/* LIGHT MODULE Copyright (C) 2016-2019 by Xose PĂ©rez */ #if LIGHT_PROVIDER != LIGHT_PROVIDER_NONE #include #include #include extern "C" { #include "libs/fs_math.h" } #if LIGHT_PROVIDER == LIGHT_PROVIDER_DIMMER #define PWM_CHANNEL_NUM_MAX LIGHT_CHANNELS extern "C" { #include "libs/pwm.h" } #endif // ----------------------------------------------------------------------------- Ticker _light_comms_ticker; Ticker _light_save_ticker; Ticker _light_transition_ticker; struct channel_t { unsigned char pin; // real GPIO pin bool reverse; // wether we should invert the value before using it bool state; // is the channel ON unsigned char inputValue; // raw value, without the brightness unsigned char value; // normalized value, including brightness unsigned char target; // target value double current; // transition value }; std::vector _light_channel; bool _light_state = false; bool _light_use_transitions = false; unsigned int _light_transition_time = LIGHT_TRANSITION_TIME; bool _light_has_color = false; bool _light_use_white = false; bool _light_use_cct = false; bool _light_use_gamma = false; unsigned long _light_steps_left = 1; unsigned char _light_brightness = LIGHT_MAX_BRIGHTNESS; unsigned int _light_mireds = round((LIGHT_COLDWHITE_MIRED+LIGHT_WARMWHITE_MIRED)/2); using light_brightness_func_t = void(); light_brightness_func_t* _light_brightness_func = nullptr; #if LIGHT_PROVIDER == LIGHT_PROVIDER_MY92XX #include my92xx * _my92xx; ARRAYINIT(unsigned char, _light_channel_map, MY92XX_MAPPING); #endif // UI hint about channel distribution const char _light_channel_desc[5][5] PROGMEM = { {'W', 0, 0, 0, 0}, {'W', 'C', 0, 0, 0}, {'R', 'G', 'B', 0, 0}, {'R', 'G', 'B', 'W', 0}, {'R', 'G', 'B', 'W', 'C'} }; // Gamma Correction lookup table (8 bit) const unsigned char _light_gamma_table[] PROGMEM = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 9, 9, 9, 10, 10, 11, 11, 11, 12, 12, 13, 13, 14, 14, 14, 15, 15, 16, 16, 17, 17, 18, 18, 19, 19, 20, 20, 21, 22, 22, 23, 23, 24, 25, 25, 26, 26, 27, 28, 28, 29, 30, 30, 31, 32, 33, 33, 34, 35, 35, 36, 37, 38, 39, 39, 40, 41, 42, 43, 43, 44, 45, 46, 47, 48, 49, 50, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 71, 72, 73, 74, 75, 76, 77, 78, 80, 81, 82, 83, 84, 86, 87, 88, 89, 91, 92, 93, 94, 96, 97, 98, 100, 101, 102, 104, 105, 106, 108, 109, 110, 112, 113, 115, 116, 118, 119, 121, 122, 123, 125, 126, 128, 130, 131, 133, 134, 136, 137, 139, 140, 142, 144, 145, 147, 149, 150, 152, 154, 155, 157, 159, 160, 162, 164, 166, 167, 169, 171, 173, 175, 176, 178, 180, 182, 184, 186, 187, 189, 191, 193, 195, 197, 199, 201, 203, 205, 207, 209, 211, 213, 215, 217, 219, 221, 223, 225, 227, 229, 231, 233, 235, 238, 240, 242, 244, 246, 248, 251, 253, 255 }; // ----------------------------------------------------------------------------- // UTILS // ----------------------------------------------------------------------------- void _setRGBInputValue(unsigned char red, unsigned char green, unsigned char blue) { _light_channel[0].inputValue = constrain(red, 0, LIGHT_MAX_VALUE); _light_channel[1].inputValue = constrain(green, 0, LIGHT_MAX_VALUE);; _light_channel[2].inputValue = constrain(blue, 0, LIGHT_MAX_VALUE);; } void _setCCTInputValue(unsigned char warm, unsigned char cold) { _light_channel[0].inputValue = constrain(warm, 0, LIGHT_MAX_VALUE); _light_channel[1].inputValue = constrain(cold, 0, LIGHT_MAX_VALUE); } void _lightApplyBrightness(unsigned char channels = lightChannels()) { double brightness = (double) _light_brightness / LIGHT_MAX_BRIGHTNESS; for (unsigned char i=0; i < channels; i++) { _light_channel[i].value = _light_channel[i].inputValue * brightness; } } void _lightApplyBrightnessColor() { double brightness = (double) _light_brightness / LIGHT_MAX_BRIGHTNESS; // Substract the common part from RGB channels and add it to white channel. So [250,150,50] -> [200,100,0,50] unsigned char white = std::min(_light_channel[0].inputValue, std::min(_light_channel[1].inputValue, _light_channel[2].inputValue)); for (unsigned int i=0; i < 3; i++) { _light_channel[i].value = _light_channel[i].inputValue - white; } // Split the White Value across 2 White LED Strips. if (_light_use_cct) { // This change the range from 153-500 to 0-347 so we get a value between 0 and 1 in the end. double miredFactor = ((double) _light_mireds - (double) LIGHT_COLDWHITE_MIRED)/((double) LIGHT_WARMWHITE_MIRED - (double) LIGHT_COLDWHITE_MIRED); // set cold white _light_channel[3].inputValue = 0; _light_channel[3].value = round(((double) 1.0 - miredFactor) * white); // set warm white _light_channel[4].inputValue = 0; _light_channel[4].value = round(miredFactor * white); } else { _light_channel[3].inputValue = 0; _light_channel[3].value = white; } // Scale up to equal input values. So [250,150,50] -> [200,100,0,50] -> [250, 125, 0, 63] unsigned char max_in = std::max(_light_channel[0].inputValue, std::max(_light_channel[1].inputValue, _light_channel[2].inputValue)); unsigned char max_out = std::max(std::max(_light_channel[0].value, _light_channel[1].value), std::max(_light_channel[2].value, _light_channel[3].value)); unsigned char channelSize = _light_use_cct ? 5 : 4; if (_light_use_cct) { max_out = std::max(max_out, _light_channel[4].value); } double factor = (max_out > 0) ? (double) (max_in / max_out) : 0; for (unsigned char i=0; i < channelSize; i++) { _light_channel[i].value = round((double) _light_channel[i].value * factor * brightness); } // Scale white channel to match brightness for (unsigned char i=3; i < channelSize; i++) { _light_channel[i].value = constrain(_light_channel[i].value * LIGHT_WHITE_FACTOR, 0, LIGHT_MAX_BRIGHTNESS); } // For the rest of channels, don't apply brightness, it is already in the inputValue // i should be 4 when RGBW and 5 when RGBWW for (unsigned char i=channelSize; i < _light_channel.size(); i++) { _light_channel[i].value = _light_channel[i].inputValue; } } String lightDesc(unsigned char id) { if (id >= _light_channel.size()) return F("UNKNOWN"); const char tag = pgm_read_byte(&_light_channel_desc[_light_channel.size() - 1][id]); switch (tag) { case 'W': return F("WARM WHITE"); case 'C': return F("COLD WHITE"); case 'R': return F("RED"); case 'G': return F("GREEN"); case 'B': return F("BLUE"); default: break; } return F("UNKNOWN"); } // ----------------------------------------------------------------------------- // Input Values // ----------------------------------------------------------------------------- void _fromLong(unsigned long value, bool brightness) { if (brightness) { _setRGBInputValue((value >> 24) & 0xFF, (value >> 16) & 0xFF, (value >> 8) & 0xFF); _light_brightness = (value & 0xFF) * LIGHT_MAX_BRIGHTNESS / 255; } else { _setRGBInputValue((value >> 16) & 0xFF, (value >> 8) & 0xFF, (value) & 0xFF); } } void _fromRGB(const char * rgb) { char * p = (char *) rgb; if (strlen(p) == 0) return; switch (p[0]) { case '#': // HEX Value if (_light_has_color) { ++p; unsigned long value = strtoul(p, NULL, 16); // RGBA values are interpreted like RGB + brightness _fromLong(value, strlen(p) > 7); } break; case 'M': // Mired Value _fromMireds(atol(p + 1)); break; case 'K': // Kelvin Value _fromKelvin(atol(p + 1)); break; default: // assume decimal values separated by commas char * tok; unsigned char count = 0; unsigned char channels = _light_channel.size(); tok = strtok(p, ","); while (tok != NULL) { _light_channel[count].inputValue = atoi(tok); if (++count == channels) break; tok = strtok(NULL, ","); } // RGB but less than 3 values received, assume it is 0 if (_light_has_color && (count < 3)) { // check channel 1 and 2: for (int i = 1; i <= 2; i++) { if (count < (i+1)) { _light_channel[i].inputValue = 0; } } } break; } } // HSV string is expected to be "H,S,V", where: // 0 <= H <= 360 // 0 <= S <= 100 // 0 <= V <= 100 void _fromHSV(const char * hsv) { char * ptr = (char *) hsv; if (strlen(ptr) == 0) return; if (!_light_has_color) return; char * tok; unsigned char count = 0; unsigned int value[3] = {0}; tok = strtok(ptr, ","); while (tok != NULL) { value[count] = atoi(tok); if (++count == 3) break; tok = strtok(NULL, ","); } if (count != 3) return; // HSV to RGB transformation ----------------------------------------------- //INPUT: [0,100,57] //IS: [145,0,0] //SHOULD: [255,0,0] double h = (value[0] == 360) ? 0 : (double) value[0] / 60.0; double f = (h - floor(h)); double s = (double) value[1] / 100.0; _light_brightness = round((double) value[2] * 2.55); // (255/100) unsigned char p = round(255 * (1.0 - s)); unsigned char q = round(255 * (1.0 - s * f)); unsigned char t = round(255 * (1.0 - s * (1.0 - f))); switch (int(h)) { case 0: _setRGBInputValue(255, t, p); break; case 1: _setRGBInputValue(q, 255, p); break; case 2: _setRGBInputValue(p, 255, t); break; case 3: _setRGBInputValue(p, q, 255); break; case 4: _setRGBInputValue(t, p, 255); break; case 5: _setRGBInputValue(255, p, q); break; default: _setRGBInputValue(0, 0, 0); break; } } // Thanks to Sacha Telgenhof for sharing this code in his AiLight library // https://github.com/stelgenhof/AiLight void _fromKelvin(unsigned long kelvin) { if (!_light_has_color) { if(!_light_use_cct) return; _light_mireds = constrain(round(1000000UL / kelvin), LIGHT_MIN_MIREDS, LIGHT_MAX_MIREDS); // This change the range from 153-500 to 0-347 so we get a value between 0 and 1 in the end. double factor = ((double) _light_mireds - (double) LIGHT_COLDWHITE_MIRED)/((double) LIGHT_WARMWHITE_MIRED - (double) LIGHT_COLDWHITE_MIRED); unsigned char warm = round(factor * LIGHT_MAX_VALUE); unsigned char cold = round(((double) 1.0 - factor) * LIGHT_MAX_VALUE); _setCCTInputValue(warm, cold); return; } _light_mireds = constrain(round(1000000UL / kelvin), LIGHT_MIN_MIREDS, LIGHT_MAX_MIREDS); if (_light_use_cct) { _setRGBInputValue(LIGHT_MAX_VALUE, LIGHT_MAX_VALUE, LIGHT_MAX_VALUE); return; } // Calculate colors kelvin /= 100; unsigned int red = (kelvin <= 66) ? LIGHT_MAX_VALUE : 329.698727446 * fs_pow((double) (kelvin - 60), -0.1332047592); unsigned int green = (kelvin <= 66) ? 99.4708025861 * fs_log(kelvin) - 161.1195681661 : 288.1221695283 * fs_pow((double) kelvin, -0.0755148492); unsigned int blue = (kelvin >= 66) ? LIGHT_MAX_VALUE : ((kelvin <= 19) ? 0 : 138.5177312231 * fs_log(kelvin - 10) - 305.0447927307); _setRGBInputValue(red, green, blue); } // Color temperature is measured in mireds (kelvin = 1e6/mired) void _fromMireds(unsigned long mireds) { unsigned long kelvin = constrain(1000000UL / mireds, 1000, 40000); _fromKelvin(kelvin); } // ----------------------------------------------------------------------------- // Output Values // ----------------------------------------------------------------------------- void _toRGB(char * rgb, size_t len, bool target) { unsigned long value = 0; value += target ? _light_channel[0].target : _light_channel[0].inputValue; value <<= 8; value += target ? _light_channel[1].target : _light_channel[1].inputValue; value <<= 8; value += target ? _light_channel[2].target : _light_channel[2].inputValue; snprintf_P(rgb, len, PSTR("#%06X"), value); } void _toRGB(char * rgb, size_t len) { _toRGB(rgb, len, false); } void _toHSV(char * hsv, size_t len, bool target) { double h, s, v; double brightness = (double) _light_brightness / LIGHT_MAX_BRIGHTNESS; double r = (double) ((target ? _light_channel[0].target : _light_channel[0].inputValue) * brightness) / 255.0; double g = (double) ((target ? _light_channel[1].target : _light_channel[1].inputValue) * brightness) / 255.0; double b = (double) ((target ? _light_channel[2].target : _light_channel[2].inputValue) * brightness) / 255.0; double min = std::min(r, std::min(g, b)); double max = std::max(r, std::max(g, b)); v = 100.0 * max; if (v == 0) { h = s = 0; } else { s = 100.0 * (max - min) / max; if (s == 0) { h = 0; } else { if (max == r) { if (g >= b) { h = 0.0 + 60.0 * (g - b) / (max - min); } else { h = 360.0 + 60.0 * (g - b) / (max - min); } } else if (max == g) { h = 120.0 + 60.0 * (b - r) / (max - min); } else { h = 240.0 + 60.0 * (r - g) / (max - min); } } } // String snprintf_P(hsv, len, PSTR("%d,%d,%d"), round(h), round(s), round(v)); } void _toHSV(char * hsv, size_t len) { _toHSV(hsv, len, false); } void _toLong(char * color, size_t len, bool target) { if (!_light_has_color) return; snprintf_P(color, len, PSTR("%d,%d,%d"), (int) (target ? _light_channel[0].target : _light_channel[0].inputValue), (int) (target ? _light_channel[1].target : _light_channel[1].inputValue), (int) (target ? _light_channel[2].target : _light_channel[2].inputValue) ); } void _toLong(char * color, size_t len) { _toLong(color, len, false); } void _toCSV(char * buffer, size_t len, bool applyBrightness, bool target) { char num[10]; float b = applyBrightness ? (float) _light_brightness / LIGHT_MAX_BRIGHTNESS : 1; for (unsigned char i=0; i<_light_channel.size(); i++) { itoa((target ? _light_channel[i].target : _light_channel[i].inputValue) * b, num, 10); if (i>0) strncat(buffer, ",", len--); strncat(buffer, num, len); len = len - strlen(num); } } void _toCSV(char * buffer, size_t len, bool applyBrightness) { _toCSV(buffer, len, applyBrightness, false); } // ----------------------------------------------------------------------------- // PROVIDER // ----------------------------------------------------------------------------- unsigned int _toPWM(unsigned long value, bool gamma, bool reverse) { value = constrain(value, 0, LIGHT_MAX_VALUE); if (gamma) value = pgm_read_byte(_light_gamma_table + value); if (LIGHT_MAX_VALUE != LIGHT_LIMIT_PWM) value = map(value, 0, LIGHT_MAX_VALUE, 0, LIGHT_LIMIT_PWM); if (reverse) value = LIGHT_LIMIT_PWM - value; return value; } // Returns a PWM value for the given channel ID unsigned int _toPWM(unsigned char id) { bool useGamma = _light_use_gamma && _light_has_color && (id < 3); return _toPWM(_light_channel[id].current, useGamma, _light_channel[id].reverse); } void _transition() { // Update transition ticker _light_steps_left--; if (_light_steps_left == 0) _light_transition_ticker.detach(); // Transitions for (unsigned int i=0; i < _light_channel.size(); i++) { if (_light_steps_left == 0) { _light_channel[i].current = _light_channel[i].target; } else { double difference = (double) (_light_channel[i].target - _light_channel[i].current) / (_light_steps_left + 1); _light_channel[i].current = _light_channel[i].current + difference; } } } void _lightProviderUpdate() { _transition(); #if LIGHT_PROVIDER == LIGHT_PROVIDER_MY92XX for (unsigned char i=0; i<_light_channel.size(); i++) { _my92xx->setChannel(_light_channel_map[i], _toPWM(i)); } _my92xx->setState(true); _my92xx->update(); #endif #if LIGHT_PROVIDER == LIGHT_PROVIDER_DIMMER for (unsigned int i=0; i < _light_channel.size(); i++) { pwm_set_duty(_toPWM(i), i); } pwm_start(); #endif } // ----------------------------------------------------------------------------- // PERSISTANCE // ----------------------------------------------------------------------------- union light_rtcmem_t { struct { uint8_t channels[5]; uint8_t brightness; uint16_t mired; } packed; uint64_t value; }; #define LIGHT_RTCMEM_CHANNELS_MAX sizeof(light_rtcmem_t().packed.channels) void _lightSaveRtcmem() { if (lightChannels() > LIGHT_RTCMEM_CHANNELS_MAX) return; light_rtcmem_t light; for (unsigned int i=0; i < lightChannels(); i++) { light.packed.channels[i] = _light_channel[i].inputValue; } light.packed.brightness = _light_brightness; light.packed.mired = _light_mireds; Rtcmem->light = light.value; } void _lightRestoreRtcmem() { if (lightChannels() > LIGHT_RTCMEM_CHANNELS_MAX) return; light_rtcmem_t light; light.value = Rtcmem->light; for (unsigned int i=0; i < lightChannels(); i++) { _light_channel[i].inputValue = light.packed.channels[i]; } _light_brightness = light.packed.brightness; _light_mireds = light.packed.mired; } void _lightSaveSettings() { for (unsigned int i=0; i < _light_channel.size(); i++) { setSetting("ch", i, _light_channel[i].inputValue); } setSetting("brightness", _light_brightness); setSetting("mireds", _light_mireds); saveSettings(); } void _lightRestoreSettings() { for (unsigned int i=0; i < _light_channel.size(); i++) { _light_channel[i].inputValue = getSetting("ch", i, i==0 ? 255 : 0).toInt(); } _light_brightness = getSetting("brightness", LIGHT_MAX_BRIGHTNESS).toInt(); _light_mireds = getSetting("mireds", _light_mireds).toInt(); lightUpdate(false, false); } // ----------------------------------------------------------------------------- // MQTT // ----------------------------------------------------------------------------- #if MQTT_SUPPORT void _lightMQTTCallback(unsigned int type, const char * topic, const char * payload) { String mqtt_group_color = getSetting("mqttGroupColor"); if (type == MQTT_CONNECT_EVENT) { mqttSubscribe(MQTT_TOPIC_BRIGHTNESS); if (_light_has_color) { mqttSubscribe(MQTT_TOPIC_COLOR_RGB); mqttSubscribe(MQTT_TOPIC_COLOR_HSV); mqttSubscribe(MQTT_TOPIC_TRANSITION); } if (_light_has_color || _light_use_cct) { mqttSubscribe(MQTT_TOPIC_MIRED); mqttSubscribe(MQTT_TOPIC_KELVIN); } // Group color if (mqtt_group_color.length() > 0) mqttSubscribeRaw(mqtt_group_color.c_str()); // Channels char buffer[strlen(MQTT_TOPIC_CHANNEL) + 3]; snprintf_P(buffer, sizeof(buffer), PSTR("%s/+"), MQTT_TOPIC_CHANNEL); mqttSubscribe(buffer); } if (type == MQTT_MESSAGE_EVENT) { // Group color if ((mqtt_group_color.length() > 0) & (mqtt_group_color.equals(topic))) { lightColor(payload, true); lightUpdate(true, mqttForward(), false); return; } // Match topic String t = mqttMagnitude((char *) topic); // Color temperature in mireds if (t.equals(MQTT_TOPIC_MIRED)) { _fromMireds(atol(payload)); lightUpdate(true, mqttForward()); return; } // Color temperature in kelvins if (t.equals(MQTT_TOPIC_KELVIN)) { _fromKelvin(atol(payload)); lightUpdate(true, mqttForward()); return; } // Color if (t.equals(MQTT_TOPIC_COLOR_RGB)) { lightColor(payload, true); lightUpdate(true, mqttForward()); return; } if (t.equals(MQTT_TOPIC_COLOR_HSV)) { lightColor(payload, false); lightUpdate(true, mqttForward()); return; } // Brightness if (t.equals(MQTT_TOPIC_BRIGHTNESS)) { _light_brightness = constrain(atoi(payload), 0, LIGHT_MAX_BRIGHTNESS); lightUpdate(true, mqttForward()); return; } // Transitions if (t.equals(MQTT_TOPIC_TRANSITION)) { lightTransitionTime(atol(payload)); return; } // Channel if (t.startsWith(MQTT_TOPIC_CHANNEL)) { unsigned int channelID = t.substring(strlen(MQTT_TOPIC_CHANNEL)+1).toInt(); if (channelID >= _light_channel.size()) { DEBUG_MSG_P(PSTR("[LIGHT] Wrong channelID (%d)\n"), channelID); return; } lightChannel(channelID, atoi(payload)); lightUpdate(true, mqttForward()); return; } } } void lightMQTT() { char buffer[20]; if (_light_has_color) { // Color if (getSetting("useCSS", LIGHT_USE_CSS).toInt() == 1) { _toRGB(buffer, sizeof(buffer), true); } else { _toLong(buffer, sizeof(buffer), true); } mqttSend(MQTT_TOPIC_COLOR_RGB, buffer); _toHSV(buffer, sizeof(buffer), true); mqttSend(MQTT_TOPIC_COLOR_HSV, buffer); } if (_light_has_color || _light_use_cct) { // Mireds snprintf_P(buffer, sizeof(buffer), PSTR("%d"), _light_mireds); mqttSend(MQTT_TOPIC_MIRED, buffer); } // Channels for (unsigned int i=0; i < _light_channel.size(); i++) { itoa(_light_channel[i].target, buffer, 10); mqttSend(MQTT_TOPIC_CHANNEL, i, buffer); } // Brightness snprintf_P(buffer, sizeof(buffer), PSTR("%d"), _light_brightness); mqttSend(MQTT_TOPIC_BRIGHTNESS, buffer); } void lightMQTTGroup() { String mqtt_group_color = getSetting("mqttGroupColor"); if (mqtt_group_color.length()>0) { char buffer[20]; _toCSV(buffer, sizeof(buffer), true); mqttSendRaw(mqtt_group_color.c_str(), buffer); } } #endif // ----------------------------------------------------------------------------- // Broker // ----------------------------------------------------------------------------- #if BROKER_SUPPORT void lightBroker() { char buffer[10]; for (unsigned int i=0; i < _light_channel.size(); i++) { itoa(_light_channel[i].inputValue, buffer, 10); brokerPublish(BROKER_MSG_TYPE_STATUS, MQTT_TOPIC_CHANNEL, i, buffer); } } #endif // ----------------------------------------------------------------------------- // API // ----------------------------------------------------------------------------- unsigned char lightChannels() { return _light_channel.size(); } bool lightHasColor() { return _light_has_color; } bool lightUseCCT() { return _light_use_cct; } void _lightComms(unsigned char mask) { // Report color & brightness to MQTT broker #if MQTT_SUPPORT if (mask & 0x01) lightMQTT(); if (mask & 0x02) lightMQTTGroup(); #endif // Report color to WS clients (using current brightness setting) #if WEB_SUPPORT wsSend(_lightWebSocketStatus); #endif // Report channels to local broker #if BROKER_SUPPORT lightBroker(); #endif } void lightUpdate(bool save, bool forward, bool group_forward) { _light_brightness_func(); // Update channels for (unsigned int i=0; i < _light_channel.size(); i++) { _light_channel[i].target = _light_state && _light_channel[i].state ? _light_channel[i].value : 0; //DEBUG_MSG_P("[LIGHT] Channel #%u target value: %u\n", i, _light_channel[i].target); } // Configure color transition _light_steps_left = _light_use_transitions ? _light_transition_time / LIGHT_TRANSITION_STEP : 1; _light_transition_ticker.attach_ms(LIGHT_TRANSITION_STEP, _lightProviderUpdate); // Delay every communication 100ms to avoid jamming unsigned char mask = 0; if (forward) mask += 1; if (group_forward) mask += 2; _light_comms_ticker.once_ms(LIGHT_COMMS_DELAY, _lightComms, mask); _lightSaveRtcmem(); #if LIGHT_SAVE_ENABLED // Delay saving to EEPROM 5 seconds to avoid wearing it out unnecessarily if (save) _light_save_ticker.once(LIGHT_SAVE_DELAY, _lightSaveSettings); #endif }; void lightUpdate(bool save, bool forward) { lightUpdate(save, forward, true); } #if LIGHT_SAVE_ENABLED == 0 void lightSave() { _lightSaveSettings(); } #endif void lightState(unsigned char i, bool state) { _light_channel[i].state = state; } bool lightState(unsigned char i) { return _light_channel[i].state; } void lightState(bool state) { _light_state = state; } bool lightState() { return _light_state; } void lightColor(const char * color, bool rgb) { DEBUG_MSG_P(PSTR("[LIGHT] %s: %s\n"), rgb ? "RGB" : "HSV", color); if (rgb) { _fromRGB(color); } else { _fromHSV(color); } } void lightColor(const char * color) { lightColor(color, true); } void lightColor(unsigned long color) { _fromLong(color, false); } String lightColor(bool rgb) { char str[12]; if (rgb) { _toRGB(str, sizeof(str)); } else { _toHSV(str, sizeof(str)); } return String(str); } String lightColor() { return lightColor(true); } unsigned int lightChannel(unsigned char id) { if (id <= _light_channel.size()) { return _light_channel[id].inputValue; } return 0; } void lightChannel(unsigned char id, int value) { if (id <= _light_channel.size()) { _light_channel[id].inputValue = constrain(value, 0, LIGHT_MAX_VALUE); } } void lightChannelStep(unsigned char id, int steps) { lightChannel(id, lightChannel(id) + steps * LIGHT_STEP); } unsigned int lightBrightness() { return _light_brightness; } void lightBrightness(int b) { _light_brightness = constrain(b, 0, LIGHT_MAX_BRIGHTNESS); } void lightBrightnessStep(int steps) { lightBrightness(_light_brightness + steps * LIGHT_STEP); } unsigned long lightTransitionTime() { if (_light_use_transitions) { return _light_transition_time; } else { return 0; } } void lightTransitionTime(unsigned long m) { if (0 == m) { _light_use_transitions = false; } else { _light_use_transitions = true; _light_transition_time = m; } setSetting("useTransitions", _light_use_transitions); setSetting("lightTime", _light_transition_time); saveSettings(); } // ----------------------------------------------------------------------------- // SETUP // ----------------------------------------------------------------------------- #if WEB_SUPPORT bool _lightWebSocketOnReceive(const char * key, JsonVariant& value) { if (strncmp(key, "light", 5) == 0) return true; if (strncmp(key, "use", 3) == 0) return true; return false; } void _lightWebSocketStatus(JsonObject& root) { if (_light_has_color) { if (getSetting("useRGB", LIGHT_USE_RGB).toInt() == 1) { root["rgb"] = lightColor(true); } else { root["hsv"] = lightColor(false); } } if (_light_use_cct) { root["useCCT"] = _light_use_cct; root["mireds"] = _light_mireds; } JsonArray& channels = root.createNestedArray("channels"); for (unsigned char id=0; id < _light_channel.size(); id++) { channels.add(lightChannel(id)); } root["brightness"] = lightBrightness(); } void _lightWebSocketOnSend(JsonObject& root) { root["colorVisible"] = 1; root["mqttGroupColor"] = getSetting("mqttGroupColor"); root["useColor"] = _light_has_color; root["useWhite"] = _light_use_white; root["useGamma"] = _light_use_gamma; root["useTransitions"] = _light_use_transitions; root["useCSS"] = getSetting("useCSS", LIGHT_USE_CSS).toInt() == 1; root["useRGB"] = getSetting("useRGB", LIGHT_USE_RGB).toInt() == 1; root["lightTime"] = _light_transition_time; _lightWebSocketStatus(root); } void _lightWebSocketOnAction(uint32_t client_id, const char * action, JsonObject& data) { if (_light_has_color) { if (strcmp(action, "color") == 0) { if (data.containsKey("rgb")) { lightColor(data["rgb"], true); lightUpdate(true, true); } if (data.containsKey("hsv")) { lightColor(data["hsv"], false); lightUpdate(true, true); } } } if (_light_use_cct) { if (strcmp(action, "mireds") == 0) { _fromMireds(data["mireds"]); lightUpdate(true, true); } } if (strcmp(action, "channel") == 0) { if (data.containsKey("id") && data.containsKey("value")) { lightChannel(data["id"], data["value"]); lightUpdate(true, true); } } if (strcmp(action, "brightness") == 0) { if (data.containsKey("value")) { lightBrightness(data["value"]); lightUpdate(true, true); } } } #endif #if API_SUPPORT void _lightAPISetup() { if (_light_has_color) { apiRegister(MQTT_TOPIC_COLOR_RGB, [](char * buffer, size_t len) { if (getSetting("useCSS", LIGHT_USE_CSS).toInt() == 1) { _toRGB(buffer, len, true); } else { _toLong(buffer, len, true); } }, [](const char * payload) { lightColor(payload, true); lightUpdate(true, true); } ); apiRegister(MQTT_TOPIC_COLOR_HSV, [](char * buffer, size_t len) { _toHSV(buffer, len, true); }, [](const char * payload) { lightColor(payload, false); lightUpdate(true, true); } ); apiRegister(MQTT_TOPIC_KELVIN, [](char * buffer, size_t len) {}, [](const char * payload) { _fromKelvin(atol(payload)); lightUpdate(true, true); } ); apiRegister(MQTT_TOPIC_MIRED, [](char * buffer, size_t len) {}, [](const char * payload) { _fromMireds(atol(payload)); lightUpdate(true, true); } ); } for (unsigned int id=0; id<_light_channel.size(); id++) { char key[15]; snprintf_P(key, sizeof(key), PSTR("%s/%d"), MQTT_TOPIC_CHANNEL, id); apiRegister(key, [id](char * buffer, size_t len) { snprintf_P(buffer, len, PSTR("%d"), _light_channel[id].target); }, [id](const char * payload) { lightChannel(id, atoi(payload)); lightUpdate(true, true); } ); } apiRegister(MQTT_TOPIC_TRANSITION, [](char * buffer, size_t len) { snprintf_P(buffer, len, PSTR("%d"), lightTransitionTime()); }, [](const char * payload) { lightTransitionTime(atol(payload)); } ); apiRegister(MQTT_TOPIC_BRIGHTNESS, [](char * buffer, size_t len) { snprintf_P(buffer, len, PSTR("%d"), _light_brightness); }, [](const char * payload) { lightBrightness(atoi(payload)); lightUpdate(true, true); } ); } #endif // API_SUPPORT #if TERMINAL_SUPPORT void _lightInitCommands() { terminalRegisterCommand(F("BRIGHTNESS"), [](Embedis* e) { if (e->argc > 1) { const String value(e->argv[1]); if( value.length() > 0 ) { if( value[0] == '+' || value[0] == '-' ) { lightBrightness(lightBrightness()+String(e->argv[1]).toInt()); } else { lightBrightness(String(e->argv[1]).toInt()); } lightUpdate(true, true); } } DEBUG_MSG_P(PSTR("Brightness: %d\n"), lightBrightness()); terminalOK(); }); terminalRegisterCommand(F("CHANNEL"), [](Embedis* e) { if (e->argc < 2) { terminalError(F("Wrong arguments")); } int id = String(e->argv[1]).toInt(); if (e->argc > 2) { int value = String(e->argv[2]).toInt(); lightChannel(id, value); lightUpdate(true, true); } DEBUG_MSG_P(PSTR("Channel #%d (%s): %d\n"), id, lightDesc(id).c_str(), lightChannel(id)); terminalOK(); }); terminalRegisterCommand(F("COLOR"), [](Embedis* e) { if (e->argc > 1) { String color = String(e->argv[1]); lightColor(color.c_str()); lightUpdate(true, true); } DEBUG_MSG_P(PSTR("Color: %s\n"), lightColor().c_str()); terminalOK(); }); terminalRegisterCommand(F("KELVIN"), [](Embedis* e) { if (e->argc > 1) { String color = String("K") + String(e->argv[1]); lightColor(color.c_str()); lightUpdate(true, true); } DEBUG_MSG_P(PSTR("Color: %s\n"), lightColor().c_str()); terminalOK(); }); terminalRegisterCommand(F("MIRED"), [](Embedis* e) { if (e->argc > 1) { const String value(e->argv[1]); String color = String("M"); if( value.length() > 0 ) { if( value[0] == '+' || value[0] == '-' ) { color += String(_light_mireds + String(e->argv[1]).toInt()); } else { color += String(e->argv[1]); } lightColor(color.c_str()); lightUpdate(true, true); } } DEBUG_MSG_P(PSTR("Color: %s\n"), lightColor().c_str()); terminalOK(); }); } #endif // TERMINAL_SUPPORT #if LIGHT_PROVIDER == LIGHT_PROVIDER_DIMMER unsigned long getIOMux(unsigned long gpio) { unsigned long muxes[16] = { PERIPHS_IO_MUX_GPIO0_U, PERIPHS_IO_MUX_U0TXD_U, PERIPHS_IO_MUX_GPIO2_U, PERIPHS_IO_MUX_U0RXD_U, PERIPHS_IO_MUX_GPIO4_U, PERIPHS_IO_MUX_GPIO5_U, PERIPHS_IO_MUX_SD_CLK_U, PERIPHS_IO_MUX_SD_DATA0_U, PERIPHS_IO_MUX_SD_DATA1_U, PERIPHS_IO_MUX_SD_DATA2_U, PERIPHS_IO_MUX_SD_DATA3_U, PERIPHS_IO_MUX_SD_CMD_U, PERIPHS_IO_MUX_MTDI_U, PERIPHS_IO_MUX_MTCK_U, PERIPHS_IO_MUX_MTMS_U, PERIPHS_IO_MUX_MTDO_U }; return muxes[gpio]; } unsigned long getIOFunc(unsigned long gpio) { unsigned long funcs[16] = { FUNC_GPIO0, FUNC_GPIO1, FUNC_GPIO2, FUNC_GPIO3, FUNC_GPIO4, FUNC_GPIO5, FUNC_GPIO6, FUNC_GPIO7, FUNC_GPIO8, FUNC_GPIO9, FUNC_GPIO10, FUNC_GPIO11, FUNC_GPIO12, FUNC_GPIO13, FUNC_GPIO14, FUNC_GPIO15 }; return funcs[gpio]; } #endif void _lightConfigure() { _light_has_color = getSetting("useColor", LIGHT_USE_COLOR).toInt() == 1; if (_light_has_color && (_light_channel.size() < 3)) { _light_has_color = false; setSetting("useColor", _light_has_color); } _light_use_white = getSetting("useWhite", LIGHT_USE_WHITE).toInt() == 1; if (_light_use_white && (_light_channel.size() < 4) && (_light_channel.size() != 2)) { _light_use_white = false; setSetting("useWhite", _light_use_white); } if (_light_has_color) { if (_light_use_white) { _light_brightness_func = _lightApplyBrightnessColor; } else { _light_brightness_func = []() { _lightApplyBrightness(3); }; } } else { _light_brightness_func = []() { _lightApplyBrightness(); }; } _light_use_cct = getSetting("useCCT", LIGHT_USE_CCT).toInt() == 1; if (_light_use_cct && (((_light_channel.size() < 5) && (_light_channel.size() != 2)) || !_light_use_white)) { _light_use_cct = false; setSetting("useCCT", _light_use_cct); } _light_use_gamma = getSetting("useGamma", LIGHT_USE_GAMMA).toInt() == 1; _light_use_transitions = getSetting("useTransitions", LIGHT_USE_TRANSITIONS).toInt() == 1; _light_transition_time = getSetting("lightTime", LIGHT_TRANSITION_TIME).toInt(); } void lightSetup() { #ifdef LIGHT_ENABLE_PIN pinMode(LIGHT_ENABLE_PIN, OUTPUT); digitalWrite(LIGHT_ENABLE_PIN, HIGH); #endif _light_channel.reserve(LIGHT_CHANNELS); #if LIGHT_PROVIDER == LIGHT_PROVIDER_MY92XX _my92xx = new my92xx(MY92XX_MODEL, MY92XX_CHIPS, MY92XX_DI_PIN, MY92XX_DCKI_PIN, MY92XX_COMMAND); for (unsigned char i=0; i