/* UTILS MODULE Copyright (C) 2017-2019 by Xose PĂ©rez */ #include "espurna.h" #include "board.h" #include "influxdb.h" #include "light.h" #include "mqtt.h" #include "ntp.h" #include "relay.h" #include "thermostat.h" #include "libs/TypeChecks.h" #include //-------------------------------------------------------------------------------- // Reset reasons //-------------------------------------------------------------------------------- PROGMEM const char custom_reset_hardware[] = "Hardware button"; PROGMEM const char custom_reset_web[] = "Reboot from web interface"; PROGMEM const char custom_reset_terminal[] = "Reboot from terminal"; PROGMEM const char custom_reset_mqtt[] = "Reboot from MQTT"; PROGMEM const char custom_reset_rpc[] = "Reboot from RPC"; PROGMEM const char custom_reset_ota[] = "Reboot after successful OTA update"; PROGMEM const char custom_reset_http[] = "Reboot from HTTP"; PROGMEM const char custom_reset_nofuss[] = "Reboot after successful NoFUSS update"; PROGMEM const char custom_reset_upgrade[] = "Reboot after successful web update"; PROGMEM const char custom_reset_factory[] = "Factory reset"; PROGMEM const char* const custom_reset_string[] = { custom_reset_hardware, custom_reset_web, custom_reset_terminal, custom_reset_mqtt, custom_reset_rpc, custom_reset_ota, custom_reset_http, custom_reset_nofuss, custom_reset_upgrade, custom_reset_factory }; void setDefaultHostname() { if (strlen(HOSTNAME) > 0) { setSetting("hostname", F(HOSTNAME)); } else { setSetting("hostname", getIdentifier()); } } const String& getDevice() { static const String value(F(DEVICE)); return value; } const String& getManufacturer() { static const String value(F(MANUFACTURER)); return value; } String getBoardName() { static const String defaultValue(F(DEVICE_NAME)); return getSetting("boardName", defaultValue); } void setBoardName() { if (!isEspurnaCore()) { setSetting("boardName", F(DEVICE_NAME)); } } String getAdminPass() { static const String defaultValue(F(ADMIN_PASS)); return getSetting("adminPass", defaultValue); } const String& getCoreVersion() { static String version; if (!version.length()) { #ifdef ARDUINO_ESP8266_RELEASE version = ESP.getCoreVersion(); if (version.equals("00000000")) { version = String(ARDUINO_ESP8266_RELEASE); } version.replace("_", "."); #else #define _GET_COREVERSION_STR(X) #X #define GET_COREVERSION_STR(X) _GET_COREVERSION_STR(X) version = GET_COREVERSION_STR(ARDUINO_ESP8266_GIT_DESC); #undef _GET_COREVERSION_STR #undef GET_COREVERSION_STR #endif } return version; } const String& getCoreRevision() { static String revision; if (!revision.length()) { #ifdef ARDUINO_ESP8266_GIT_VER revision = String(ARDUINO_ESP8266_GIT_VER, 16); #else revision = "(unspecified)"; #endif } return revision; } int getHeartbeatMode() { return getSetting("hbMode", HEARTBEAT_MODE); } unsigned long getHeartbeatInterval() { return getSetting("hbInterval", HEARTBEAT_INTERVAL); } String buildTime() { #if NTP_LEGACY_SUPPORT && NTP_SUPPORT return ntpDateTime(__UNIX_TIMESTAMP__); #elif NTP_SUPPORT constexpr const time_t ts = __UNIX_TIMESTAMP__; tm timestruct; gmtime_r(&ts, ×truct); return ntpDateTime(×truct); #else char buffer[20]; snprintf_P( buffer, sizeof(buffer), PSTR("%04d-%02d-%02d %02d:%02d:%02d"), __TIME_YEAR__, __TIME_MONTH__, __TIME_DAY__, __TIME_HOUR__, __TIME_MINUTE__, __TIME_SECOND__ ); return String(buffer); #endif } unsigned long getUptime() { static unsigned long last_uptime = 0; static unsigned char uptime_overflows = 0; if (millis() < last_uptime) ++uptime_overflows; last_uptime = millis(); unsigned long uptime_seconds = uptime_overflows * (UPTIME_OVERFLOW / 1000) + (last_uptime / 1000); return uptime_seconds; } //-------------------------------------------------------------------------------- // Heap stats //-------------------------------------------------------------------------------- namespace { template using has_getHeapStats_t = decltype(std::declval().getHeapStats(0,0,0)); template using has_getHeapStats = is_detected; template void _getHeapStats(const std::true_type&, T& instance, heap_stats_t& stats) { instance.getHeapStats(&stats.available, &stats.usable, &stats.frag_pct); } template void _getHeapStats(const std::false_type&, T& instance, heap_stats_t& stats) { stats.available = instance.getFreeHeap(); stats.usable = 0; stats.frag_pct = 0; } } // namespace anonymous void getHeapStats(heap_stats_t& stats) { _getHeapStats(has_getHeapStats{}, ESP, stats); } // WTF // Calling ESP.getFreeHeap() is making the system crash on a specific // AiLight bulb, but anywhere else it should work as expected static bool _heap_value_wtf = false; heap_stats_t getHeapStats() { heap_stats_t stats; if (_heap_value_wtf) { stats.available = 9999; stats.usable = 9999; stats.frag_pct = 0; return stats; } getHeapStats(stats); return stats; } void wtfHeap(bool value) { _heap_value_wtf = value; } unsigned int getFreeHeap() { return ESP.getFreeHeap(); } // TODO: place in struct ctor to run at the earliest opportunity static unsigned int _initial_heap_value = 0; void setInitialFreeHeap() { _initial_heap_value = getFreeHeap(); } unsigned int getInitialFreeHeap() { if (0 == _initial_heap_value) { setInitialFreeHeap(); } return _initial_heap_value; } // ----------------------------------------------------------------------------- // Heartbeat helper // ----------------------------------------------------------------------------- namespace Heartbeat { enum Report : uint32_t { Status = 1 << 1, Ssid = 1 << 2, Ip = 1 << 3, Mac = 1 << 4, Rssi = 1 << 5, Uptime = 1 << 6, Datetime = 1 << 7, Freeheap = 1 << 8, Vcc = 1 << 9, Relay = 1 << 10, Light = 1 << 11, Hostname = 1 << 12, App = 1 << 13, Version = 1 << 14, Board = 1 << 15, Loadavg = 1 << 16, Interval = 1 << 17, Description = 1 << 18, Range = 1 << 19, RemoteTemp = 1 << 20, Bssid = 1 << 21 }; constexpr uint32_t defaultValue() { return (Status * (HEARTBEAT_REPORT_STATUS)) | \ (Ssid * (HEARTBEAT_REPORT_SSID)) | \ (Ip * (HEARTBEAT_REPORT_IP)) | \ (Mac * (HEARTBEAT_REPORT_MAC)) | \ (Rssi * (HEARTBEAT_REPORT_RSSI)) | \ (Uptime * (HEARTBEAT_REPORT_UPTIME)) | \ (Datetime * (HEARTBEAT_REPORT_DATETIME)) | \ (Freeheap * (HEARTBEAT_REPORT_FREEHEAP)) | \ (Vcc * (HEARTBEAT_REPORT_VCC)) | \ (Relay * (HEARTBEAT_REPORT_RELAY)) | \ (Light * (HEARTBEAT_REPORT_LIGHT)) | \ (Hostname * (HEARTBEAT_REPORT_HOSTNAME)) | \ (Description * (HEARTBEAT_REPORT_DESCRIPTION)) | \ (App * (HEARTBEAT_REPORT_APP)) | \ (Version * (HEARTBEAT_REPORT_VERSION)) | \ (Board * (HEARTBEAT_REPORT_BOARD)) | \ (Loadavg * (HEARTBEAT_REPORT_LOADAVG)) | \ (Interval * (HEARTBEAT_REPORT_INTERVAL)) | \ (Range * (HEARTBEAT_REPORT_RANGE)) | \ (RemoteTemp * (HEARTBEAT_REPORT_REMOTE_TEMP)) | \ (Bssid * (HEARTBEAT_REPORT_BSSID)); } uint32_t currentValue() { // use default without any setting / when it is empty const auto value = getSetting("hbReport", defaultValue()); // because we start shifting from 1, we could use the // first bit as a flag to enable all of the messages if (value == 1) { return std::numeric_limits::max(); } return value; } } void infoUptime() { #if NTP_SUPPORT time_t uptime = getUptime(); tm spec; gmtime_r(&uptime, &spec); DEBUG_MSG_P( PSTR("[MAIN] Uptime: %02dy %02dd %02dh %02dm %02ds\n"), (spec.tm_year - 70), spec.tm_yday, spec.tm_hour, spec.tm_min, spec.tm_sec ); #else DEBUG_MSG_P(PSTR("[MAIN] Uptime: %lu seconds\n"), uptime); #endif // NTP_SUPPORT } void heartbeat() { auto heap_stats [[gnu::unused]] = getHeapStats(); #if MQTT_SUPPORT unsigned char _heartbeat_mode = getHeartbeatMode(); bool serial = !mqttConnected(); #else bool serial = true; #endif // ------------------------------------------------------------------------- // Serial // ------------------------------------------------------------------------- if (serial) { infoUptime(); infoHeapStats(); if (ADC_MODE_VALUE == ADC_VCC) { DEBUG_MSG_P(PSTR("[MAIN] Power: %lu mV\n"), ESP.getVcc()); } #if NTP_SUPPORT if (ntpSynced()) DEBUG_MSG_P(PSTR("[MAIN] Time: %s\n"), (char *) ntpDateTime().c_str()); #endif } const uint32_t hb_cfg = Heartbeat::currentValue(); if (!hb_cfg) return; // ------------------------------------------------------------------------- // MQTT // ------------------------------------------------------------------------- #if MQTT_SUPPORT if (!serial && (_heartbeat_mode == HEARTBEAT_REPEAT || systemGetHeartbeat())) { if (hb_cfg & Heartbeat::Interval) mqttSend(MQTT_TOPIC_INTERVAL, String(getHeartbeatInterval()).c_str()); if (hb_cfg & Heartbeat::App) mqttSend(MQTT_TOPIC_APP, APP_NAME); if (hb_cfg & Heartbeat::Version) mqttSend(MQTT_TOPIC_VERSION, APP_VERSION); if (hb_cfg & Heartbeat::Board) mqttSend(MQTT_TOPIC_BOARD, getBoardName().c_str()); if (hb_cfg & Heartbeat::Hostname) mqttSend(MQTT_TOPIC_HOSTNAME, getSetting("hostname", getIdentifier()).c_str()); if (hb_cfg & Heartbeat::Description) { if (hasSetting("desc")) { mqttSend(MQTT_TOPIC_DESCRIPTION, getSetting("desc").c_str()); } } if (hb_cfg & Heartbeat::Ssid) mqttSend(MQTT_TOPIC_SSID, WiFi.SSID().c_str()); if (hb_cfg & Heartbeat::Bssid) mqttSend(MQTT_TOPIC_BSSID, WiFi.BSSIDstr().c_str()); if (hb_cfg & Heartbeat::Ip) mqttSend(MQTT_TOPIC_IP, getIP().c_str()); if (hb_cfg & Heartbeat::Mac) mqttSend(MQTT_TOPIC_MAC, WiFi.macAddress().c_str()); if (hb_cfg & Heartbeat::Rssi) mqttSend(MQTT_TOPIC_RSSI, String(WiFi.RSSI()).c_str()); if (hb_cfg & Heartbeat::Uptime) mqttSend(MQTT_TOPIC_UPTIME, String(getUptime()).c_str()); #if NTP_SUPPORT if ((hb_cfg & Heartbeat::Datetime) && (ntpSynced())) mqttSend(MQTT_TOPIC_DATETIME, ntpDateTime().c_str()); #endif if (hb_cfg & Heartbeat::Freeheap) mqttSend(MQTT_TOPIC_FREEHEAP, String(heap_stats.available).c_str()); #if RELAY_SUPPORT if (hb_cfg & Heartbeat::Relay) relayMQTT(); #endif #if (LIGHT_PROVIDER != LIGHT_PROVIDER_NONE) if (hb_cfg & Heartbeat::Light) lightMQTT(); #endif if ((hb_cfg & Heartbeat::Vcc) && (ADC_MODE_VALUE == ADC_VCC)) mqttSend(MQTT_TOPIC_VCC, String(ESP.getVcc()).c_str()); if (hb_cfg & Heartbeat::Status) mqttSendStatus(); if (hb_cfg & Heartbeat::Loadavg) mqttSend(MQTT_TOPIC_LOADAVG, String(systemLoadAverage()).c_str()); #if THERMOSTAT_SUPPORT if (hb_cfg & Heartbeat::Range) { const auto& range = thermostatRange(); mqttSend(MQTT_TOPIC_HOLD_TEMP "_" MQTT_TOPIC_HOLD_TEMP_MIN, String(range.min).c_str()); mqttSend(MQTT_TOPIC_HOLD_TEMP "_" MQTT_TOPIC_HOLD_TEMP_MAX, String(range.max).c_str()); } if (hb_cfg & Heartbeat::RemoteTemp) { const auto& remote_temp = thermostatRemoteTemp(); char buffer[16]; dtostrf(remote_temp.temp, 1, 1, buffer); mqttSend(MQTT_TOPIC_REMOTE_TEMP, buffer); } #endif } else if (!serial && _heartbeat_mode == HEARTBEAT_REPEAT_STATUS) { mqttSendStatus(); } #endif // ------------------------------------------------------------------------- // InfluxDB // ------------------------------------------------------------------------- #if INFLUXDB_SUPPORT if (hb_cfg & Heartbeat::Uptime) idbSend(MQTT_TOPIC_UPTIME, String(getUptime()).c_str()); if (hb_cfg & Heartbeat::Freeheap) idbSend(MQTT_TOPIC_FREEHEAP, String(heap_stats.available).c_str()); if (hb_cfg & Heartbeat::Rssi) idbSend(MQTT_TOPIC_RSSI, String(WiFi.RSSI()).c_str()); if ((hb_cfg & Heartbeat::Vcc) && (ADC_MODE_VALUE == ADC_VCC)) idbSend(MQTT_TOPIC_VCC, String(ESP.getVcc()).c_str()); if (hb_cfg & Heartbeat::Loadavg) idbSend(MQTT_TOPIC_LOADAVG, String(systemLoadAverage()).c_str()); if (hb_cfg & Heartbeat::Ssid) idbSend(MQTT_TOPIC_SSID, WiFi.SSID().c_str()); if (hb_cfg & Heartbeat::Bssid) idbSend(MQTT_TOPIC_BSSID, WiFi.BSSIDstr().c_str()); #endif } // ----------------------------------------------------------------------------- // INFO // ----------------------------------------------------------------------------- extern "C" uint32_t _SPIFFS_start; extern "C" uint32_t _SPIFFS_end; unsigned int info_bytes2sectors(size_t size) { return (int) (size + SPI_FLASH_SEC_SIZE - 1) / SPI_FLASH_SEC_SIZE; } unsigned long info_ota_space() { return (ESP.getFreeSketchSpace() - 0x1000) & 0xFFFFF000; } unsigned long info_filesystem_space() { return ((uint32_t)&_SPIFFS_end - (uint32_t)&_SPIFFS_start); } unsigned long info_eeprom_space() { return EEPROMr.reserved() * SPI_FLASH_SEC_SIZE; } void _info_print_memory_layout_line(const char * name, unsigned long bytes, bool reset) { static unsigned long index = 0; if (reset) index = 0; if (0 == bytes) return; unsigned int _sectors = info_bytes2sectors(bytes); DEBUG_MSG_P(PSTR("[MAIN] %-20s: %8lu bytes / %4d sectors (%4d to %4d)\n"), name, bytes, _sectors, index, index + _sectors - 1); index += _sectors; } void _info_print_memory_layout_line(const char * name, unsigned long bytes) { _info_print_memory_layout_line(name, bytes, false); } void infoMemory(const char * name, unsigned int total_memory, unsigned int free_memory) { DEBUG_MSG_P( PSTR("[MAIN] %-6s: %5u bytes initially | %5u bytes used (%2u%%) | %5u bytes free (%2u%%)\n"), name, total_memory, total_memory - free_memory, 100 * (total_memory - free_memory) / total_memory, free_memory, 100 * free_memory / total_memory ); } void infoMemory(const char* name, const heap_stats_t& stats) { infoMemory(name, getInitialFreeHeap(), stats.available); } void infoHeapStats(const char* name, const heap_stats_t& stats) { DEBUG_MSG_P( PSTR("[MAIN] %-6s: %5u contiguous bytes available (%u%% fragmentation)\n"), name, stats.usable, stats.frag_pct ); } void infoHeapStats(bool show_frag_stats) { const auto stats = getHeapStats(); infoMemory("Heap", stats); if (show_frag_stats && has_getHeapStats{}) { infoHeapStats("Heap", stats); } } const char* _info_wifi_sleep_mode(WiFiSleepType_t type) { switch (type) { case WIFI_NONE_SLEEP: return "NONE"; case WIFI_LIGHT_SLEEP: return "LIGHT"; case WIFI_MODEM_SLEEP: return "MODEM"; default: return "UNKNOWN"; } } void info(bool first) { // Avoid printing on early boot when buffering is enabled #if DEBUG_SUPPORT #if DEBUG_LOG_BUFFER_SUPPORT if (first && debugLogBuffer()) return; #endif DEBUG_MSG_P(PSTR("\n\n---8<-------\n\n")); // ------------------------------------------------------------------------- #if defined(APP_REVISION) DEBUG_MSG_P(PSTR("[MAIN] " APP_NAME " " APP_VERSION " (" APP_REVISION ")\n")); #else DEBUG_MSG_P(PSTR("[MAIN] " APP_NAME " " APP_VERSION "\n")); #endif DEBUG_MSG_P(PSTR("[MAIN] " APP_AUTHOR "\n")); DEBUG_MSG_P(PSTR("[MAIN] " APP_WEBSITE "\n\n")); DEBUG_MSG_P(PSTR("[MAIN] CPU chip ID: 0x%06X\n"), ESP.getChipId()); DEBUG_MSG_P(PSTR("[MAIN] CPU frequency: %u MHz\n"), ESP.getCpuFreqMHz()); DEBUG_MSG_P(PSTR("[MAIN] SDK version: %s\n"), ESP.getSdkVersion()); DEBUG_MSG_P(PSTR("[MAIN] Core version: %s\n"), getCoreVersion().c_str()); DEBUG_MSG_P(PSTR("[MAIN] Core revision: %s\n"), getCoreRevision().c_str()); DEBUG_MSG_P(PSTR("[MAIN] Build time: %lu\n"), __UNIX_TIMESTAMP__); DEBUG_MSG_P(PSTR("\n")); // ------------------------------------------------------------------------- FlashMode_t mode [[gnu::unused]] = ESP.getFlashChipMode(); DEBUG_MSG_P(PSTR("[MAIN] Flash chip ID: 0x%06X\n"), ESP.getFlashChipId()); DEBUG_MSG_P(PSTR("[MAIN] Flash speed: %u Hz\n"), ESP.getFlashChipSpeed()); DEBUG_MSG_P(PSTR("[MAIN] Flash mode: %s\n"), mode == FM_QIO ? "QIO" : mode == FM_QOUT ? "QOUT" : mode == FM_DIO ? "DIO" : mode == FM_DOUT ? "DOUT" : "UNKNOWN"); DEBUG_MSG_P(PSTR("\n")); // ------------------------------------------------------------------------- _info_print_memory_layout_line("Flash size (CHIP)", ESP.getFlashChipRealSize(), true); _info_print_memory_layout_line("Flash size (SDK)", ESP.getFlashChipSize(), true); _info_print_memory_layout_line("Reserved", 1 * SPI_FLASH_SEC_SIZE, true); _info_print_memory_layout_line("Firmware size", ESP.getSketchSize()); _info_print_memory_layout_line("Max OTA size", info_ota_space()); _info_print_memory_layout_line("SPIFFS size", info_filesystem_space()); _info_print_memory_layout_line("EEPROM size", info_eeprom_space()); _info_print_memory_layout_line("Reserved", 4 * SPI_FLASH_SEC_SIZE); DEBUG_MSG_P(PSTR("\n")); // ------------------------------------------------------------------------- #if SPIFFS_SUPPORT FSInfo fs_info; bool fs = SPIFFS.info(fs_info); if (fs) { DEBUG_MSG_P(PSTR("[MAIN] SPIFFS total size : %8u bytes / %4d sectors\n"), fs_info.totalBytes, info_bytes2sectors(fs_info.totalBytes)); DEBUG_MSG_P(PSTR("[MAIN] used size : %8u bytes\n"), fs_info.usedBytes); DEBUG_MSG_P(PSTR("[MAIN] block size : %8u bytes\n"), fs_info.blockSize); DEBUG_MSG_P(PSTR("[MAIN] page size : %8u bytes\n"), fs_info.pageSize); DEBUG_MSG_P(PSTR("[MAIN] max files : %8u\n"), fs_info.maxOpenFiles); DEBUG_MSG_P(PSTR("[MAIN] max length : %8u\n"), fs_info.maxPathLength); } else { DEBUG_MSG_P(PSTR("[MAIN] No SPIFFS partition\n")); } DEBUG_MSG_P(PSTR("\n")); #endif // ------------------------------------------------------------------------- eepromSectorsDebug(); DEBUG_MSG_P(PSTR("\n")); // ------------------------------------------------------------------------- infoMemory("EEPROM", SPI_FLASH_SEC_SIZE, SPI_FLASH_SEC_SIZE - settingsSize()); infoHeapStats(!first); infoMemory("Stack", CONT_STACKSIZE, getFreeStack()); DEBUG_MSG_P(PSTR("\n")); // ------------------------------------------------------------------------- DEBUG_MSG_P(PSTR("[MAIN] Boot version: %d\n"), ESP.getBootVersion()); DEBUG_MSG_P(PSTR("[MAIN] Boot mode: %d\n"), ESP.getBootMode()); unsigned char reason = customResetReason(); if (reason > 0) { char buffer[32]; strcpy_P(buffer, custom_reset_string[reason-1]); DEBUG_MSG_P(PSTR("[MAIN] Last reset reason: %s\n"), buffer); } else { DEBUG_MSG_P(PSTR("[MAIN] Last reset reason: %s\n"), (char *) ESP.getResetReason().c_str()); DEBUG_MSG_P(PSTR("[MAIN] Last reset info: %s\n"), (char *) ESP.getResetInfo().c_str()); } DEBUG_MSG_P(PSTR("\n")); // ------------------------------------------------------------------------- DEBUG_MSG_P(PSTR("[MAIN] Board: %s\n"), getBoardName().c_str()); DEBUG_MSG_P(PSTR("[MAIN] Support: %s\n"), getEspurnaModules().c_str()); DEBUG_MSG_P(PSTR("[MAIN] OTA: %s\n"), getEspurnaOTAModules().c_str()); #if SENSOR_SUPPORT DEBUG_MSG_P(PSTR("[MAIN] Sensors: %s\n"), getEspurnaSensors().c_str()); #endif // SENSOR_SUPPORT DEBUG_MSG_P(PSTR("[MAIN] WebUI image: %s\n"), getEspurnaWebUI().c_str()); DEBUG_MSG_P(PSTR("\n")); // ------------------------------------------------------------------------- if (!first) { DEBUG_MSG_P(PSTR("[MAIN] Firmware MD5: %s\n"), (char *) ESP.getSketchMD5().c_str()); } if (ADC_MODE_VALUE == ADC_VCC) { DEBUG_MSG_P(PSTR("[MAIN] Power: %u mV\n"), ESP.getVcc()); } if (espurnaLoopDelay()) { DEBUG_MSG_P(PSTR("[MAIN] Power saving delay value: %lu ms\n"), espurnaLoopDelay()); } const WiFiSleepType_t sleep_mode = WiFi.getSleepMode(); if (sleep_mode != WIFI_NONE_SLEEP) { DEBUG_MSG_P(PSTR("[MAIN] WiFi Sleep Mode: %s\n"), _info_wifi_sleep_mode(sleep_mode)); } // ------------------------------------------------------------------------- #if SYSTEM_CHECK_ENABLED if (!systemCheck()) { DEBUG_MSG_P(PSTR("\n")); DEBUG_MSG_P(PSTR("[MAIN] Device is in SAFE MODE\n")); } #endif // ------------------------------------------------------------------------- DEBUG_MSG_P(PSTR("\n\n---8<-------\n\n")); #endif // DEBUG_SUPPORT == 1 } // ----------------------------------------------------------------------------- // SSL // ----------------------------------------------------------------------------- bool sslCheckFingerPrint(const char * fingerprint) { return (strlen(fingerprint) == 59); } bool sslFingerPrintArray(const char * fingerprint, unsigned char * bytearray) { // check length (20 2-character digits ':' or ' ' separated => 20*2+19 = 59) if (!sslCheckFingerPrint(fingerprint)) return false; // walk the fingerprint for (unsigned int i=0; i<20; i++) { bytearray[i] = strtol(fingerprint + 3*i, NULL, 16); } return true; } bool sslFingerPrintChar(const char * fingerprint, char * destination) { // check length (20 2-character digits ':' or ' ' separated => 20*2+19 = 59) if (!sslCheckFingerPrint(fingerprint)) return false; // copy it strncpy(destination, fingerprint, 59); // walk the fingerprint replacing ':' for ' ' for (unsigned char i = 0; i<59; i++) { if (destination[i] == ':') destination[i] = ' '; } return true; } // ----------------------------------------------------------------------------- // Reset // ----------------------------------------------------------------------------- // Use fixed method for Core 2.3.0, because it erases only 2 out of 4 SDK-reserved sectors // Fixed since 2.4.0, see: esp8266/core/esp8266/Esp.cpp: ESP::eraseConfig() bool eraseSDKConfig() { #if defined(ARDUINO_ESP8266_RELEASE_2_3_0) constexpr size_t cfgsize = 0x4000; size_t cfgaddr = ESP.getFlashChipSize() - cfgsize; for (size_t offset = 0; offset < cfgsize; offset += SPI_FLASH_SEC_SIZE) { if (!ESP.flashEraseSector((cfgaddr + offset) / SPI_FLASH_SEC_SIZE)) { return false; } } return true; #else return ESP.eraseConfig(); #endif } // ----------------------------------------------------------------------------- // Helper functions // ----------------------------------------------------------------------------- char * ltrim(char * s) { char *p = s; while ((unsigned char) *p == ' ') ++p; return p; } double roundTo(double num, unsigned char positions) { double multiplier = 1; while (positions-- > 0) multiplier *= 10; return round(num * multiplier) / multiplier; } void nice_delay(unsigned long ms) { unsigned long start = millis(); while (millis() - start < ms) delay(1); } // This method is called by the SDK to know where to connect the ADC int __get_adc_mode() { return (int) (ADC_MODE_VALUE); } bool isNumber(const char * s) { unsigned char len = strlen(s); if (0 == len) return false; bool decimal = false; bool digit = false; for (unsigned char i=0; i0) return false; } else if (s[i] == '.') { if (!digit) return false; if (decimal) return false; decimal = true; } else if (!isdigit(s[i])) { return false; } else { digit = true; } } return digit; } // ref: lwip2 lwip_strnstr with strnlen char* strnstr(const char* buffer, const char* token, size_t n) { size_t token_len = strnlen(token, n); if (token_len == 0) { return const_cast(buffer); } for (const char* p = buffer; *p && (p + token_len <= buffer + n); p++) { if ((*p == *token) && (strncmp(p, token, token_len) == 0)) { return const_cast(p); } } return nullptr; } // From a byte array to an hexa char array ("A220EE...", double the size) size_t hexEncode(const uint8_t * in, size_t in_size, char * out, size_t out_size) { if ((2 * in_size + 1) > (out_size)) return 0; static const char base16[] = "0123456789ABCDEF"; size_t index = 0; while (index < in_size) { out[(index*2)] = base16[(in[index] & 0xf0) >> 4]; out[(index*2)+1] = base16[(in[index] & 0xf)]; ++index; } out[2*index] = '\0'; return index ? (1 + (2 * index)) : 0; } // From an hexa char array ("A220EE...") to a byte array (half the size) size_t hexDecode(const char* in, size_t in_size, uint8_t* out, size_t out_size) { if ((in_size & 1) || (out_size < (in_size / 2))) { return 0; } // We can only return small values constexpr uint8_t InvalidByte { 255u }; auto char2byte = [](char ch) -> uint8_t { if ((ch >= '0') && (ch <= '9')) { return (ch - '0'); } else if ((ch >= 'a') && (ch <= 'f')) { return 10 + (ch - 'a'); } else if ((ch >= 'A') && (ch <= 'F')) { return 10 + (ch - 'A'); } else { return InvalidByte; } }; size_t index = 0; size_t out_index = 0; while (index < in_size) { const uint8_t lhs = char2byte(in[index]) << 4; const uint8_t rhs = char2byte(in[index + 1]); if ((InvalidByte != lhs) && (InvalidByte != rhs)) { out[out_index++] = lhs | rhs; index += 2; continue; } out_index = 0; break; } return out_index; }