/* RF MODULE Copyright (C) 2016-2018 by Xose PĂ©rez */ #if defined(ITEAD_SONOFF_RFBRIDGE) || RF_SUPPORT #include #include #if RFB_DIRECT || RF_SUPPORT #include #endif // ----------------------------------------------------------------------------- // DEFINITIONS // ----------------------------------------------------------------------------- // EFM8 Protocol #define RF_MESSAGE_SIZE 9 #define RF_MAX_MESSAGE_SIZE (112+4) #define RF_CODE_START 0xAA #define RF_CODE_ACK 0xA0 #define RF_CODE_LEARN 0xA1 #define RF_CODE_LEARN_KO 0xA2 #define RF_CODE_LEARN_OK 0xA3 #define RF_CODE_RFIN 0xA4 #define RF_CODE_RFOUT 0xA5 #define RF_CODE_SNIFFING_ON 0xA6 #define RF_CODE_SNIFFING_OFF 0xA7 #define RF_CODE_RFOUT_NEW 0xA8 #define RF_CODE_LEARN_NEW 0xA9 #define RF_CODE_LEARN_KO_NEW 0xAA #define RF_CODE_LEARN_OK_NEW 0xAB #define RF_CODE_RFOUT_BUCKET 0xB0 #define RF_CODE_STOP 0x55 // Settings #define RF_MAX_KEY_LENGTH (9) // ----------------------------------------------------------------------------- // GLOBALS TO THE MODULE // ----------------------------------------------------------------------------- unsigned char _uartbuf[RF_MESSAGE_SIZE+3] = {0}; unsigned char _uartpos = 0; unsigned char _learnId = 0; bool _learnStatus = true; bool _rfbin = false; #if not RF_SUPPORT typedef struct { byte code[RF_MESSAGE_SIZE]; byte times; } rfb_message_t; static std::queue _rfb_message_queue; Ticker _rfb_ticker; bool _rfb_ticker_active = false; #endif #if RFB_DIRECT || RF_SUPPORT RCSwitch * _rfModem; bool _learning = false; #endif #if WEB_SUPPORT Ticker _rfb_sendcodes; #endif // ----------------------------------------------------------------------------- // PRIVATES // ----------------------------------------------------------------------------- /* From a byte array to an hexa char array ("A220EE...", double the size) */ static bool _rfbToChar(byte * in, char * out, int n = RF_MESSAGE_SIZE) { for (unsigned char p = 0; p()); } #endif // WEB_SUPPORT void _rfbAck() { #if (not RFB_DIRECT) && (not RF_SUPPORT) DEBUG_MSG_P(PSTR("[RF] Sending ACK\n")); Serial.println(); Serial.write(RF_CODE_START); Serial.write(RF_CODE_ACK); Serial.write(RF_CODE_STOP); Serial.flush(); Serial.println(); #endif } void _rfbLearn() { #if RFB_DIRECT || RF_SUPPORT DEBUG_MSG_P(PSTR("[RF] Entering LEARN mode\n")); _learning = true; #else DEBUG_MSG_P(PSTR("[RF] Sending LEARN\n")); Serial.println(); Serial.write(RF_CODE_START); Serial.write(RF_CODE_LEARN); Serial.write(RF_CODE_STOP); Serial.flush(); Serial.println(); #endif #if WEB_SUPPORT char buffer[100]; snprintf_P(buffer, sizeof(buffer), PSTR("{\"action\": \"rfbLearn\", \"data\":{\"id\": %d, \"status\": %d}}"), _learnId, _learnStatus ? 1 : 0); wsSend(buffer); #endif } #if not RF_SUPPORT /* From an hexa char array ("A220EE...") to a byte array (half the size) */ static int _rfbToArray(const char * in, byte * out, int length = RF_MESSAGE_SIZE * 2) { int n = strlen(in); if (n > RF_MAX_MESSAGE_SIZE*2 || (length > 0 && n != length)) return 0; char tmp[3] = {0,0,0}; n /= 2; for (unsigned char p = 0; psetProtocol(protocol); if (timing > 0) { _rfModem->setPulseLength(timing); } _rfModem->send(rf_code, bitlength); _rfModem->resetAvailable(); #else Serial.println(); Serial.write(RF_CODE_START); Serial.write(RF_CODE_RFOUT); _rfbSendRaw(message); Serial.write(RF_CODE_STOP); Serial.flush(); Serial.println(); #endif } void _rfbSend() { // Check if there is something in the queue if (_rfb_message_queue.empty()) return; // Pop the first element rfb_message_t message = _rfb_message_queue.front(); _rfb_message_queue.pop(); // Send the message _rfbSend(message.code); // If it should be further sent, push it to the stack again if (message.times > 1) { message.times = message.times - 1; _rfb_message_queue.push(message); } // if there are still messages in the queue... if (_rfb_message_queue.empty()) { _rfb_ticker.detach(); _rfb_ticker_active = false; } } void _rfbSend(byte * code, unsigned char times) { #if RFB_DIRECT times = 1; #endif char buffer[RF_MESSAGE_SIZE]; _rfbToChar(code, buffer); DEBUG_MSG_P(PSTR("[RF] Enqueuing MESSAGE '%s' %d time(s)\n"), buffer, times); rfb_message_t message; memcpy(message.code, code, RF_MESSAGE_SIZE); message.times = times; _rfb_message_queue.push(message); // Enable the ticker if not running if (!_rfb_ticker_active) { _rfb_ticker_active = true; _rfb_ticker.attach_ms(RF_SEND_DELAY, _rfbSend); } } #endif // not RF_SUPPORT #if RF_RAW_SUPPORT void _rfbSendRawOnce(byte *code, unsigned char length) { char buffer[length*2]; _rfbToChar(code, buffer, length); DEBUG_MSG_P(PSTR("[RF] Sending RAW MESSAGE '%s'\n"), buffer); _rfbSendRaw(code, length); } #endif // RF_RAW_SUPPORT bool _rfbMatch(char* code, unsigned char& relayID, unsigned char& value, char* buffer = NULL) { if (strlen(code) != 18) return false; bool found = false; String compareto = String(&code[12]); compareto.toUpperCase(); DEBUG_MSG_P(PSTR("[RF] Trying to match code %s\n"), compareto.c_str()); for (unsigned char i=0; i 0 && millis() - learn_start > RF_LEARN_TIMEOUT) { DEBUG_MSG_P(PSTR("[RF] Learn timeout triggered\n")); memset(_uartbuf, 0, sizeof(_uartbuf)); _uartbuf[0] = RF_CODE_LEARN_KO; _rfbDecode(); _learning = false; } } if (_rfModem->available()) { static unsigned long last = 0; if (millis() - last > RF_DEBOUNCE) { last = millis(); unsigned long rf_code = _rfModem->getReceivedValue(); if ( rf_code > 0) { DEBUG_MSG_P(PSTR("[RF] Received code: %08X\n"), rf_code); unsigned int timing = _rfModem->getReceivedDelay(); memset(_uartbuf, 0, sizeof(_uartbuf)); unsigned char *msgbuf = _uartbuf + 1; _uartbuf[0] = _learning ? RF_CODE_LEARN_OK: RF_CODE_RFIN; msgbuf[0] = 0xC0; msgbuf[1] = _rfModem->getReceivedProtocol(); msgbuf[2] = timing >> 8; msgbuf[3] = timing >> 0; msgbuf[4] = _rfModem->getReceivedBitlength(); msgbuf[5] = rf_code >> 24; msgbuf[6] = rf_code >> 16; msgbuf[7] = rf_code >> 8; msgbuf[8] = rf_code >> 0; _rfbDecode(); _learning = false; } } _rfModem->resetAvailable(); } #else static bool receiving = false; while (Serial.available()) { yield(); byte c = Serial.read(); //DEBUG_MSG_P(PSTR("[RF] Received 0x%02X\n"), c); if (receiving) { if (c == RF_CODE_STOP && (_uartpos == 1 || _uartpos == RF_MESSAGE_SIZE + 1)) { _rfbDecode(); receiving = false; } else if (_uartpos <= RF_MESSAGE_SIZE) { _uartbuf[_uartpos++] = c; } else { // wrong message, should have received a RF_CODE_STOP receiving = false; } } else if (c == RF_CODE_START) { _uartpos = 0; receiving = true; } } #endif } bool _rfbCompare(const char * code1, const char * code2) { return strcmp(&code1[12], &code2[12]) == 0; } bool _rfbSameOnOff(unsigned char id) { return _rfbCompare(rfbRetrieve(id, true).c_str(), rfbRetrieve(id, false).c_str()); } void _rfbParseCode(char * code) { // The payload may be a code in HEX format ([0-9A-Z]{18}) or // the code comma the number of times to transmit it. char * tok = strtok(code, ","); // Check if a switch is linked to that message unsigned char id; unsigned char status = 0; if (_rfbMatch(tok, id, status)) { if (status == 2) { relayToggle(id); } else { relayStatus(id, status == 1); } return; } #if RF_RAW_SUPPORT byte message[RF_MAX_MESSAGE_SIZE]; int len = _rfbToArray(tok, message, 0); if ((len > 0) && (isRFRaw || len != RF_MESSAGE_SIZE)) { _rfbSendRawOnce(message, len); } else { tok = strtok(NULL, ","); byte times = (tok != NULL) ? atoi(tok) : 1; _rfbSend(message, times); } #else // RF_RAW_SUPPORT byte message[RF_MESSAGE_SIZE]; if (_rfbToArray(tok, message)) { tok = strtok(NULL, ","); byte times = (tok != NULL) ? atoi(tok) : 1; _rfbSend(message, times); } #endif // RF_RAW_SUPPORT } #if MQTT_SUPPORT void _rfbMqttCallback(unsigned int type, const char * topic, const char * payload) { if (type == MQTT_CONNECT_EVENT) { char buffer[strlen(MQTT_TOPIC_RFLEARN) + 3]; snprintf_P(buffer, sizeof(buffer), PSTR("%s/+"), MQTT_TOPIC_RFLEARN); mqttSubscribe(buffer); #if not RF_SUPPORT mqttSubscribe(MQTT_TOPIC_RFOUT); #endif #if RF_RAW_SUPPORT mqttSubscribe(MQTT_TOPIC_RFRAW); #endif } if (type == MQTT_MESSAGE_EVENT) { // Match topic String t = mqttMagnitude((char *) topic); // Check if should go into learn mode if (t.startsWith(MQTT_TOPIC_RFLEARN)) { _learnId = t.substring(strlen(MQTT_TOPIC_RFLEARN)+1).toInt(); if (_learnId >= relayCount()) { DEBUG_MSG_P(PSTR("[RF] Wrong learnID (%d)\n"), _learnId); return; } _learnStatus = (char)payload[0] != '0'; _rfbLearn(); return; } #if not RF_SUPPORT bool isRFOut = t.equals(MQTT_TOPIC_RFOUT); #endif #if RF_RAW_SUPPORT bool isRFRaw = !isRFOut && t.equals(MQTT_TOPIC_RFRAW); #elif not RF_SUPPORT bool isRFRaw = false; #endif #if not RF_SUPPORT if (isRFOut || isRFRaw) { _rfbParseCode((char *) payload); } #endif // not RF_SUPPORT } } #endif // MQTT_SUPPORT #if API_SUPPORT void _rfbAPISetup() { apiRegister(MQTT_TOPIC_RFOUT, [](char * buffer, size_t len) { snprintf_P(buffer, len, PSTR("OK")); }, [](const char * payload) { _rfbParseCode((char *) payload); } ); apiRegister(MQTT_TOPIC_RFLEARN, [](char * buffer, size_t len) { snprintf_P(buffer, len, PSTR("OK")); }, [](const char * payload) { // The payload must be the relayID plus the mode (0 or 1) char * tok = strtok((char *) payload, ","); if (NULL == tok) return; if (!isNumber(tok)) return; _learnId = atoi(tok); if (_learnId >= relayCount()) { DEBUG_MSG_P(PSTR("[RF] Wrong learnID (%d)\n"), _learnId); return; } tok = strtok(NULL, ","); if (NULL == tok) return; _learnStatus = (char) tok[0] != '0'; _rfbLearn(); } ); #if RF_RAW_SUPPORT apiRegister(MQTT_TOPIC_RFRAW, [](char * buffer, size_t len) { snprintf_P(buffer, len, PSTR("OK")); }, [](const char * payload) { _rfbParseCode(payload); } ); #endif // RF_RAW_SUPPORT } #endif // API_SUPPORT #if TERMINAL_SUPPORT void _rfbInitCommands() { terminalRegisterCommand(F("LEARN"), [](Embedis* e) { if (e->argc < 3) { DEBUG_MSG_P(PSTR("-ERROR: Wrong arguments\n")); return; } int id = String(e->argv[1]).toInt(); if (id >= relayCount()) { DEBUG_MSG_P(PSTR("-ERROR: Wrong relayID (%d)\n"), id); return; } int status = String(e->argv[2]).toInt(); rfbLearn(id, status == 1); DEBUG_MSG_P(PSTR("+OK\n")); }); terminalRegisterCommand(F("FORGET"), [](Embedis* e) { if (e->argc < 3) { DEBUG_MSG_P(PSTR("-ERROR: Wrong arguments\n")); return; } int id = String(e->argv[1]).toInt(); if (id >= relayCount()) { DEBUG_MSG_P(PSTR("-ERROR: Wrong relayID (%d)\n"), id); return; } int status = String(e->argv[2]).toInt(); rfbForget(id, status == 1); DEBUG_MSG_P(PSTR("+OK\n")); }); } #endif // TERMINAL_SUPPORT // ----------------------------------------------------------------------------- // PUBLIC // ----------------------------------------------------------------------------- void rfbStore(unsigned char id, bool status, const char * code) { DEBUG_MSG_P(PSTR("[RF] Storing %d-%s => '%s'\n"), id, status ? "ON" : "OFF", code); char key[RF_MAX_KEY_LENGTH] = {0}; snprintf_P(key, sizeof(key), PSTR("rfb%s%d"), status ? "ON" : "OFF", id); setSetting(key, code); } String rfbRetrieve(unsigned char id, bool status) { char key[RF_MAX_KEY_LENGTH] = {0}; snprintf_P(key, sizeof(key), PSTR("rfb%s%d"), status ? "ON" : "OFF", id); return getSetting(key); } #if not RF_SUPPORT void rfbStatus(unsigned char id, bool status) { String value = rfbRetrieve(id, status); if (value.length() > 0) { bool same = _rfbSameOnOff(id); #if RF_RAW_SUPPORT byte message[RF_MAX_MESSAGE_SIZE]; int len = _rfbToArray(value.c_str(), message, 0); if (len == RF_MESSAGE_SIZE && // probably a standard msg (message[0] != RF_CODE_START || // raw would start with 0xAA message[1] != RF_CODE_RFOUT_BUCKET || // followed by 0xB0, message[2] + 4 != len || // needs a valid length, message[len-1] != RF_CODE_STOP)) { // and finish with 0x55 if (!_rfbin) { unsigned char times = same ? 1 : RF_SEND_TIMES; _rfbSend(message, times); } } else { _rfbSendRawOnce(message, len); // send a raw message } #else // RF_RAW_SUPPORT if (!_rfbin) { byte message[RF_MESSAGE_SIZE]; _rfbToArray(value.c_str(), message); unsigned char times = same ? 1 : RF_SEND_TIMES; _rfbSend(message, times); } #endif // RF_RAW_SUPPORT } _rfbin = false; } #endif // not RF_SUPPORT void rfbLearn(unsigned char id, bool status) { _learnId = id; _learnStatus = status; _rfbLearn(); } void rfbForget(unsigned char id, bool status) { char key[RF_MAX_KEY_LENGTH] = {0}; snprintf_P(key, sizeof(key), PSTR("rfb%s%d"), status ? "ON" : "OFF", id); delSetting(key); // Websocket update #if WEB_SUPPORT char wsb[100]; snprintf_P(wsb, sizeof(wsb), PSTR("{\"rfb\":[{\"id\": %d, \"status\": %d, \"data\": \"\"}]}"), id, status ? 1 : 0); wsSend(wsb); #endif } // ----------------------------------------------------------------------------- // SETUP & LOOP // ----------------------------------------------------------------------------- void rfbSetup() { #if MQTT_SUPPORT mqttRegister(_rfbMqttCallback); #endif #if API_SUPPORT _rfbAPISetup(); #endif #if WEB_SUPPORT wsOnSendRegister(_rfbWebSocketOnSend); wsOnActionRegister(_rfbWebSocketOnAction); #endif #if TERMINAL_SUPPORT _rfbInitCommands(); #endif #if RFB_DIRECT || RF_SUPPORT _rfModem = new RCSwitch(); #if RF_SUPPORT _rfModem->enableReceive(RF_PIN); DEBUG_MSG_P(PSTR("[RF] RF receiver on GPIO %u\n"), RF_PIN); #else _rfModem->enableReceive(RFB_RX_PIN); _rfModem->enableTransmit(RFB_TX_PIN); _rfModem->setRepeatTransmit(6); DEBUG_MSG_P(PSTR("[RF] RF receiver on GPIO %u\n"), RFB_RX_PIN); DEBUG_MSG_P(PSTR("[RF] RF transmitter on GPIO %u\n"), RFB_TX_PIN); #endif #endif // Register loop espurnaRegisterLoop(rfbLoop); } void rfbLoop() { _rfbReceive(); } #endif