// ----------------------------------------------------------------------------- // PMS Dust Sensor // Uses SoftwareSerial library // Contribution by Òscar Rovira López // Refine to support PMS5003T/PMS5003ST by Yonsm Guo // ----------------------------------------------------------------------------- #if SENSOR_SUPPORT && PMSX003_SUPPORT #pragma once #include #include #include "../debug.h" #include "BaseSensor.h" // Generic data #define PMS_BAUD_RATE 9600 // Type of sensor #define PMS_TYPE_X003 0 #define PMS_TYPE_X003_9 1 #define PMS_TYPE_5003T 2 #define PMS_TYPE_5003ST 3 #define PMS_TYPE_5003S 4 // Sensor type specified data #define PMS_SLOT_MAX 4 #define PMS_DATA_MAX 17 const static struct { const char *name; unsigned char data_count; unsigned char slot_count; unsigned char slot_types[PMS_SLOT_MAX]; } pms_specs[] = { {"PMSX003", 13, 3, {MAGNITUDE_PM1dot0, MAGNITUDE_PM2dot5, MAGNITUDE_PM10}}, {"PMSX003_9", 9, 3, {MAGNITUDE_PM1dot0, MAGNITUDE_PM2dot5, MAGNITUDE_PM10}}, {"PMS5003T", 13, 3, {MAGNITUDE_PM2dot5, MAGNITUDE_TEMPERATURE, MAGNITUDE_HUMIDITY}}, {"PMS5003ST", 17, 4, {MAGNITUDE_PM2dot5, MAGNITUDE_TEMPERATURE, MAGNITUDE_HUMIDITY, MAGNITUDE_HCHO}}, {"PMS5003S", 13, 3, {MAGNITUDE_PM2dot5, MAGNITUDE_PM10, MAGNITUDE_HCHO}}, }; // [MAGIC][LEN][DATA9|13|17][SUM] #define PMS_PACKET_SIZE(data_count) ((data_count + 3) * 2) #define PMS_PAYLOAD_SIZE(data_count) ((data_count + 1) * 2) // PMS sensor utils // Command functions copied from: https://github.com/fu-hsi/PMS/blob/master/src/PMS.cpp // Reading function is rewrited to support flexible reading for PMS5003T/PMS5003ST class PMSX003 { protected: Stream *_serial = NULL; // Should initialized by child class public: // Standby mode. For low power consumption and prolong the life of the sensor. inline void sleep() { uint8_t command[] = { 0x42, 0x4D, 0xE4, 0x00, 0x00, 0x01, 0x73 }; _serial->write(command, sizeof(command)); } // Operating mode. Stable data should be got at least 30 seconds after the sensor wakeup from the sleep mode because of the fan's performance. inline void wakeUp() { uint8_t command[] = { 0x42, 0x4D, 0xE4, 0x00, 0x01, 0x01, 0x74 }; _serial->write(command, sizeof(command)); } // Active mode. Default mode after power up. In this mode sensor would send serial data to the host automatically. inline void activeMode() { uint8_t command[] = { 0x42, 0x4D, 0xE1, 0x00, 0x01, 0x01, 0x71 }; _serial->write(command, sizeof(command)); } // Passive mode. In this mode, sensor would send serial data to the host only for request. inline void passiveMode() { uint8_t command[] = { 0x42, 0x4D, 0xE1, 0x00, 0x00, 0x01, 0x70 }; _serial->write(command, sizeof(command)); } // Request read, ONLY needed in Passive Mode!! inline void requestRead() { uint8_t command[] = { 0x42, 0x4D, 0xE2, 0x00, 0x00, 0x01, 0x71 }; _serial->write(command, sizeof(command)); } // Read sensor's data bool readData(uint16_t data[], unsigned char data_count) { do { int avail = _serial->available(); #if SENSOR_DEBUG //DEBUG_MSG("[SENSOR] PMS: Packet available = %d\n", avail); #endif if (avail < PMS_PACKET_SIZE(data_count)) { break; } if (_serial->read() == 0x42 && _serial->read() == 0x4D) { uint16_t sum = 0x42 + 0x4D; uint16_t size = read16(sum); if (size != PMS_PAYLOAD_SIZE(data_count)) { #if SENSOR_DEBUG DEBUG_MSG(("[SENSOR] PMS: Payload size: %d != %d.\n"), size, PMS_PAYLOAD_SIZE(data_count)); #endif break; } for (int i = 0; i < data_count; i++) { data[i] = read16(sum); #if SENSOR_DEBUG //DEBUG_MSG(("[SENSOR] PMS: data[%d] = %d\n"), i, data[i]); #endif } uint16_t checksum = read16(); if (sum == checksum) { return true; } else { #if SENSOR_DEBUG DEBUG_MSG(("[SENSOR] PMS checksum: %04X != %04X\n"), sum, checksum); #endif } break; } } while (true); return false; } private: // Read 16-bit inline uint16_t read16() { return ((uint16_t) _serial->read()) << 8 | _serial->read(); } // Read 16-bit and calculate checksum uint16_t read16(uint16_t &checksum) { uint8_t high = _serial->read(); uint8_t low = _serial->read(); checksum += high; checksum += low; return ((uint16_t) high) << 8 | low; } }; class PMSX003Sensor : public BaseSensor, PMSX003 { public: // --------------------------------------------------------------------- // Public // --------------------------------------------------------------------- PMSX003Sensor() { _count = pms_specs[_type].slot_count; _sensor_id = SENSOR_PMSX003_ID; } ~PMSX003Sensor() { removeSerial(); } void setRX(unsigned char pin_rx) { if (_pin_rx == pin_rx) return; _pin_rx = pin_rx; _dirty = true; } void setTX(unsigned char pin_tx) { if (_pin_tx == pin_tx) return; _pin_tx = pin_tx; _dirty = true; } void setSerial(HardwareSerial * serial) { _soft = false; _serial = serial; _dirty = true; } // Should call setType after constructor immediately to enable corresponding slot count void setType(unsigned char type) { _type = type; _count = pms_specs[_type].slot_count; } // --------------------------------------------------------------------- unsigned char getRX() { return _pin_rx; } unsigned char getTX() { return _pin_tx; } unsigned char getType() { return _type; } // --------------------------------------------------------------------- // Sensor API // --------------------------------------------------------------------- // Initialization method, must be idempotent void begin() { if (!_dirty) return; if (_soft) { if (_serial) removeSerial(); _serial = new SoftwareSerial(_pin_rx, _pin_tx, false, 64); static_cast(_serial)->enableIntTx(false); } if (_soft) { static_cast(_serial)->begin(PMS_BAUD_RATE); } else { static_cast(_serial)->begin(PMS_BAUD_RATE); } passiveMode(); _startTime = millis(); _ready = true; _dirty = false; } // Descriptive name of the sensor String description() { char buffer[28]; if (_soft) { snprintf(buffer, sizeof(buffer), "%s @ SwSerial(%u,%u)", pms_specs[_type].name, _pin_rx, _pin_tx); } else { snprintf(buffer, sizeof(buffer), "%s @ HwSerial", pms_specs[_type].name); } return String(buffer); } // Descriptive name of the slot # index String description(unsigned char index) { char buffer[36] = {0}; if (_soft) { snprintf(buffer, sizeof(buffer), "%d @ %s @ SwSerial(%u,%u)", int(index + 1), pms_specs[_type].name, _pin_rx, _pin_tx); } else { snprintf(buffer, sizeof(buffer), "%d @ %s @ HwSerial", int(index + 1), pms_specs[_type].name); } return String(buffer); } // Address of the sensor (it could be the GPIO or I2C address) String address(unsigned char index) { char buffer[6]; snprintf(buffer, sizeof(buffer), "%u:%u", _pin_rx, _pin_tx); return String(buffer); } // Type for slot # index unsigned char type(unsigned char index) { return pms_specs[_type].slot_types[index]; } void pre() { if (millis() - _startTime < 30000) { _error = SENSOR_ERROR_WARM_UP; return; } #if PMS_SMART_SLEEP unsigned int readCycle; if (_readCount++ > 30) { readCycle = _readCount % 30; if (readCycle == 0) { #if SENSOR_DEBUG DEBUG_MSG("[SENSOR] %s: Wake up: %d\n", pms_specs[_type].name, _readCount); #endif wakeUp(); return; } else if (readCycle == 1) { requestRead(); } else if (readCycle > 6) { return; } } else { readCycle = -1; if (_readCount == 1) { wakeUp(); } } #endif uint16_t data[PMS_DATA_MAX]; if (readData(data, pms_specs[_type].data_count)) { if (_type == PMS_TYPE_5003ST) { if (data[14] > 10 && data[14] < 1000 && data[13] < 1000) { _slot_values[0] = data[4]; _slot_values[1] = (double)data[13] / 10; _slot_values[2] = (double)data[14] / 10; _slot_values[3] = (double)data[12] / 1000; _error = SENSOR_ERROR_OK; } else { _error = SENSOR_ERROR_OUT_OF_RANGE; #if SENSOR_DEBUG DEBUG_MSG("[SENSOR] %s: Invalid temperature=%d humidity=%d.\n", pms_specs[_type].name, (int)data[13], (int)data[14]); #endif } } else if (_type == PMS_TYPE_5003S) { _slot_values[0] = data[4]; _slot_values[1] = data[5]; _slot_values[2] = (double)data[12] / 1000; _error = SENSOR_ERROR_OK; } else if (_type == PMS_TYPE_5003T) { if (data[11] > 10 && data[11] < 1000 && data[10] < 1000) { _slot_values[0] = data[4]; _slot_values[1] = (double)data[10] / 10; _slot_values[2] = (double)data[11] / 10; _error = SENSOR_ERROR_OK; } else { _error = SENSOR_ERROR_OUT_OF_RANGE; #if SENSOR_DEBUG DEBUG_MSG("[SENSOR] %s: Invalid temperature=%d humidity=%d.\n", pms_specs[_type].name, (int)data[10], (int)data[11]); #endif } } else { _slot_values[0] = data[3]; _slot_values[1] = data[4]; _slot_values[2] = data[5]; _error = SENSOR_ERROR_OK; } } #if PMS_SMART_SLEEP if (readCycle == 6) { sleep(); #if SENSOR_DEBUG DEBUG_MSG("[SENSOR] %s: Enter sleep mode: %d\n", pms_specs[_type].name, _readCount); #endif return; } #endif requestRead(); } // Current value for slot # index double value(unsigned char index) { return _slot_values[index]; } private: void removeSerial() { if (_serial && _soft) { delete static_cast(_serial); } } protected: bool _soft = true; unsigned int _pin_rx; unsigned int _pin_tx; unsigned long _startTime; unsigned char _type = PMS_TYPE_X003; double _slot_values[PMS_SLOT_MAX] = {0}; #if PMS_SMART_SLEEP unsigned int _readCount = 0; #endif }; #endif // SENSOR_SUPPORT && PMSX003_SUPPORT