration", 0).toInt() == 1) { sensor->resetRatios(); delSetting("pwrRatioC"); delSetting("pwrRatioV"); delSetting("pwrRatioP"); } } #endif // HLW8012_SUPPORT } } void _magnitudesInit(BaseSensor * sensor) { for (unsigned char k=0; kcount(); k++) { unsigned char type = sensor->type(k); sensor_magnitude_t new_magnitude; new_magnitude.sensor = sensor; new_magnitude.local = k; new_magnitude.type = type; new_magnitude.global = _counts[type]; new_magnitude.current = 0; new_magnitude.filtered = 0; new_magnitude.reported = 0; new_magnitude.min_change = 0; if (type == MAGNITUDE_DIGITAL) { new_magnitude.filter = new MaxFilter(); } else if (type == MAGNITUDE_EVENTS) { new_magnitude.filter = new MovingAverageFilter(); } else { new_magnitude.filter = new MedianFilter(); } new_magnitude.filter->resize(_sensor_report_every); _magnitudes.push_back(new_magnitude); DEBUG_MSG_P(PSTR("[SENSOR] -> %s:%d\n"), magnitudeTopic(type).c_str(), _counts[type]); _counts[type] = _counts[type] + 1; } } void _sensorConfigure() { // General sensor settings _sensor_read_interval = 1000 * constrain(getSetting("snsRead", SENSOR_READ_INTERVAL).toInt(), SENSOR_READ_MIN_INTERVAL, SENSOR_READ_MAX_INTERVAL); _sensor_report_every = constrain(getSetting("snsReport", SENSOR_REPORT_EVERY).toInt(), SENSOR_REPORT_MIN_EVERY, SENSOR_REPORT_MAX_EVERY); _sensor_realtime = getSetting("apiRealTime", API_REAL_TIME_VALUES).toInt() == 1; _sensor_power_units = getSetting("powerUnits", SENSOR_POWER_UNITS).toInt(); _sensor_energy_units = getSetting("energyUnits", SENSOR_ENERGY_UNITS).toInt(); _sensor_temperature_units = getSetting("tmpUnits", SENSOR_TEMPERATURE_UNITS).toInt(); _sensor_temperature_correction = getSetting("tmpCorrection", SENSOR_TEMPERATURE_CORRECTION).toFloat(); // Update filter sizes for (unsigned char i=0; i<_magnitudes.size(); i++) { _magnitudes[i].filter->resize(_sensor_report_every); } // Save settings delSetting("pwrExpectedP"); delSetting("pwrExpectedC"); delSetting("pwrExpectedV"); delSetting("pwrResetCalibration"); //saveSettings(); } // ----------------------------------------------------------------------------- // Public // ----------------------------------------------------------------------------- unsigned char sensorCount() { return _sensors.size(); } unsigned char magnitudeCount() { return _magnitudes.size(); } String magnitudeName(unsigned char index) { if (index < _magnitudes.size()) { sensor_magnitude_t magnitude = _magnitudes[index]; return magnitude.sensor->slot(magnitude.local); } return String(); } unsigned char magnitudeType(unsigned char index) { if (index < _magnitudes.size()) { return int(_magnitudes[index].type); } return MAGNITUDE_NONE; } unsigned char magnitudeIndex(unsigned char index) { if (index < _magnitudes.size()) { return int(_magnitudes[index].global); } return 0; } String magnitudeTopic(unsigned char type) { char buffer[16] = {0}; if (type < MAGNITUDE_MAX) strncpy_P(buffer, magnitude_topics[type], sizeof(buffer)); return String(buffer); } String magnitudeTopicIndex(unsigned char index) { char topic[32] = {0}; if (index < _magnitudes.size()) { sensor_magnitude_t magnitude = _magnitudes[index]; if (SENSOR_USE_INDEX || (_counts[magnitude.type] > 1)) { snprintf(topic, sizeof(topic), "%s/%u", magnitudeTopic(magnitude.type).c_str(), magnitude.global); } else { snprintf(topic, sizeof(topic), "%s", magnitudeTopic(magnitude.type).c_str()); } } return String(topic); } String magnitudeUnits(unsigned char type) { char buffer[8] = {0}; if (type < MAGNITUDE_MAX) { if ((type == MAGNITUDE_TEMPERATURE) && (_sensor_temperature_units == TMP_FAHRENHEIT)) { strncpy_P(buffer, magnitude_fahrenheit, sizeof(buffer)); } else if ( (type == MAGNITUDE_ENERGY || type == MAGNITUDE_ENERGY_DELTA) && (_sensor_energy_units == ENERGY_KWH)) { strncpy_P(buffer, magnitude_kwh, sizeof(buffer)); } else if ( (type == MAGNITUDE_POWER_ACTIVE || type == MAGNITUDE_POWER_APPARENT || type == MAGNITUDE_POWER_REACTIVE) && (_sensor_power_units == POWER_KILOWATTS)) { strncpy_P(buffer, magnitude_kw, sizeof(buffer)); } else { strncpy_P(buffer, magnitude_units[type], sizeof(buffer)); } } return String(buffer); } // ----------------------------------------------------------------------------- void sensorSetup() { // Load sensors _sensorLoad(); _sensorInit(); // Configure stored values _sensorConfigure(); #if WEB_SUPPORT // Websockets wsOnSendRegister(_sensorWebSocketStart); wsOnSendRegister(_sensorWebSocketSendData); wsOnAfterParseRegister(_sensorConfigure); // API _sensorAPISetup(); #endif #if TERMINAL_SUPPORT _sensorInitCommands(); #endif // Register loop espurnaRegisterLoop(sensorLoop); } void sensorLoop() { // Check if we still have uninitialized sensors static unsigned long last_init = 0; if (!_sensors_ready) { if (millis() - last_init > SENSOR_INIT_INTERVAL) { last_init = millis(); _sensorInit(); } } if (_magnitudes.size() == 0) return; // Tick hook _sensorTick(); // Check if we should read new data static unsigned long last_update = 0; static unsigned long report_count = 0; if (millis() - last_update > _sensor_read_interval) { last_update = millis(); report_count = (report_count + 1) % _sensor_report_every; double current; double filtered; char buffer[64]; // Pre-read hook _sensorPre(); // Get readings for (unsigned char i=0; i<_magnitudes.size(); i++) { sensor_magnitude_t magnitude = _magnitudes[i]; if (magnitude.sensor->status()) { unsigned char decimals = _magnitudeDecimals(magnitude.type); current = magnitude.sensor->value(magnitude.local); magnitude.filter->add(current); // Special case if (magnitude.type == MAGNITUDE_EVENTS) current = magnitude.filter->result(); current = _magnitudeProcess(magnitude.type, current); _magnitudes[i].current = current; // Debug #if SENSOR_DEBUG { dtostrf(current, 1-sizeof(buffer), decimals, buffer); DEBUG_MSG_P(PSTR("[SENSOR] %s - %s: %s%s\n"), magnitude.sensor->slot(magnitude.local).c_str(), magnitudeTopic(magnitude.type).c_str(), buffer, magnitudeUnits(magnitude.type).c_str() ); } #endif // SENSOR_DEBUG // Time to report (we do it every _sensor_report_every readings) if (report_count == 0) { filtered = magnitude.filter->result(); magnitude.filter->reset(); filtered = _magnitudeProcess(magnitude.type, filtered); _magnitudes[i].filtered = filtered; // Check if there is a minimum change threshold to report if (fabs(filtered - magnitude.reported) >= magnitude.min_change) { _magnitudes[i].reported = filtered; dtostrf(filtered, 1-sizeof(buffer), decimals, buffer); #if BROKER_SUPPORT brokerPublish(magnitudeTopic(magnitude.type).c_str(), magnitude.local, buffer); #endif #if MQTT_SUPPORT mqttSend(magnitudeTopicIndex(i).c_str(), buffer); #if SENSOR_PUBLISH_ADDRESSES char topic[32]; snprintf(topic, sizeof(topic), "%s/%s", SENSOR_ADDRESS_TOPIC, magnitudeTopic(magnitude.type).c_str()); if (SENSOR_USE_INDEX || (_counts[magnitude.type] > 1)) { mqttSend(topic, magnitude.global, magnitude.sensor->address(magnitude.local).c_str()); } else { mqttSend(topic, magnitude.sensor->address(magnitude.local).c_str()); } #endif // SENSOR_PUBLISH_ADDRESSES #endif // MQTT_SUPPORT #if INFLUXDB_SUPPORT if (SENSOR_USE_INDEX || (_counts[magnitude.type] > 1)) { idbSend(magnitudeTopic(magnitude.type).c_str(), magnitude.global, buffer); } else { idbSend(magnitudeTopic(magnitude.type).c_str(), buffer); } #endif // INFLUXDB_SUPPORT #if THINGSPEAK_SUPPORT tspkEnqueueMeasurement(i, buffer); #endif #if DOMOTICZ_SUPPORT { char key[15]; snprintf_P(key, sizeof(key), PSTR("dczMagnitude%d"), i); if (magnitude.type == MAGNITUDE_HUMIDITY) { int status; if (filtered > 70) { status = HUMIDITY_WET; } else if (filtered > 45) { status = HUMIDITY_COMFORTABLE; } else if (filtered > 30) { status = HUMIDITY_NORMAL; } else { status = HUMIDITY_DRY; } char status_buf[5]; itoa(status, status_buf, 10); domoticzSend(key, buffer, status_buf); } else { domoticzSend(key, 0, buffer); } } #endif // DOMOTICZ_SUPPORT } // if (fabs(filtered - magnitude.reported) >= magnitude.min_change) } // if (report_count == 0) } // if (magnitude.sensor->status()) } // for (unsigned char i=0; i<_magnitudes.size(); i++) // Post-read hook _sensorPost(); #if WEB_SUPPORT wsSend(_sensorWebSocketSendData); #endif #if THINGSPEAK_SUPPORT if (report_count == 0) tspkFlush(); #endif } } #endif // SENSOR_SUPPORT