// ----------------------------------------------------------------------------- // ADS1X15-based Energy Monitor Sensor over I2C // Copyright (C) 2017 by Xose PĂ©rez // ----------------------------------------------------------------------------- #pragma once #include "Arduino.h" #include "BaseSensor.h" #include "EmonSensor.h" #if I2C_USE_BRZO #include #else #include #endif #define ADS1X15_CHANNELS (4) #define ADS1X15_CHIP_ADS1015 (0) #define ADS1X15_CHIP_ADS1115 (1) #define ADS1X15_RESOLUTION (16) #define ADS1015_CONVERSIONDELAY (1) #define ADS1115_CONVERSIONDELAY (8) #define ADS1015_BIT_SHIFT (4) #define ADS1115_BIT_SHIFT (0) #define ADS1X15_REG_POINTER_MASK (0x03) #define ADS1X15_REG_POINTER_CONVERT (0x00) #define ADS1X15_REG_POINTER_CONFIG (0x01) #define ADS1X15_REG_POINTER_LOWTHRESH (0x02) #define ADS1X15_REG_POINTER_HITHRESH (0x03) #define ADS1X15_REG_CONFIG_OS_MASK (0x8000) #define ADS1X15_REG_CONFIG_OS_SINGLE (0x8000) // Write: Set to start a single-conversion #define ADS1X15_REG_CONFIG_OS_BUSY (0x0000) // Read: Bit = 0 when conversion is in progress #define ADS1X15_REG_CONFIG_OS_NOTBUSY (0x8000) // Read: Bit = 1 when device is not performing a conversion #define ADS1X15_REG_CONFIG_MUX_MASK (0x7000) #define ADS1X15_REG_CONFIG_MUX_DIFF_0_1 (0x0000) // Differential P = AIN0, N = AIN1 (default) #define ADS1X15_REG_CONFIG_MUX_DIFF_0_3 (0x1000) // Differential P = AIN0, N = AIN3 #define ADS1X15_REG_CONFIG_MUX_DIFF_1_3 (0x2000) // Differential P = AIN1, N = AIN3 #define ADS1X15_REG_CONFIG_MUX_DIFF_2_3 (0x3000) // Differential P = AIN2, N = AIN3 #define ADS1X15_REG_CONFIG_MUX_SINGLE_0 (0x4000) // Single-ended AIN0 #define ADS1X15_REG_CONFIG_MUX_SINGLE_1 (0x5000) // Single-ended AIN1 #define ADS1X15_REG_CONFIG_MUX_SINGLE_2 (0x6000) // Single-ended AIN2 #define ADS1X15_REG_CONFIG_MUX_SINGLE_3 (0x7000) // Single-ended AIN3 #define ADS1X15_REG_CONFIG_PGA_MASK (0x0E00) #define ADS1X15_REG_CONFIG_PGA_6_144V (0x0000) // +/-6.144V range = Gain 2/3 #define ADS1X15_REG_CONFIG_PGA_4_096V (0x0200) // +/-4.096V range = Gain 1 #define ADS1X15_REG_CONFIG_PGA_2_048V (0x0400) // +/-2.048V range = Gain 2 (default) #define ADS1X15_REG_CONFIG_PGA_1_024V (0x0600) // +/-1.024V range = Gain 4 #define ADS1X15_REG_CONFIG_PGA_0_512V (0x0800) // +/-0.512V range = Gain 8 #define ADS1X15_REG_CONFIG_PGA_0_256V (0x0A00) // +/-0.256V range = Gain 16 #define ADS1X15_REG_CONFIG_MODE_MASK (0x0100) #define ADS1X15_REG_CONFIG_MODE_CONTIN (0x0000) // Continuous conversion mode #define ADS1X15_REG_CONFIG_MODE_SINGLE (0x0100) // Power-down single-shot mode (default) #define ADS1X15_REG_CONFIG_DR_MASK (0x00E0) #define ADS1015_REG_CONFIG_DR_128SPS (0x0000) // 128 samples per second #define ADS1015_REG_CONFIG_DR_250SPS (0x0020) // 250 samples per second #define ADS1015_REG_CONFIG_DR_490SPS (0x0040) // 490 samples per second #define ADS1015_REG_CONFIG_DR_920SPS (0x0060) // 920 samples per second #define ADS1015_REG_CONFIG_DR_1600SPS (0x0080) // 1600 samples per second (default) #define ADS1015_REG_CONFIG_DR_2400SPS (0x00A0) // 2400 samples per second #define ADS1015_REG_CONFIG_DR_3300SPS (0x00C0) // 3300 samples per second #define ADS1115_REG_CONFIG_DR_8SPS (0x0000) // 8 samples per second #define ADS1115_REG_CONFIG_DR_16SPS (0x0020) // 16 samples per second #define ADS1115_REG_CONFIG_DR_32SPS (0x0040) // 32 samples per second #define ADS1115_REG_CONFIG_DR_64SPS (0x0060) // 64 samples per second #define ADS1115_REG_CONFIG_DR_128SPS (0x0080) // 128 samples per second (default) #define ADS1115_REG_CONFIG_DR_250SPS (0x00A0) // 250 samples per second #define ADS1115_REG_CONFIG_DR_475SPS (0x00C0) // 475 samples per second #define ADS1115_REG_CONFIG_DR_860SPS (0x00E0) // 860 samples per second #define ADS1X15_REG_CONFIG_CMODE_MASK (0x0010) #define ADS1X15_REG_CONFIG_CMODE_TRAD (0x0000) // Traditional comparator with hysteresis (default) #define ADS1X15_REG_CONFIG_CMODE_WINDOW (0x0010) // Window comparator #define ADS1X15_REG_CONFIG_CPOL_MASK (0x0008) #define ADS1X15_REG_CONFIG_CPOL_ACTVLOW (0x0000) // ALERT/RDY pin is low when active (default) #define ADS1X15_REG_CONFIG_CPOL_ACTVHI (0x0008) // ALERT/RDY pin is high when active #define ADS1X15_REG_CONFIG_CLAT_MASK (0x0004) // Determines if ALERT/RDY pin latches once asserted #define ADS1X15_REG_CONFIG_CLAT_NONLAT (0x0000) // Non-latching comparator (default) #define ADS1X15_REG_CONFIG_CLAT_LATCH (0x0004) // Latching comparator #define ADS1X15_REG_CONFIG_CQUE_MASK (0x0003) #define ADS1X15_REG_CONFIG_CQUE_1CONV (0x0000) // Assert ALERT/RDY after one conversions #define ADS1X15_REG_CONFIG_CQUE_2CONV (0x0001) // Assert ALERT/RDY after two conversions #define ADS1X15_REG_CONFIG_CQUE_4CONV (0x0002) // Assert ALERT/RDY after four conversions #define ADS1X15_REG_CONFIG_CQUE_NONE (0x0003) // Disable the comparator and put ALERT/RDY in high state (default) class EmonADS1X15Sensor : public EmonSensor { public: // --------------------------------------------------------------------- // Public // --------------------------------------------------------------------- void setAddress(unsigned char address) { _address = address; } void setType(unsigned char type) { _type = type; } void setMask(unsigned char mask) { _mask = mask; } void setGain(unsigned int gain) { _gain = gain; } // --------------------------------------------------------------------- // Sensor API // --------------------------------------------------------------------- // Initialization method, must be idempotent void begin() { // Discover if (_address == 0) { unsigned char addresses[] = {0x48, 0x49, 0x4A, 0x4B}; _address = i2cFindFirst(4, addresses); } if (_address == 0) { _error = SENSOR_ERROR_UNKNOWN_ID; return; } // Calculate ports _ports = 0; unsigned char mask = _mask; while (mask) { if (mask & 0x01) ++_ports; mask = mask >> 1; } _count = _ports * _magnitudes; // Bit depth _resolution = ADS1X15_RESOLUTION; // Reference based on gain if (_gain == ADS1X15_REG_CONFIG_PGA_6_144V) _reference = 12.288; if (_gain == ADS1X15_REG_CONFIG_PGA_4_096V) _reference = 8.192; if (_gain == ADS1X15_REG_CONFIG_PGA_2_048V) _reference = 4.096; if (_gain == ADS1X15_REG_CONFIG_PGA_1_024V) _reference = 2.048; if (_gain == ADS1X15_REG_CONFIG_PGA_0_512V) _reference = 1.024; if (_gain == ADS1X15_REG_CONFIG_PGA_0_256V) _reference = 0.512; // Call the parent class method EmonSensor::begin(); // warmup all channels warmup(); } // Descriptive name of the sensor String name() { char buffer[30]; snprintf(buffer, sizeof(buffer), "EMON @ ADS1%d15 @ I2C (0x%02X)", _type == ADS1X15_CHIP_ADS1015 ? 0 : 1, _address); return String(buffer); } // Descriptive name of the slot # index String slot(unsigned char index) { char buffer[35]; unsigned char channel = getChannel(index % _ports); snprintf(buffer, sizeof(buffer), "EMON @ ADS1%d15 (A%d) @ I2C (0x%02X)", _type == ADS1X15_CHIP_ADS1015 ? 0 : 1, channel, _address); return String(buffer); } // Type for slot # index magnitude_t type(unsigned char index) { if (index < _count) { _error = SENSOR_ERROR_OK; unsigned char magnitude = index / _ports; unsigned char i=0; #if EMON_REPORT_CURRENT if (magnitude == i++) return MAGNITUDE_CURRENT; #endif #if EMON_REPORT_POWER if (magnitude == i++) return MAGNITUDE_POWER_APPARENT; #endif #if EMON_REPORT_ENERGY if (magnitude == i) return MAGNITUDE_ENERGY; #endif } _error = SENSOR_ERROR_OUT_OF_RANGE; return MAGNITUDE_NONE; } void pre() { static unsigned long last = 0; for (unsigned char port=0; port<_ports; port++) { unsigned char channel = getChannel(port); _current[port] = getCurrent(channel); #if EMON_REPORT_ENERGY _energy[port] += (_current[port] * _voltage * (millis() - last) / 1000); #endif } last = millis(); } // Current value for slot # index double value(unsigned char index) { if (index < _count) { _error = SENSOR_ERROR_OK; unsigned char port = index % _ports; unsigned char magnitude = index / _ports; unsigned char i=0; #if EMON_REPORT_CURRENT if (magnitude == i++) return _current[port]; #endif #if EMON_REPORT_POWER if (magnitude == i++) return _current[port] * _voltage; #endif #if EMON_REPORT_ENERGY if (magnitude == i) return _energy[port]; #endif } _error = SENSOR_ERROR_OUT_OF_RANGE; return 0; } protected: //---------------------------------------------------------------------- // Protected //---------------------------------------------------------------------- unsigned char getChannel(unsigned char port) { unsigned char count = 0; unsigned char bit = 1; for (unsigned char channel=0; channel> 1; getCurrent(channel); } } //---------------------------------------------------------------------- // I2C //---------------------------------------------------------------------- void setConfigRegistry(unsigned char channel, bool continuous, bool start) { // Start with default values uint16_t config = 0; config |= _gain; // Set PGA/voltage range (0x0200) config |= ADS1X15_REG_CONFIG_DR_MASK; // Always at max speed (0x00E0) //config |= ADS1X15_REG_CONFIG_CMODE_TRAD; // Traditional comparator (default val) (0x0000) //config |= ADS1X15_REG_CONFIG_CPOL_ACTVLOW; // Alert/Rdy active low (default val) (0x0000) //config |= ADS1X15_REG_CONFIG_CLAT_NONLAT; // Non-latching (default val) (0x0000) config |= ADS1X15_REG_CONFIG_CQUE_NONE; // Disable the comparator (default val) (0x0003) if (start) { config |= ADS1X15_REG_CONFIG_OS_SINGLE; // Start a single-conversion (0x8000) } if (continuous) { //config |= ADS1X15_REG_CONFIG_MODE_CONTIN; // Continuous mode (default) (0x0000) } else { config |= ADS1X15_REG_CONFIG_MODE_SINGLE; // Single-shot mode (0x0100) } config |= ((channel + 4) << 12); // Set single-ended input channel (0x4000 - 0x7000) #if EMON_DEBUG Serial.printf("[EMON] ADS1X115 Config Registry: %04X\n", config); #endif // Write config register to the ADC #if I2C_USE_BRZO uint8_t buffer[3]; buffer[0] = ADS1X15_REG_POINTER_CONFIG; buffer[1] = config >> 8; buffer[2] = config & 0xFF; brzo_i2c_start_transaction(_address, I2C_SCL_FREQUENCY); brzo_i2c_write(buffer, 3, false); brzo_i2c_end_transaction(); #else Wire.beginTransmission(_address); Wire.write((uint8_t) ADS1X15_REG_POINTER_CONFIG); Wire.write((uint8_t) (config >> 8)); Wire.write((uint8_t) (config & 0xFF)); Wire.endTransmission(); #endif } double getCurrent(unsigned char channel) { // Force stop by setting single mode and back to continuous static unsigned char previous = 9; if (previous != channel) { setConfigRegistry(channel, true, false); setConfigRegistry(channel, false, false); setConfigRegistry(channel, false, true); delay(10); readADC(channel); previous = channel; } setConfigRegistry(channel, true, true); return read(channel, _pivot[channel]); } unsigned int readADC(unsigned char channel) { unsigned int value = 0; #if I2C_USE_BRZO uint8_t buffer[3]; buffer[0] = ADS1X15_REG_POINTER_CONVERT; brzo_i2c_start_transaction(_address, I2C_SCL_FREQUENCY); brzo_i2c_write(buffer, 1, false); brzo_i2c_read(buffer, 2, false); brzo_i2c_end_transaction(); value |= buffer[0] << 8; value |= buffer[1]; #else Wire.beginTransmission(_address); Wire.write(ADS1X15_REG_POINTER_CONVERT); Wire.endTransmission(); Wire.requestFrom(_address, (unsigned char) 2); value |= Wire.read() << 8; value |= Wire.read(); #endif if (_type = ADS1X15_CHIP_ADS1015) value >>= ADS1015_BIT_SHIFT; delayMicroseconds(500); return value; } unsigned char _address; unsigned char _type = ADS1X15_CHIP_ADS1115; unsigned char _mask = 0x0F; unsigned int _gain = ADS1X15_REG_CONFIG_PGA_4_096V; unsigned char _ports; double _pivot[ADS1X15_CHANNELS] = {0}; double _current[ADS1X15_CHANNELS] = {0}; #if EMON_REPORT_ENERGY unsigned long _energy[ADS1X15_CHANNELS] = {0}; #endif };