/* LIGHT MODULE Copyright (C) 2016-2017 by Xose PĂ©rez */ #if LIGHT_PROVIDER != LIGHT_PROVIDER_NONE #include #include #include typedef struct { unsigned char pin; bool reverse; unsigned char value; unsigned char shadow; } channel_t; std::vector _channels; Ticker colorTicker; bool _lightState = false; unsigned int _brightness = LIGHT_MAX_BRIGHTNESS; #if LIGHT_PROVIDER == LIGHT_PROVIDER_MY9192 #include my9291 * _my9291; #endif #if LIGHT_ENABLE_GAMMA // Gamma Correction lookup table for gamma=2.8 and 12 bit (4095) full scale // TODO: move to PROGMEM const unsigned short gamma_table[LIGHT_MAX_VALUE+1] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 3, 3, 4, 4, 5, 5, 6, 7, 8, 8, 9, 10, 11, 12, 13, 15, 16, 17, 18, 20, 21, 23, 25, 26, 28, 30, 32, 34, 36, 38, 40, 43, 45, 48, 50, 53, 56, 59, 62, 65, 68, 71, 75, 78, 82, 85, 89, 93, 97, 101, 105, 110, 114, 119, 123, 128, 133, 138, 143, 149, 154, 159, 165, 171, 177, 183, 189, 195, 202, 208, 215, 222, 229, 236, 243, 250, 258, 266, 273, 281, 290, 298, 306, 315, 324, 332, 341, 351, 360, 369, 379, 389, 399, 409, 419, 430, 440, 451, 462, 473, 485, 496, 508, 520, 532, 544, 556, 569, 582, 594, 608, 621, 634, 648, 662, 676, 690, 704, 719, 734, 749, 764, 779, 795, 811, 827, 843, 859, 876, 893, 910, 927, 944, 962, 980, 998,1016,1034,1053,1072,1091, 1110,1130,1150,1170,1190,1210,1231,1252,1273,1294,1316,1338,1360,1382,1404,1427, 1450,1473,1497,1520,1544,1568,1593,1617,1642,1667,1693,1718,1744,1770,1797,1823, 1850,1877,1905,1932,1960,1988,2017,2045,2074,2103,2133,2162,2192,2223,2253,2284, 2315,2346,2378,2410,2442,2474,2507,2540,2573,2606,2640,2674,2708,2743,2778,2813, 2849,2884,2920,2957,2993,3030,3067,3105,3143,3181,3219,3258,3297,3336,3376,3416, 3456,3496,3537,3578,3619,3661,3703,3745,3788,3831,3874,3918,3962,4006,4050,4095 }; #endif // ----------------------------------------------------------------------------- // UTILS // ----------------------------------------------------------------------------- void _fromRGB(const char * rgb) { char * p = (char *) rgb; if (strlen(p) == 0) return; // if color begins with a # then assume HEX RGB if (p[0] == '#') { if (!lightHasColor()) return; ++p; unsigned long value = strtoul(p, NULL, 16); // RGBA values are interpreted like RGB + brightness if (strlen(p) > 7) { _channels[0].value = (value >> 24) & 0xFF; _channels[1].value = (value >> 16) & 0xFF; _channels[2].value = (value >> 8) & 0xFF; _brightness = (value & 0xFF) * LIGHT_MAX_BRIGHTNESS / 255; } else { _channels[0].value = (value >> 16) & 0xFF; _channels[1].value = (value >> 8) & 0xFF; _channels[2].value = (value) & 0xFF; } // it's a temperature in mireds } else if (p[0] == 'M') { unsigned long mireds = atol(p + 1); _fromMireds(mireds); // it's a temperature in kelvin } else if (p[0] == 'K') { unsigned long kelvin = atol(p + 1); _fromKelvin(kelvin); // otherwise assume decimal values separated by commas } else { char * tok; unsigned char count = 0; unsigned char channels = _channels.size(); tok = strtok(p, ","); while (tok != NULL) { _channels[count].value = atoi(tok); if (++count == channels) break; tok = strtok(NULL, ","); } // RGB but less than 3 values received if (channels > 2 & count < 3) { _channels[1].value = _channels[0].value; _channels[2].value = _channels[0].value; } } } void _toRGB(char * rgb, size_t len, bool applyBrightness) { if (!lightHasColor()) return; float b = applyBrightness ? (float) _brightness / LIGHT_MAX_BRIGHTNESS : 1; unsigned long value = 0; value += _channels[0].value * b; value <<= 8; value += _channels[1].value * b; value <<= 8; value += _channels[2].value * b; snprintf(rgb, len, "#%06X", value); } void _toRGB(char * rgb, size_t len) { _toRGB(rgb, len, false); } // Thanks to Sacha Telgenhof for sharing this code in his AiLight library // https://github.com/stelgenhof/AiLight void _fromKelvin(unsigned long kelvin) { // Check we have RGB channels if (!lightHasColor()) return; // Calculate colors unsigned int red = (kelvin <= 66) ? LIGHT_MAX_VALUE : 329.698727446 * pow((kelvin - 60), -0.1332047592); unsigned int green = (kelvin <= 66) ? 99.4708025861 * log(kelvin) - 161.1195681661 : 288.1221695283 * pow(kelvin, -0.0755148492); unsigned int blue = (kelvin >= 66) ? LIGHT_MAX_VALUE : ((kelvin <= 19) ? 0 : 138.5177312231 * log(kelvin - 10) - 305.0447927307); // Save values _channels[0].value = constrain(red, 0, LIGHT_MAX_VALUE); _channels[1].value = constrain(green, 0, LIGHT_MAX_VALUE); _channels[2].value = constrain(blue, 0, LIGHT_MAX_VALUE); } // Color temperature is measured in mireds (kelvin = 1e6/mired) void _fromMireds(unsigned long mireds) { if (mireds == 0) mireds = 1; unsigned long kelvin = constrain(1000000UL / mireds, 1000, 40000) / 100; _fromKelvin(kelvin); } unsigned int _toPWM(unsigned long value, bool gamma, bool reverse) { value = constrain(value, 0, LIGHT_MAX_VALUE); value *= ((float) _brightness / LIGHT_MAX_BRIGHTNESS); #if LIGHT_ENABLE_GAMMA unsigned int pwm = gamma ? gamma_table[value] : map(value, 0, LIGHT_MAX_VALUE, 0, LIGHT_MAX_PWM); #else unsigned int pwm = map(value, 0, LIGHT_MAX_VALUE, 0, LIGHT_MAX_PWM); #endif if (reverse) pwm = LIGHT_MAX_PWM - pwm; return pwm; } // Returns a PWM valule for the given channel ID unsigned int _toPWM(unsigned char id) { if (id < _channels.size()) { #if LIGHT_ENABLE_GAMMA bool gamma = (lightHasColor() && id < 3); #else bool gamma = false; #endif return _toPWM(_channels[id].shadow, gamma, _channels[id].reverse); } return 0; } // ----------------------------------------------------------------------------- // PROVIDER // ----------------------------------------------------------------------------- void _shadow() { bool useWhite = getSetting("useWhite", LIGHT_USE_WHITE).toInt() == 1; for (unsigned int i=0; i < _channels.size(); i++) { _channels[i].shadow = _lightState ? _channels[i].value : 0; } if (_lightState && useWhite && _channels.size() > 3) { if (_channels[0].shadow == _channels[1].shadow && _channels[1].shadow == _channels[2].shadow ) { _channels[3].shadow = _channels[0].shadow; _channels[2].shadow = 0; _channels[1].shadow = 0; _channels[0].shadow = 0; } } } void _lightProviderUpdate() { _shadow(); #if LIGHT_PROVIDER == LIGHT_PROVIDER_MY9192 if (_lightState) { float ratio = (float) LIGHT_MAX_VALUE / LIGHT_MAX_PWM; unsigned int red = _toPWM(0) * ratio; unsigned int green = _toPWM(1) * ratio; unsigned int blue = _toPWM(2) * ratio; unsigned int white = _toPWM(3) * ratio; _my9291->setColor((my9291_color_t) { red, green, blue, white }); _my9291->setState(true); } else { _my9291->setState(false); } #endif #if LIGHT_PROVIDER == LIGHT_PROVIDER_DIMMER for (unsigned int i=0; i < _channels.size(); i++) { analogWrite(_channels[i].pin, _toPWM(i)); } #endif } // ----------------------------------------------------------------------------- // PERSISTANCE // ----------------------------------------------------------------------------- void _lightColorSave() { for (unsigned int i=0; i < _channels.size(); i++) { setSetting("ch", i, _channels[i].value); } setSetting("brightness", _brightness); saveSettings(); } void _lightColorRestore() { for (unsigned int i=0; i < _channels.size(); i++) { _channels[i].value = getSetting("ch", i, 0).toInt(); } _brightness = getSetting("brightness", LIGHT_MAX_BRIGHTNESS).toInt(); lightUpdate(false, false); } // ----------------------------------------------------------------------------- // MQTT // ----------------------------------------------------------------------------- void _lightMQTTCallback(unsigned int type, const char * topic, const char * payload) { if (type == MQTT_CONNECT_EVENT) { mqttSubscribe(MQTT_TOPIC_BRIGHTNESS); mqttSubscribe(MQTT_TOPIC_MIRED); mqttSubscribe(MQTT_TOPIC_KELVIN); mqttSubscribe(MQTT_TOPIC_COLOR); char buffer[strlen(MQTT_TOPIC_CHANNEL) + 3]; sprintf(buffer, "%s/+", MQTT_TOPIC_CHANNEL); mqttSubscribe(buffer); } if (type == MQTT_MESSAGE_EVENT) { // Match topic String t = mqttSubtopic((char *) topic); // Color temperature in mireds if (t.equals(MQTT_TOPIC_MIRED)) { _fromMireds(atol(payload)); lightUpdate(true, mqttForward()); } // Color temperature in kelvins if (t.equals(MQTT_TOPIC_KELVIN)) { _fromKelvin(atol(payload)); lightUpdate(true, mqttForward()); } // Color if (t.equals(MQTT_TOPIC_COLOR)) { lightColor(payload); lightUpdate(true, mqttForward()); } // Brightness if (t.equals(MQTT_TOPIC_BRIGHTNESS)) { _brightness = constrain(atoi(payload), 0, LIGHT_MAX_BRIGHTNESS); lightUpdate(true, mqttForward()); } // Channel if (t.startsWith(MQTT_TOPIC_CHANNEL)) { unsigned int channelID = t.substring(strlen(MQTT_TOPIC_CHANNEL)+1).toInt(); if (channelID >= _channels.size()) { DEBUG_MSG_P(PSTR("[LIGHT] Wrong channelID (%d)\n"), channelID); return; } lightChannel(channelID, atoi(payload)); lightUpdate(true, mqttForward()); } } } // ----------------------------------------------------------------------------- // API // ----------------------------------------------------------------------------- unsigned char lightChannels() { return _channels.size(); } bool lightHasColor() { return _channels.size() > 2; } unsigned char lightWhiteChannels() { return _channels.size() % 3; } void lightMQTT() { char buffer[8]; // Color if (lightHasColor()) { _toRGB(buffer, 8, false); mqttSend(MQTT_TOPIC_COLOR, buffer); } // Channels for (unsigned int i=0; i < _channels.size(); i++) { sprintf(buffer, "%d", _channels[i].value); mqttSend(MQTT_TOPIC_CHANNEL, i, buffer); } // Brightness sprintf(buffer, "%d", _brightness); mqttSend(MQTT_TOPIC_BRIGHTNESS, buffer); } void lightUpdate(bool save, bool forward) { _lightProviderUpdate(); // Delay saving to EEPROM 5 seconds to avoid wearing it out unnecessarily if (save) colorTicker.once(LIGHT_SAVE_DELAY, _lightColorSave); // Report color & brightness to MQTT broker if (forward) lightMQTT(); // Report color to WS clients (using current brightness setting) { DynamicJsonBuffer jsonBuffer; JsonObject& root = jsonBuffer.createObject(); root["colorVisible"] = 1; root["color"] = lightColor(); JsonArray& channels = root.createNestedArray("channels"); for (unsigned char id=0; id < lightChannels(); id++) { channels.add(lightChannel(id)); } root["brightness"] = lightBrightness(); String output; root.printTo(output); wsSend(output.c_str()); } }; void lightState(bool state) { _lightState = state; } bool lightState() { return _lightState; } void lightColor(const char * color) { _fromRGB(color); } String lightColor() { char rgb[8]; _toRGB(rgb, 8, false); return String(rgb); } unsigned int lightChannel(unsigned char id) { if (id <= _channels.size()) { return _channels[id].value; } return 0; } void lightChannel(unsigned char id, unsigned int value) { if (id <= _channels.size()) { _channels[id].value = constrain(value, 0, LIGHT_MAX_VALUE); } } unsigned int lightBrightness() { return _brightness; } void lightBrightness(unsigned int b) { _brightness = constrain(b, 0, LIGHT_MAX_BRIGHTNESS); } // ----------------------------------------------------------------------------- // SETUP // ----------------------------------------------------------------------------- void _lightAPISetup() { // API entry points (protected with apikey) if (_channels.size() > 2) { apiRegister(MQTT_TOPIC_COLOR, MQTT_TOPIC_COLOR, [](char * buffer, size_t len) { _toRGB(buffer, len, false); }, [](const char * payload) { lightColor(payload); lightUpdate(true, true); } ); } apiRegister(MQTT_TOPIC_KELVIN, MQTT_TOPIC_KELVIN, [](char * buffer, size_t len) {}, [](const char * payload) { _fromKelvin(atol(payload)); lightUpdate(true, true); } ); apiRegister(MQTT_TOPIC_MIRED, MQTT_TOPIC_MIRED, [](char * buffer, size_t len) {}, [](const char * payload) { _fromMireds(atol(payload)); lightUpdate(true, true); } ); apiRegister(MQTT_TOPIC_BRIGHTNESS, MQTT_TOPIC_BRIGHTNESS, [](char * buffer, size_t len) { snprintf(buffer, len, "%d", _brightness); }, [](const char * payload) { lightBrightness(atoi(payload)); lightUpdate(true, true); } ); for (unsigned int id=0; id