/* SENSOR MODULE Copyright (C) 2016-2019 by Xose Pérez */ #if SENSOR_SUPPORT #include #include "filters/LastFilter.h" #include "filters/MaxFilter.h" #include "filters/MedianFilter.h" #include "filters/MovingAverageFilter.h" #include "sensors/BaseSensor.h" #include #include "relay.h" #include "broker.h" #include "ws.h" struct sensor_magnitude_t { BaseSensor * sensor; // Sensor object BaseFilter * filter; // Filter object unsigned char local; // Local index in its provider unsigned char type; // Type of measurement unsigned char decimals; // Number of decimals in textual representation unsigned char global; // Global index in its type double last; // Last raw value from sensor (unfiltered) double reported; // Last reported value double min_change; // Minimum value change to report double max_change; // Maximum value change to report }; std::vector _sensors; std::vector _magnitudes; bool _sensors_ready = false; unsigned char _counts[MAGNITUDE_MAX]; bool _sensor_realtime = API_REAL_TIME_VALUES; unsigned long _sensor_read_interval = 1000 * SENSOR_READ_INTERVAL; unsigned char _sensor_report_every = SENSOR_REPORT_EVERY; unsigned char _sensor_save_every = SENSOR_SAVE_EVERY; unsigned char _sensor_power_units = SENSOR_POWER_UNITS; unsigned char _sensor_energy_units = SENSOR_ENERGY_UNITS; unsigned char _sensor_temperature_units = SENSOR_TEMPERATURE_UNITS; double _sensor_temperature_correction = SENSOR_TEMPERATURE_CORRECTION; double _sensor_humidity_correction = SENSOR_HUMIDITY_CORRECTION; double _sensor_lux_correction = SENSOR_LUX_CORRECTION; #if PZEM004T_SUPPORT PZEM004TSensor *pzem004t_sensor; #endif String _sensor_energy_reset_ts = String(); // ----------------------------------------------------------------------------- // Private // ----------------------------------------------------------------------------- unsigned char _magnitudeDecimals(unsigned char type) { // Hardcoded decimals (these should be linked to the unit, instead of the magnitude) if (type == MAGNITUDE_ANALOG) return ANALOG_DECIMALS; if (type == MAGNITUDE_ENERGY || type == MAGNITUDE_ENERGY_DELTA) { _sensor_energy_units = getSetting("eneUnits", (unsigned char)SENSOR_ENERGY_UNITS); if (_sensor_energy_units == ENERGY_KWH) return 3; } if (type == MAGNITUDE_POWER_ACTIVE || type == MAGNITUDE_POWER_APPARENT || type == MAGNITUDE_POWER_REACTIVE) { if (_sensor_power_units == POWER_KILOWATTS) return 3; } if (type < MAGNITUDE_MAX) return pgm_read_byte(magnitude_decimals + type); return 0; } double _magnitudeProcess(unsigned char type, unsigned char decimals, double value) { // Hardcoded conversions (these should be linked to the unit, instead of the magnitude) if (type == MAGNITUDE_TEMPERATURE) { if (_sensor_temperature_units == TMP_FAHRENHEIT) value = value * 1.8 + 32; value = value + _sensor_temperature_correction; } if (type == MAGNITUDE_HUMIDITY) { value = constrain(value + _sensor_humidity_correction, 0, 100); } if (type == MAGNITUDE_LUX) { value = value + _sensor_lux_correction; } if (type == MAGNITUDE_ENERGY || type == MAGNITUDE_ENERGY_DELTA) { if (_sensor_energy_units == ENERGY_KWH) value = value / 3600000; } if (type == MAGNITUDE_POWER_ACTIVE || type == MAGNITUDE_POWER_APPARENT || type == MAGNITUDE_POWER_REACTIVE) { if (_sensor_power_units == POWER_KILOWATTS) value = value / 1000; } return roundTo(value, decimals); } // ----------------------------------------------------------------------------- #if WEB_SUPPORT //void _sensorWebSocketMagnitudes(JsonObject& root, const String& ws_name, const String& conf_name) { template void _sensorWebSocketMagnitudes(JsonObject& root, T prefix) { // ws produces flat list Magnitudes const String ws_name = String(prefix) + "Magnitudes"; // config uses Magnitude (cut 's') const String conf_name = ws_name.substring(0, ws_name.length() - 1); JsonObject& list = root.createNestedObject(ws_name); list["size"] = magnitudeCount(); //JsonArray& name = list.createNestedArray("name"); JsonArray& type = list.createNestedArray("type"); JsonArray& index = list.createNestedArray("index"); JsonArray& idx = list.createNestedArray("idx"); for (unsigned char i=0; i void _sensorWebSocketMagnitudes(JsonObject& root, T prefix) { // ws produces flat list Magnitudes const String ws_name = String(prefix) + "Magnitudes"; // config uses Magnitude (cut 's') const String conf_name = ws_name.substring(0, ws_name.length() - 1); _sensorWebSocketMagnitudes(root, ws_name, conf_name); } */ bool _sensorWebSocketOnKeyCheck(const char * key, JsonVariant& value) { if (strncmp(key, "pwr", 3) == 0) return true; if (strncmp(key, "sns", 3) == 0) return true; if (strncmp(key, "tmp", 3) == 0) return true; if (strncmp(key, "hum", 3) == 0) return true; if (strncmp(key, "ene", 3) == 0) return true; if (strncmp(key, "lux", 3) == 0) return true; return false; } void _sensorWebSocketOnVisible(JsonObject& root) { root["snsVisible"] = 1; for (auto& magnitude : _magnitudes) { if (magnitude.type == MAGNITUDE_TEMPERATURE) root["temperatureVisible"] = 1; if (magnitude.type == MAGNITUDE_HUMIDITY) root["humidityVisible"] = 1; #if MICS2710_SUPPORT || MICS5525_SUPPORT if (magnitude.type == MAGNITUDE_CO || magnitude.type == MAGNITUDE_NO2) root["micsVisible"] = 1; #endif } } void _sensorWebSocketMagnitudesConfig(JsonObject& root) { JsonObject& magnitudes = root.createNestedObject("magnitudesConfig"); uint8_t size = 0; JsonArray& index = magnitudes.createNestedArray("index"); JsonArray& type = magnitudes.createNestedArray("type"); JsonArray& units = magnitudes.createNestedArray("units"); JsonArray& description = magnitudes.createNestedArray("description"); for (unsigned char i=0; i(magnitude.global); type.add(magnitude.type); units.add(magnitudeUnits(magnitude.type)); if (magnitude.type == MAGNITUDE_ENERGY) { if (_sensor_energy_reset_ts.length() == 0) _sensorResetTS(); description.add(magnitude.sensor->slot(magnitude.local) + String(" (since ") + _sensor_energy_reset_ts + String(")")); } else { description.add(magnitude.sensor->slot(magnitude.local)); } } magnitudes["size"] = size; } void _sensorWebSocketSendData(JsonObject& root) { char buffer[64]; JsonObject& magnitudes = root.createNestedObject("magnitudes"); uint8_t size = 0; JsonArray& value = magnitudes.createNestedArray("value"); JsonArray& error = magnitudes.createNestedArray("error"); for (unsigned char i=0; ierror()); } magnitudes["size"] = size; } void _sensorWebSocketOnConnected(JsonObject& root) { for (unsigned char i=0; i<_sensors.size(); i++) { BaseSensor * sensor = _sensors[i]; UNUSED(sensor); #if EMON_ANALOG_SUPPORT if (sensor->getID() == SENSOR_EMON_ANALOG_ID) { root["emonVisible"] = 1; root["pwrVisible"] = 1; root["pwrVoltage"] = ((EmonAnalogSensor *) sensor)->getVoltage(); } #endif #if HLW8012_SUPPORT if (sensor->getID() == SENSOR_HLW8012_ID) { root["hlwVisible"] = 1; root["pwrVisible"] = 1; } #endif #if CSE7766_SUPPORT if (sensor->getID() == SENSOR_CSE7766_ID) { root["cseVisible"] = 1; root["pwrVisible"] = 1; } #endif #if V9261F_SUPPORT if (sensor->getID() == SENSOR_V9261F_ID) { root["pwrVisible"] = 1; } #endif #if ECH1560_SUPPORT if (sensor->getID() == SENSOR_ECH1560_ID) { root["pwrVisible"] = 1; } #endif #if PZEM004T_SUPPORT if (sensor->getID() == SENSOR_PZEM004T_ID) { root["pzemVisible"] = 1; root["pwrVisible"] = 1; } #endif #if PULSEMETER_SUPPORT if (sensor->getID() == SENSOR_PULSEMETER_ID) { root["pmVisible"] = 1; root["pwrRatioE"] = ((PulseMeterSensor *) sensor)->getEnergyRatio(); } #endif } if (magnitudeCount()) { //root["apiRealTime"] = _sensor_realtime; root["pwrUnits"] = _sensor_power_units; root["eneUnits"] = _sensor_energy_units; root["tmpUnits"] = _sensor_temperature_units; root["tmpCorrection"] = _sensor_temperature_correction; root["humCorrection"] = _sensor_humidity_correction; root["snsRead"] = _sensor_read_interval / 1000; root["snsReport"] = _sensor_report_every; root["snsSave"] = _sensor_save_every; _sensorWebSocketMagnitudesConfig(root); } /* // Sensors manifest JsonArray& manifest = root.createNestedArray("manifest"); #if BMX280_SUPPORT BMX280Sensor::manifest(manifest); #endif // Sensors configuration JsonArray& sensors = root.createNestedArray("sensors"); for (unsigned char i; i<_sensors.size(); i++) { JsonObject& sensor = sensors.createNestedObject(); sensor["index"] = i; sensor["id"] = _sensors[i]->getID(); _sensors[i]->getConfig(sensor); } */ } #endif // WEB_SUPPORT #if API_SUPPORT void _sensorAPISetup() { for (unsigned char magnitude_id=0; magnitude_id<_magnitudes.size(); magnitude_id++) { sensor_magnitude_t magnitude = _magnitudes[magnitude_id]; String topic = magnitudeTopic(magnitude.type); if (SENSOR_USE_INDEX || (_counts[magnitude.type] > 1)) topic = topic + "/" + String(magnitude.global); apiRegister(topic.c_str(), [magnitude_id](char * buffer, size_t len) { sensor_magnitude_t magnitude = _magnitudes[magnitude_id]; double value = _sensor_realtime ? magnitude.last : magnitude.reported; dtostrf(value, 1, magnitude.decimals, buffer); }); } } #endif // API_SUPPORT #if TERMINAL_SUPPORT void _sensorInitCommands() { terminalRegisterCommand(F("MAGNITUDES"), [](Embedis* e) { for (unsigned char i=0; i<_magnitudes.size(); i++) { sensor_magnitude_t magnitude = _magnitudes[i]; DEBUG_MSG_P(PSTR("[SENSOR] * %2d: %s @ %s (%s/%d)\n"), i, magnitudeTopic(magnitude.type).c_str(), magnitude.sensor->slot(magnitude.local).c_str(), magnitudeTopic(magnitude.type).c_str(), magnitude.global ); } terminalOK(); }); #if PZEM004T_SUPPORT terminalRegisterCommand(F("PZ.ADDRESS"), [](Embedis* e) { if (e->argc == 1) { DEBUG_MSG_P(PSTR("[SENSOR] PZEM004T\n")); unsigned char dev_count = pzem004t_sensor->getAddressesCount(); for(unsigned char dev = 0; dev < dev_count; dev++) { DEBUG_MSG_P(PSTR("Device %d/%s\n"), dev, pzem004t_sensor->getAddress(dev).c_str()); } terminalOK(); } else if(e->argc == 2) { IPAddress addr; if (addr.fromString(String(e->argv[1]))) { if(pzem004t_sensor->setDeviceAddress(&addr)) { terminalOK(); } } else { terminalError(F("Invalid address argument")); } } else { terminalError(F("Wrong arguments")); } }); terminalRegisterCommand(F("PZ.RESET"), [](Embedis* e) { if(e->argc > 2) { terminalError(F("Wrong arguments")); } else { unsigned char init = e->argc == 2 ? String(e->argv[1]).toInt() : 0; unsigned char limit = e->argc == 2 ? init +1 : pzem004t_sensor->getAddressesCount(); DEBUG_MSG_P(PSTR("[SENSOR] PZEM004T\n")); for(unsigned char dev = init; dev < limit; dev++) { float offset = pzem004t_sensor->resetEnergy(dev); _sensorEnergyTotal(dev, offset); DEBUG_MSG_P(PSTR("Device %d/%s - Offset: %s\n"), dev, pzem004t_sensor->getAddress(dev).c_str(), String(offset).c_str()); } terminalOK(); } }); terminalRegisterCommand(F("PZ.VALUE"), [](Embedis* e) { if(e->argc > 2) { terminalError(F("Wrong arguments")); } else { unsigned char init = e->argc == 2 ? String(e->argv[1]).toInt() : 0; unsigned char limit = e->argc == 2 ? init +1 : pzem004t_sensor->getAddressesCount(); DEBUG_MSG_P(PSTR("[SENSOR] PZEM004T\n")); for(unsigned char dev = init; dev < limit; dev++) { DEBUG_MSG_P(PSTR("Device %d/%s - Current: %s Voltage: %s Power: %s Energy: %s\n"), // dev, pzem004t_sensor->getAddress(dev).c_str(), String(pzem004t_sensor->value(dev * PZ_MAGNITUDE_CURRENT_INDEX)).c_str(), String(pzem004t_sensor->value(dev * PZ_MAGNITUDE_VOLTAGE_INDEX)).c_str(), String(pzem004t_sensor->value(dev * PZ_MAGNITUDE_POWER_ACTIVE_INDEX)).c_str(), String(pzem004t_sensor->value(dev * PZ_MAGNITUDE_ENERGY_INDEX)).c_str()); } terminalOK(); } }); #endif } #endif void _sensorTick() { for (unsigned char i=0; i<_sensors.size(); i++) { _sensors[i]->tick(); } } void _sensorPre() { for (unsigned char i=0; i<_sensors.size(); i++) { _sensors[i]->pre(); if (!_sensors[i]->status()) { DEBUG_MSG_P(PSTR("[SENSOR] Error reading data from %s (error: %d)\n"), _sensors[i]->description().c_str(), _sensors[i]->error() ); } } } void _sensorPost() { for (unsigned char i=0; i<_sensors.size(); i++) { _sensors[i]->post(); } } void _sensorResetTS() { #if NTP_SUPPORT if (ntpSynced()) { if (_sensor_energy_reset_ts.length() == 0) { _sensor_energy_reset_ts = ntpDateTime(now() - millis() / 1000); } else { _sensor_energy_reset_ts = ntpDateTime(now()); } } else { _sensor_energy_reset_ts = String(); } setSetting("snsResetTS", _sensor_energy_reset_ts); #endif } double _sensorEnergyTotal(unsigned char index) { double value = 0; if (rtcmemStatus() && (index < (sizeof(Rtcmem->energy) / sizeof(*Rtcmem->energy)))) { value = Rtcmem->energy[index]; } else { value = (_sensor_save_every > 0) ? getSetting({"eneTotal", index}, 0.) : 0.; } return value; } double _sensorEnergyTotal() { return _sensorEnergyTotal(0); } void _sensorEnergyTotal(unsigned char index, double value) { static unsigned long save_count = 0; // Save to EEPROM every '_sensor_save_every' readings if (_sensor_save_every > 0) { save_count = (save_count + 1) % _sensor_save_every; if (0 == save_count) { setSetting({"eneTotal", index}, value); saveSettings(); } } // Always save to RTCMEM if (index < (sizeof(Rtcmem->energy) / sizeof(*Rtcmem->energy))) { Rtcmem->energy[index] = value; } } // ----------------------------------------------------------------------------- // Sensor initialization // ----------------------------------------------------------------------------- void _sensorLoad() { /* This is temporal, in the future sensors will be initialized based on soft configuration (data stored in EEPROM config) so you will be able to define and configure new sensors on the fly At the time being, only enabled sensors (those with *_SUPPORT to 1) are being loaded and initialized here. If you want to add new sensors of the same type just duplicate the block and change the arguments for the set* methods. Check the DHT block below for an example */ #if AM2320_SUPPORT { AM2320Sensor * sensor = new AM2320Sensor(); sensor->setAddress(AM2320_ADDRESS); _sensors.push_back(sensor); } #endif #if ANALOG_SUPPORT { AnalogSensor * sensor = new AnalogSensor(); sensor->setSamples(ANALOG_SAMPLES); sensor->setDelay(ANALOG_DELAY); //CICM For analog scaling sensor->setFactor(ANALOG_FACTOR); sensor->setOffset(ANALOG_OFFSET); _sensors.push_back(sensor); } #endif #if BH1750_SUPPORT { BH1750Sensor * sensor = new BH1750Sensor(); sensor->setAddress(BH1750_ADDRESS); sensor->setMode(BH1750_MODE); _sensors.push_back(sensor); } #endif #if BMP180_SUPPORT { BMP180Sensor * sensor = new BMP180Sensor(); sensor->setAddress(BMP180_ADDRESS); _sensors.push_back(sensor); } #endif #if BMX280_SUPPORT { // Support up to two sensors with full auto-discovery. const unsigned char number = constrain(getSetting("bmx280Number", BMX280_NUMBER), 1, 2); // For second sensor, if BMX280_ADDRESS is 0x00 then auto-discover // otherwise choose the other unnamed sensor address const auto first = getSetting("bmx280Address", BMX280_ADDRESS); const auto second = (first == 0x00) ? 0x00 : (0x76 + 0x77 - first); const decltype(first) address_map[2] { first, second }; for (unsigned char n=0; n < number; ++n) { BMX280Sensor * sensor = new BMX280Sensor(); sensor->setAddress(address_map[n]); _sensors.push_back(sensor); } } #endif #if CSE7766_SUPPORT { CSE7766Sensor * sensor = new CSE7766Sensor(); sensor->setRX(CSE7766_PIN); _sensors.push_back(sensor); } #endif #if DALLAS_SUPPORT { DallasSensor * sensor = new DallasSensor(); sensor->setGPIO(DALLAS_PIN); _sensors.push_back(sensor); } #endif #if DHT_SUPPORT { DHTSensor * sensor = new DHTSensor(); sensor->setGPIO(DHT_PIN); sensor->setType(DHT_TYPE); _sensors.push_back(sensor); } #endif /* // Example on how to add a second DHT sensor // DHT2_PIN and DHT2_TYPE should be defined in sensors.h file #if DHT_SUPPORT { DHTSensor * sensor = new DHTSensor(); sensor->setGPIO(DHT2_PIN); sensor->setType(DHT2_TYPE); _sensors.push_back(sensor); } #endif */ #if DIGITAL_SUPPORT { #if (DIGITAL1_PIN != GPIO_NONE) { DigitalSensor * sensor = new DigitalSensor(); sensor->setGPIO(DIGITAL1_PIN); sensor->setMode(DIGITAL1_PIN_MODE); sensor->setDefault(DIGITAL1_DEFAULT_STATE); _sensors.push_back(sensor); } #endif #if (DIGITAL2_PIN != GPIO_NONE) { DigitalSensor * sensor = new DigitalSensor(); sensor->setGPIO(DIGITAL2_PIN); sensor->setMode(DIGITAL2_PIN_MODE); sensor->setDefault(DIGITAL2_DEFAULT_STATE); _sensors.push_back(sensor); } #endif #if (DIGITAL3_PIN != GPIO_NONE) { DigitalSensor * sensor = new DigitalSensor(); sensor->setGPIO(DIGITAL3_PIN); sensor->setMode(DIGITAL3_PIN_MODE); sensor->setDefault(DIGITAL3_DEFAULT_STATE); _sensors.push_back(sensor); } #endif #if (DIGITAL4_PIN != GPIO_NONE) { DigitalSensor * sensor = new DigitalSensor(); sensor->setGPIO(DIGITAL4_PIN); sensor->setMode(DIGITAL4_PIN_MODE); sensor->setDefault(DIGITAL4_DEFAULT_STATE); _sensors.push_back(sensor); } #endif #if (DIGITAL5_PIN != GPIO_NONE) { DigitalSensor * sensor = new DigitalSensor(); sensor->setGPIO(DIGITAL5_PIN); sensor->setMode(DIGITAL5_PIN_MODE); sensor->setDefault(DIGITAL5_DEFAULT_STATE); _sensors.push_back(sensor); } #endif #if (DIGITAL6_PIN != GPIO_NONE) { DigitalSensor * sensor = new DigitalSensor(); sensor->setGPIO(DIGITAL6_PIN); sensor->setMode(DIGITAL6_PIN_MODE); sensor->setDefault(DIGITAL6_DEFAULT_STATE); _sensors.push_back(sensor); } #endif #if (DIGITAL7_PIN != GPIO_NONE) { DigitalSensor * sensor = new DigitalSensor(); sensor->setGPIO(DIGITAL7_PIN); sensor->setMode(DIGITAL7_PIN_MODE); sensor->setDefault(DIGITAL7_DEFAULT_STATE); _sensors.push_back(sensor); } #endif #if (DIGITAL8_PIN != GPIO_NONE) { DigitalSensor * sensor = new DigitalSensor(); sensor->setGPIO(DIGITAL8_PIN); sensor->setMode(DIGITAL8_PIN_MODE); sensor->setDefault(DIGITAL8_DEFAULT_STATE); _sensors.push_back(sensor); } #endif } #endif #if ECH1560_SUPPORT { ECH1560Sensor * sensor = new ECH1560Sensor(); sensor->setCLK(ECH1560_CLK_PIN); sensor->setMISO(ECH1560_MISO_PIN); sensor->setInverted(ECH1560_INVERTED); _sensors.push_back(sensor); } #endif #if EMON_ADC121_SUPPORT { EmonADC121Sensor * sensor = new EmonADC121Sensor(); sensor->setAddress(EMON_ADC121_I2C_ADDRESS); sensor->setVoltage(EMON_MAINS_VOLTAGE); sensor->setReference(EMON_REFERENCE_VOLTAGE); sensor->setCurrentRatio(0, EMON_CURRENT_RATIO); _sensors.push_back(sensor); } #endif #if EMON_ADS1X15_SUPPORT { EmonADS1X15Sensor * sensor = new EmonADS1X15Sensor(); sensor->setAddress(EMON_ADS1X15_I2C_ADDRESS); sensor->setType(EMON_ADS1X15_TYPE); sensor->setMask(EMON_ADS1X15_MASK); sensor->setGain(EMON_ADS1X15_GAIN); sensor->setVoltage(EMON_MAINS_VOLTAGE); sensor->setCurrentRatio(0, EMON_CURRENT_RATIO); sensor->setCurrentRatio(1, EMON_CURRENT_RATIO); sensor->setCurrentRatio(2, EMON_CURRENT_RATIO); sensor->setCurrentRatio(3, EMON_CURRENT_RATIO); _sensors.push_back(sensor); } #endif #if EMON_ANALOG_SUPPORT { EmonAnalogSensor * sensor = new EmonAnalogSensor(); sensor->setVoltage(EMON_MAINS_VOLTAGE); sensor->setReference(EMON_REFERENCE_VOLTAGE); sensor->setCurrentRatio(0, EMON_CURRENT_RATIO); _sensors.push_back(sensor); } #endif #if EVENTS_SUPPORT { #if (EVENTS1_PIN != GPIO_NONE) { EventSensor * sensor = new EventSensor(); sensor->setGPIO(EVENTS1_PIN); sensor->setTrigger(EVENTS1_TRIGGER); sensor->setPinMode(EVENTS1_PIN_MODE); sensor->setDebounceTime(EVENTS1_DEBOUNCE); sensor->setInterruptMode(EVENTS1_INTERRUPT_MODE); _sensors.push_back(sensor); } #endif #if (EVENTS2_PIN != GPIO_NONE) { EventSensor * sensor = new EventSensor(); sensor->setGPIO(EVENTS2_PIN); sensor->setTrigger(EVENTS2_TRIGGER); sensor->setPinMode(EVENTS2_PIN_MODE); sensor->setDebounceTime(EVENTS2_DEBOUNCE); sensor->setInterruptMode(EVENTS2_INTERRUPT_MODE); _sensors.push_back(sensor); } #endif #if (EVENTS3_PIN != GPIO_NONE) { EventSensor * sensor = new EventSensor(); sensor->setGPIO(EVENTS3_PIN); sensor->setTrigger(EVENTS3_TRIGGER); sensor->setPinMode(EVENTS3_PIN_MODE); sensor->setDebounceTime(EVENTS3_DEBOUNCE); sensor->setInterruptMode(EVENTS3_INTERRUPT_MODE); _sensors.push_back(sensor); } #endif #if (EVENTS4_PIN != GPIO_NONE) { EventSensor * sensor = new EventSensor(); sensor->setGPIO(EVENTS4_PIN); sensor->setTrigger(EVENTS4_TRIGGER); sensor->setPinMode(EVENTS4_PIN_MODE); sensor->setDebounceTime(EVENTS4_DEBOUNCE); sensor->setInterruptMode(EVENTS4_INTERRUPT_MODE); _sensors.push_back(sensor); } #endif #if (EVENTS5_PIN != GPIO_NONE) { EventSensor * sensor = new EventSensor(); sensor->setGPIO(EVENTS5_PIN); sensor->setTrigger(EVENTS5_TRIGGER); sensor->setPinMode(EVENTS5_PIN_MODE); sensor->setDebounceTime(EVENTS5_DEBOUNCE); sensor->setInterruptMode(EVENTS5_INTERRUPT_MODE); _sensors.push_back(sensor); } #endif #if (EVENTS6_PIN != GPIO_NONE) { EventSensor * sensor = new EventSensor(); sensor->setGPIO(EVENTS6_PIN); sensor->setTrigger(EVENTS6_TRIGGER); sensor->setPinMode(EVENTS6_PIN_MODE); sensor->setDebounceTime(EVENTS6_DEBOUNCE); sensor->setInterruptMode(EVENTS6_INTERRUPT_MODE); _sensors.push_back(sensor); } #endif #if (EVENTS7_PIN != GPIO_NONE) { EventSensor * sensor = new EventSensor(); sensor->setGPIO(EVENTS7_PIN); sensor->setTrigger(EVENTS7_TRIGGER); sensor->setPinMode(EVENTS7_PIN_MODE); sensor->setDebounceTime(EVENTS7_DEBOUNCE); sensor->setInterruptMode(EVENTS7_INTERRUPT_MODE); _sensors.push_back(sensor); } #endif #if (EVENTS8_PIN != GPIO_NONE) { EventSensor * sensor = new EventSensor(); sensor->setGPIO(EVENTS8_PIN); sensor->setTrigger(EVENTS8_TRIGGER); sensor->setPinMode(EVENTS8_PIN_MODE); sensor->setDebounceTime(EVENTS8_DEBOUNCE); sensor->setInterruptMode(EVENTS8_INTERRUPT_MODE); _sensors.push_back(sensor); } #endif } #endif #if GEIGER_SUPPORT { GeigerSensor * sensor = new GeigerSensor(); // Create instance of thr Geiger module. sensor->setGPIO(GEIGER_PIN); // Interrupt pin of the attached geiger counter board. sensor->setMode(GEIGER_PIN_MODE); // This pin is an input. sensor->setDebounceTime(GEIGER_DEBOUNCE); // Debounce time 25ms, because https://github.com/Trickx/espurna/wiki/Geiger-counter sensor->setInterruptMode(GEIGER_INTERRUPT_MODE); // Interrupt triggering: edge detection rising. sensor->setCPM2SievertFactor(GEIGER_CPM2SIEVERT); // Conversion factor from counts per minute to µSv/h _sensors.push_back(sensor); } #endif #if GUVAS12SD_SUPPORT { GUVAS12SDSensor * sensor = new GUVAS12SDSensor(); sensor->setGPIO(GUVAS12SD_PIN); _sensors.push_back(sensor); } #endif #if SONAR_SUPPORT { SonarSensor * sensor = new SonarSensor(); sensor->setEcho(SONAR_ECHO); sensor->setIterations(SONAR_ITERATIONS); sensor->setMaxDistance(SONAR_MAX_DISTANCE); sensor->setTrigger(SONAR_TRIGGER); _sensors.push_back(sensor); } #endif #if HLW8012_SUPPORT { HLW8012Sensor * sensor = new HLW8012Sensor(); sensor->setSEL(HLW8012_SEL_PIN); sensor->setCF(HLW8012_CF_PIN); sensor->setCF1(HLW8012_CF1_PIN); sensor->setSELCurrent(HLW8012_SEL_CURRENT); _sensors.push_back(sensor); } #endif #if LDR_SUPPORT { LDRSensor * sensor = new LDRSensor(); sensor->setSamples(LDR_SAMPLES); sensor->setDelay(LDR_DELAY); sensor->setType(LDR_TYPE); sensor->setPhotocellPositionOnGround(LDR_ON_GROUND); sensor->setResistor(LDR_RESISTOR); sensor->setPhotocellParameters(LDR_MULTIPLICATION, LDR_POWER); _sensors.push_back(sensor); } #endif #if MHZ19_SUPPORT { MHZ19Sensor * sensor = new MHZ19Sensor(); sensor->setRX(MHZ19_RX_PIN); sensor->setTX(MHZ19_TX_PIN); if (getSetting("mhz19CalibrateAuto", false)) { sensor->setCalibrateAuto(true); } _sensors.push_back(sensor); } #endif #if MICS2710_SUPPORT { MICS2710Sensor * sensor = new MICS2710Sensor(); sensor->setAnalogGPIO(MICS2710_NOX_PIN); sensor->setPreHeatGPIO(MICS2710_PRE_PIN); sensor->setRL(MICS2710_RL); _sensors.push_back(sensor); } #endif #if MICS5525_SUPPORT { MICS5525Sensor * sensor = new MICS5525Sensor(); sensor->setAnalogGPIO(MICS5525_RED_PIN); sensor->setRL(MICS5525_RL); _sensors.push_back(sensor); } #endif #if NTC_SUPPORT { NTCSensor * sensor = new NTCSensor(); sensor->setSamples(NTC_SAMPLES); sensor->setDelay(NTC_DELAY); sensor->setUpstreamResistor(NTC_R_UP); sensor->setDownstreamResistor(NTC_R_DOWN); sensor->setBeta(NTC_BETA); sensor->setR0(NTC_R0); sensor->setT0(NTC_T0); _sensors.push_back(sensor); } #endif #if PMSX003_SUPPORT { PMSX003Sensor * sensor = new PMSX003Sensor(); #if PMS_USE_SOFT sensor->setRX(PMS_RX_PIN); sensor->setTX(PMS_TX_PIN); #else sensor->setSerial(& PMS_HW_PORT); #endif sensor->setType(PMS_TYPE); _sensors.push_back(sensor); } #endif #if PULSEMETER_SUPPORT { PulseMeterSensor * sensor = new PulseMeterSensor(); sensor->setGPIO(PULSEMETER_PIN); sensor->setEnergyRatio(PULSEMETER_ENERGY_RATIO); sensor->setInterruptMode(PULSEMETER_INTERRUPT_ON); sensor->setDebounceTime(PULSEMETER_DEBOUNCE); _sensors.push_back(sensor); } #endif #if PZEM004T_SUPPORT { String addresses = getSetting("pzemAddr", F(PZEM004T_ADDRESSES)); if (!addresses.length()) { DEBUG_MSG_P(PSTR("[SENSOR] PZEM004T Error: no addresses are configured\n")); return; } PZEM004TSensor * sensor = pzem004t_sensor = new PZEM004TSensor(); sensor->setAddresses(addresses.c_str()); if (getSetting("pzemSoft", 1 == PZEM004T_USE_SOFT)) { sensor->setRX(getSetting("pzemRX", PZEM004T_RX_PIN)); sensor->setTX(getSetting("pzemTX", PZEM004T_TX_PIN)); } else { sensor->setSerial(& PZEM004T_HW_PORT); } // Read saved energy offset unsigned char dev_count = sensor->getAddressesCount(); for(unsigned char dev = 0; dev < dev_count; dev++) { float value = _sensorEnergyTotal(dev); if (value > 0) sensor->resetEnergy(dev, value); } _sensors.push_back(sensor); } #endif #if SENSEAIR_SUPPORT { SenseAirSensor * sensor = new SenseAirSensor(); sensor->setRX(SENSEAIR_RX_PIN); sensor->setTX(SENSEAIR_TX_PIN); _sensors.push_back(sensor); } #endif #if SDS011_SUPPORT { SDS011Sensor * sensor = new SDS011Sensor(); sensor->setRX(SDS011_RX_PIN); sensor->setTX(SDS011_TX_PIN); _sensors.push_back(sensor); } #endif #if SHT3X_I2C_SUPPORT { SHT3XI2CSensor * sensor = new SHT3XI2CSensor(); sensor->setAddress(SHT3X_I2C_ADDRESS); _sensors.push_back(sensor); } #endif #if SI7021_SUPPORT { SI7021Sensor * sensor = new SI7021Sensor(); sensor->setAddress(SI7021_ADDRESS); _sensors.push_back(sensor); } #endif #if T6613_SUPPORT { T6613Sensor * sensor = new T6613Sensor(); sensor->setRX(T6613_RX_PIN); sensor->setTX(T6613_TX_PIN); _sensors.push_back(sensor); } #endif #if TMP3X_SUPPORT { TMP3XSensor * sensor = new TMP3XSensor(); sensor->setType(TMP3X_TYPE); _sensors.push_back(sensor); } #endif #if V9261F_SUPPORT { V9261FSensor * sensor = new V9261FSensor(); sensor->setRX(V9261F_PIN); sensor->setInverted(V9261F_PIN_INVERSE); _sensors.push_back(sensor); } #endif #if MAX6675_SUPPORT { MAX6675Sensor * sensor = new MAX6675Sensor(); sensor->setCS(MAX6675_CS_PIN); sensor->setSO(MAX6675_SO_PIN); sensor->setSCK(MAX6675_SCK_PIN); _sensors.push_back(sensor); } #endif #if VEML6075_SUPPORT { VEML6075Sensor * sensor = new VEML6075Sensor(); sensor->setIntegrationTime(VEML6075_INTEGRATION_TIME); sensor->setDynamicMode(VEML6075_DYNAMIC_MODE); _sensors.push_back(sensor); } #endif #if VL53L1X_SUPPORT { VL53L1XSensor * sensor = new VL53L1XSensor(); sensor->setInterMeasurementPeriod(VL53L1X_INTER_MEASUREMENT_PERIOD); sensor->setDistanceMode(VL53L1X_DISTANCE_MODE); sensor->setMeasurementTimingBudget(VL53L1X_MEASUREMENT_TIMING_BUDGET); _sensors.push_back(sensor); } #endif #if EZOPH_SUPPORT { EZOPHSensor * sensor = new EZOPHSensor(); sensor->setRX(EZOPH_RX_PIN); sensor->setTX(EZOPH_TX_PIN); _sensors.push_back(sensor); } #endif #if ADE7953_SUPPORT { ADE7953Sensor * sensor = new ADE7953Sensor(); sensor->setAddress(ADE7953_ADDRESS); _sensors.push_back(sensor); } #endif } void _sensorCallback(unsigned char i, unsigned char type, double value) { DEBUG_MSG_P(PSTR("[SENSOR] Sensor #%u callback, type %u, payload: '%s'\n"), i, type, String(value).c_str()); for (unsigned char k=0; k<_magnitudes.size(); k++) { if ((_sensors[i] == _magnitudes[k].sensor) && (type == _magnitudes[k].type)) { _sensorReport(k, value); return; } } } void _sensorInit() { _sensors_ready = true; _sensor_save_every = getSetting("snsSave", 0); for (unsigned char i=0; i<_sensors.size(); i++) { // Do not process an already initialized sensor if (_sensors[i]->ready()) continue; DEBUG_MSG_P(PSTR("[SENSOR] Initializing %s\n"), _sensors[i]->description().c_str()); // Force sensor to reload config _sensors[i]->begin(); if (!_sensors[i]->ready()) { if (_sensors[i]->error() != 0) DEBUG_MSG_P(PSTR("[SENSOR] -> ERROR %d\n"), _sensors[i]->error()); _sensors_ready = false; continue; } // Initialize magnitudes for (unsigned char k=0; k<_sensors[i]->count(); k++) { unsigned char type = _sensors[i]->type(k); signed char decimals = _sensors[i]->decimals(type); if (decimals < 0) decimals = _magnitudeDecimals(type); sensor_magnitude_t new_magnitude; new_magnitude.sensor = _sensors[i]; new_magnitude.local = k; new_magnitude.type = type; new_magnitude.decimals = (unsigned char) decimals; new_magnitude.global = _counts[type]; new_magnitude.last = 0; new_magnitude.reported = 0; new_magnitude.min_change = 0; new_magnitude.max_change = 0; // TODO: find a proper way to extend this to min/max of any magnitude if (MAGNITUDE_ENERGY == type) { new_magnitude.max_change = getSetting("eneMaxDelta", ENERGY_MAX_CHANGE); } else if (MAGNITUDE_TEMPERATURE == type) { new_magnitude.min_change = getSetting("tmpMinDelta", TEMPERATURE_MIN_CHANGE); } else if (MAGNITUDE_HUMIDITY == type) { new_magnitude.min_change = getSetting("humMinDelta", HUMIDITY_MIN_CHANGE); } if (MAGNITUDE_ENERGY == type) { new_magnitude.filter = new LastFilter(); } else if (MAGNITUDE_DIGITAL == type) { new_magnitude.filter = new MaxFilter(); } else if (MAGNITUDE_COUNT == type || MAGNITUDE_GEIGER_CPM == type || MAGNITUDE_GEIGER_SIEVERT == type) { // For geiger counting moving average filter is the most appropriate if needed at all. new_magnitude.filter = new MovingAverageFilter(); } else { new_magnitude.filter = new MedianFilter(); } new_magnitude.filter->resize(_sensor_report_every); _magnitudes.push_back(new_magnitude); DEBUG_MSG_P(PSTR("[SENSOR] -> %s:%d\n"), magnitudeTopic(type).c_str(), _counts[type]); _counts[type] = _counts[type] + 1; } // Hook callback _sensors[i]->onEvent([i](unsigned char type, double value) { _sensorCallback(i, type, value); }); // Custom initializations #if MICS2710_SUPPORT if (_sensors[i]->getID() == SENSOR_MICS2710_ID) { MICS2710Sensor * sensor = (MICS2710Sensor *) _sensors[i]; sensor->setR0(getSetting("snsR0", MICS2710_R0)); } #endif // MICS2710_SUPPORT #if MICS5525_SUPPORT if (_sensors[i]->getID() == SENSOR_MICS5525_ID) { MICS5525Sensor * sensor = (MICS5525Sensor *) _sensors[i]; sensor->setR0(getSetting("snsR0", MICS5525_R0)); } #endif // MICS5525_SUPPORT #if EMON_ANALOG_SUPPORT if (_sensors[i]->getID() == SENSOR_EMON_ANALOG_ID) { EmonAnalogSensor * sensor = (EmonAnalogSensor *) _sensors[i]; sensor->setCurrentRatio(0, getSetting("pwrRatioC", EMON_CURRENT_RATIO)); sensor->setVoltage(getSetting("pwrVoltage", EMON_MAINS_VOLTAGE)); double value = _sensorEnergyTotal(); if (value > 0) sensor->resetEnergy(0, value); } #endif // EMON_ANALOG_SUPPORT #if HLW8012_SUPPORT if (_sensors[i]->getID() == SENSOR_HLW8012_ID) { HLW8012Sensor * sensor = (HLW8012Sensor *) _sensors[i]; double value; value = getSetting("pwrRatioC", HLW8012_CURRENT_RATIO); if (value > 0) sensor->setCurrentRatio(value); value = getSetting("pwrRatioV", HLW8012_VOLTAGE_RATIO); if (value > 0) sensor->setVoltageRatio(value); value = getSetting("pwrRatioP", HLW8012_POWER_RATIO); if (value > 0) sensor->setPowerRatio(value); value = _sensorEnergyTotal(); if (value > 0) sensor->resetEnergy(value); } #endif // HLW8012_SUPPORT #if ADE7953_SUPPORT if (_sensors[i]->getID() == SENSOR_ADE7953_ID) { ADE7953Sensor * sensor = (ADE7953Sensor *) _sensors[i]; unsigned int dev_count = sensor->getTotalDevices(); for(unsigned char dev = 0; dev < dev_count; dev++) { double value = _sensorEnergyTotal(dev); if (value > 0) sensor->resetEnergy(dev, value); } } #endif // ADE7953_SUPPORT #if CSE7766_SUPPORT if (_sensors[i]->getID() == SENSOR_CSE7766_ID) { CSE7766Sensor * sensor = (CSE7766Sensor *) _sensors[i]; double value; value = getSetting("pwrRatioC", 0.0); if (value > 0) sensor->setCurrentRatio(value); value = getSetting("pwrRatioV", 0.0); if (value > 0) sensor->setVoltageRatio(value); value = getSetting("pwrRatioP", 0.0); if (value > 0) sensor->setPowerRatio(value); value = _sensorEnergyTotal(); if (value > 0) sensor->resetEnergy(value); } #endif // CSE7766_SUPPORT #if PULSEMETER_SUPPORT if (_sensors[i]->getID() == SENSOR_PULSEMETER_ID) { PulseMeterSensor * sensor = (PulseMeterSensor *) _sensors[i]; sensor->setEnergyRatio(getSetting("pwrRatioE", sensor->getEnergyRatio())); } #endif // PULSEMETER_SUPPORT } } void _sensorConfigure() { // General sensor settings for reporting and saving _sensor_read_interval = 1000 * constrain(getSetting("snsRead", SENSOR_READ_INTERVAL), SENSOR_READ_MIN_INTERVAL, SENSOR_READ_MAX_INTERVAL); _sensor_report_every = constrain(getSetting("snsReport", SENSOR_REPORT_EVERY), SENSOR_REPORT_MIN_EVERY, SENSOR_REPORT_MAX_EVERY); _sensor_save_every = getSetting("snsSave", SENSOR_SAVE_EVERY); _sensor_realtime = getSetting("apiRealTime", 1 == API_REAL_TIME_VALUES); // Units are configured globally atm _sensor_power_units = getSetting("pwrUnits", SENSOR_POWER_UNITS); _sensor_energy_units = getSetting("eneUnits", SENSOR_ENERGY_UNITS); _sensor_temperature_units = getSetting("tmpUnits", SENSOR_TEMPERATURE_UNITS); // ...same with corrections _sensor_temperature_correction = getSetting("tmpCorrection", SENSOR_TEMPERATURE_CORRECTION); _sensor_humidity_correction = getSetting("humCorrection", SENSOR_HUMIDITY_CORRECTION); _sensor_lux_correction = getSetting("luxCorrection", SENSOR_LUX_CORRECTION); // energy reset should be timestamped _sensor_energy_reset_ts = getSetting("snsResetTS"); // Specific sensor settings for (unsigned char i=0; i<_sensors.size(); i++) { #if MICS2710_SUPPORT if (_sensors[i]->getID() == SENSOR_MICS2710_ID) { if (getSetting("snsResetCalibration", false)) { MICS2710Sensor * sensor = (MICS2710Sensor *) _sensors[i]; sensor->calibrate(); setSetting("snsR0", sensor->getR0()); } } #endif // MICS2710_SUPPORT #if MICS5525_SUPPORT if (_sensors[i]->getID() == SENSOR_MICS5525_ID) { if (getSetting("snsResetCalibration", false)) { MICS5525Sensor * sensor = (MICS5525Sensor *) _sensors[i]; sensor->calibrate(); setSetting("snsR0", sensor->getR0()); } } #endif // MICS5525_SUPPORT #if EMON_ANALOG_SUPPORT if (_sensors[i]->getID() == SENSOR_EMON_ANALOG_ID) { double value; EmonAnalogSensor * sensor = (EmonAnalogSensor *) _sensors[i]; if ((value = getSetting("pwrExpectedP", 0))) { sensor->expectedPower(0, value); setSetting("pwrRatioC", sensor->getCurrentRatio(0)); } if (getSetting("pwrResetCalibration", false)) { sensor->setCurrentRatio(0, EMON_CURRENT_RATIO); delSetting("pwrRatioC"); } if (getSetting("pwrResetE", false)) { sensor->resetEnergy(); delSetting({"eneTotal", 0}); _sensorResetTS(); } sensor->setVoltage(getSetting("pwrVoltage", EMON_MAINS_VOLTAGE)); } #endif // EMON_ANALOG_SUPPORT #if EMON_ADC121_SUPPORT if (_sensors[i]->getID() == SENSOR_EMON_ADC121_ID) { EmonADC121Sensor * sensor = (EmonADC121Sensor *) _sensors[i]; if (getSetting("pwrResetE", false)) { sensor->resetEnergy(); delSetting({"eneTotal", 0}); _sensorResetTS(); } } #endif #if EMON_ADS1X15_SUPPORT if (_sensors[i]->getID() == SENSOR_EMON_ADS1X15_ID) { EmonADS1X15Sensor * sensor = (EmonADS1X15Sensor *) _sensors[i]; if (getSetting("pwrResetE", false)) { sensor->resetEnergy(); delSetting({"eneTotal", 0}); _sensorResetTS(); } } #endif #if HLW8012_SUPPORT if (_sensors[i]->getID() == SENSOR_HLW8012_ID) { double value; HLW8012Sensor * sensor = (HLW8012Sensor *) _sensors[i]; if ((value = getSetting("pwrExpectedC", 0.0))) { sensor->expectedCurrent(value); setSetting("pwrRatioC", sensor->getCurrentRatio()); } if ((value = getSetting("pwrExpectedV", 0.0))) { sensor->expectedVoltage(value); setSetting("pwrRatioV", sensor->getVoltageRatio()); } if ((value = getSetting("pwrExpectedP", 0.0))) { sensor->expectedPower(value); setSetting("pwrRatioP", sensor->getPowerRatio()); } if (getSetting("pwrResetE", false)) { sensor->resetEnergy(); delSetting({"eneTotal", 0}); _sensorResetTS(); } if (getSetting("pwrResetCalibration", false)) { sensor->resetRatios(); delSetting("pwrRatioC"); delSetting("pwrRatioV"); delSetting("pwrRatioP"); } } #endif // HLW8012_SUPPORT #if CSE7766_SUPPORT if (_sensors[i]->getID() == SENSOR_CSE7766_ID) { double value; CSE7766Sensor * sensor = (CSE7766Sensor *) _sensors[i]; if ((value = getSetting("pwrExpectedC", 0.0))) { sensor->expectedCurrent(value); setSetting("pwrRatioC", sensor->getCurrentRatio()); } if ((value = getSetting("pwrExpectedV", 0.0))) { sensor->expectedVoltage(value); setSetting("pwrRatioV", sensor->getVoltageRatio()); } if ((value = getSetting("pwrExpectedP", 0.0))) { sensor->expectedPower(value); setSetting("pwrRatioP", sensor->getPowerRatio()); } if (getSetting("pwrResetE", false)) { sensor->resetEnergy(); delSetting({"eneTotal", 0}); _sensorResetTS(); } if (getSetting("pwrResetCalibration", false)) { sensor->resetRatios(); delSetting("pwrRatioC"); delSetting("pwrRatioV"); delSetting("pwrRatioP"); } } #endif // CSE7766_SUPPORT #if PULSEMETER_SUPPORT if (_sensors[i]->getID() == SENSOR_PULSEMETER_ID) { PulseMeterSensor * sensor = (PulseMeterSensor *) _sensors[i]; if (getSetting("pwrResetE", false)) { sensor->resetEnergy(); delSetting({"eneTotal", 0}); _sensorResetTS(); } sensor->setEnergyRatio(getSetting("pwrRatioE", sensor->getEnergyRatio())); } #endif // PULSEMETER_SUPPORT #if PZEM004T_SUPPORT if (_sensors[i]->getID() == SENSOR_PZEM004T_ID) { PZEM004TSensor * sensor = (PZEM004TSensor *) _sensors[i]; if (getSetting("pwrResetE", false)) { unsigned char dev_count = sensor->getAddressesCount(); for(unsigned char dev = 0; dev < dev_count; dev++) { sensor->resetEnergy(dev, 0); delSetting({"eneTotal", dev}); } _sensorResetTS(); } } #endif // PZEM004T_SUPPORT #if ADE7953_SUPPORT if (_sensors[i]->getID() == SENSOR_ADE7953_ID) { ADE7953Sensor * sensor = (ADE7953Sensor *) _sensors[i]; if (getSetting("pwrResetE", false)) { unsigned char dev_count = sensor->getTotalDevices(); for(unsigned char dev = 0; dev < dev_count; dev++) { sensor->resetEnergy(dev); delSetting({"eneTotal", dev}); } _sensorResetTS(); } } #endif // ADE7953_SUPPORT } // Update filter sizes and reset energy if needed { const bool reset_saved_energy = 0 == _sensor_save_every; for (unsigned char i=0; i<_magnitudes.size(); i++) { _magnitudes[i].filter->resize(_sensor_report_every); if ((_magnitudes[i].type == MAGNITUDE_ENERGY) && reset_saved_energy) { delSetting({"eneTotal", _magnitudes[i].global}); } } } // Remove calibration values // TODO: do not use settings for one-shot calibration delSetting("snsResetCalibration"); delSetting("pwrExpectedP"); delSetting("pwrExpectedC"); delSetting("pwrExpectedV"); delSetting("pwrResetCalibration"); delSetting("pwrResetE"); saveSettings(); } void _sensorReport(unsigned char index, double value) { sensor_magnitude_t magnitude = _magnitudes[index]; unsigned char decimals = magnitude.decimals; // XXX: ensure that the received 'value' will fit here // dtostrf 2nd arg only controls leading zeroes and the // 3rd is only for the part after the dot char buffer[64]; dtostrf(value, 1, decimals, buffer); #if BROKER_SUPPORT SensorReportBroker::Publish(magnitudeTopic(magnitude.type), magnitude.global, value, buffer); #endif #if MQTT_SUPPORT mqttSend(magnitudeTopicIndex(index).c_str(), buffer); #if SENSOR_PUBLISH_ADDRESSES char topic[32]; snprintf(topic, sizeof(topic), "%s/%s", SENSOR_ADDRESS_TOPIC, magnitudeTopic(magnitude.type).c_str()); if (SENSOR_USE_INDEX || (_counts[magnitude.type] > 1)) { mqttSend(topic, magnitude.global, magnitude.sensor->address(magnitude.local).c_str()); } else { mqttSend(topic, magnitude.sensor->address(magnitude.local).c_str()); } #endif // SENSOR_PUBLISH_ADDRESSES #endif // MQTT_SUPPORT #if THINGSPEAK_SUPPORT tspkEnqueueMeasurement(index, buffer); #endif #if DOMOTICZ_SUPPORT { char key[15]; snprintf_P(key, sizeof(key), PSTR("dczMagnitude%d"), index); if (magnitude.type == MAGNITUDE_HUMIDITY) { int status; if (value > 70) { status = HUMIDITY_WET; } else if (value > 45) { status = HUMIDITY_COMFORTABLE; } else if (value > 30) { status = HUMIDITY_NORMAL; } else { status = HUMIDITY_DRY; } char status_buf[5]; itoa(status, status_buf, 10); domoticzSend(key, buffer, status_buf); } else { domoticzSend(key, 0, buffer); } } #endif // DOMOTICZ_SUPPORT } // ----------------------------------------------------------------------------- // Public // ----------------------------------------------------------------------------- unsigned char sensorCount() { return _sensors.size(); } unsigned char magnitudeCount() { return _magnitudes.size(); } String magnitudeName(unsigned char index) { if (index < _magnitudes.size()) { sensor_magnitude_t magnitude = _magnitudes[index]; return magnitude.sensor->slot(magnitude.local); } return String(); } unsigned char magnitudeType(unsigned char index) { if (index < _magnitudes.size()) { return int(_magnitudes[index].type); } return MAGNITUDE_NONE; } double magnitudeValue(unsigned char index) { if (index < _magnitudes.size()) { return _sensor_realtime ? _magnitudes[index].last : _magnitudes[index].reported; } return DBL_MIN; } unsigned char magnitudeIndex(unsigned char index) { if (index < _magnitudes.size()) { return int(_magnitudes[index].global); } return 0; } String magnitudeTopic(unsigned char type) { char buffer[16] = {0}; if (type < MAGNITUDE_MAX) strncpy_P(buffer, magnitude_topics[type], sizeof(buffer)); return String(buffer); } String magnitudeTopicIndex(unsigned char index) { char topic[32] = {0}; if (index < _magnitudes.size()) { sensor_magnitude_t magnitude = _magnitudes[index]; if (SENSOR_USE_INDEX || (_counts[magnitude.type] > 1)) { snprintf(topic, sizeof(topic), "%s/%u", magnitudeTopic(magnitude.type).c_str(), magnitude.global); } else { snprintf(topic, sizeof(topic), "%s", magnitudeTopic(magnitude.type).c_str()); } } return String(topic); } String magnitudeUnits(unsigned char type) { char buffer[8] = {0}; if (type < MAGNITUDE_MAX) { if ((type == MAGNITUDE_TEMPERATURE) && (_sensor_temperature_units == TMP_FAHRENHEIT)) { strncpy_P(buffer, magnitude_fahrenheit, sizeof(buffer)); } else if ( (type == MAGNITUDE_ENERGY || type == MAGNITUDE_ENERGY_DELTA) && (_sensor_energy_units == ENERGY_KWH)) { strncpy_P(buffer, magnitude_kwh, sizeof(buffer)); } else if ( (type == MAGNITUDE_POWER_ACTIVE || type == MAGNITUDE_POWER_APPARENT || type == MAGNITUDE_POWER_REACTIVE) && (_sensor_power_units == POWER_KILOWATTS)) { strncpy_P(buffer, magnitude_kw, sizeof(buffer)); } else { strncpy_P(buffer, magnitude_units[type], sizeof(buffer)); } } return String(buffer); } // ----------------------------------------------------------------------------- void sensorSetup() { // Backwards compatibility moveSetting("eneTotal", "eneTotal0"); moveSetting("powerUnits", "pwrUnits"); moveSetting("energyUnits", "eneUnits"); // Update PZEM004T energy total across multiple devices moveSettings("pzEneTotal", "eneTotal"); // Load sensors _sensorLoad(); _sensorInit(); // Configure stored values _sensorConfigure(); // Websockets #if WEB_SUPPORT wsRegister() .onVisible(_sensorWebSocketOnVisible) .onConnected(_sensorWebSocketOnConnected) .onData(_sensorWebSocketSendData) .onKeyCheck(_sensorWebSocketOnKeyCheck); #endif // API #if API_SUPPORT _sensorAPISetup(); #endif // Terminal #if TERMINAL_SUPPORT _sensorInitCommands(); #endif // Main callbacks espurnaRegisterLoop(sensorLoop); espurnaRegisterReload(_sensorConfigure); } void sensorLoop() { // Check if we still have uninitialized sensors static unsigned long last_init = 0; if (!_sensors_ready) { if (millis() - last_init > SENSOR_INIT_INTERVAL) { last_init = millis(); _sensorInit(); } } if (_magnitudes.size() == 0) return; // Tick hook _sensorTick(); // Check if we should read new data static unsigned long last_update = 0; static unsigned long report_count = 0; if (millis() - last_update > _sensor_read_interval) { last_update = millis(); report_count = (report_count + 1) % _sensor_report_every; double value_raw; // holds the raw value as the sensor returns it double value_show; // holds the processed value applying units and decimals double value_filtered; // holds the processed value applying filters, and the units and decimals // Pre-read hook _sensorPre(); // Get the first relay state #if SENSOR_POWER_CHECK_STATUS bool relay_off = (relayCount() == 1) && (relayStatus(0) == 0); #endif // Get readings for (unsigned char i=0; i<_magnitudes.size(); i++) { sensor_magnitude_t magnitude = _magnitudes[i]; if (magnitude.sensor->status()) { // ------------------------------------------------------------- // Instant value // ------------------------------------------------------------- value_raw = magnitude.sensor->value(magnitude.local); // Completely remove spurious values if relay is OFF #if SENSOR_POWER_CHECK_STATUS if (relay_off) { if (magnitude.type == MAGNITUDE_POWER_ACTIVE || magnitude.type == MAGNITUDE_POWER_REACTIVE || magnitude.type == MAGNITUDE_POWER_APPARENT || magnitude.type == MAGNITUDE_CURRENT || magnitude.type == MAGNITUDE_ENERGY_DELTA ) { value_raw = 0; } } #endif _magnitudes[i].last = value_raw; // ------------------------------------------------------------- // Processing (filters) // ------------------------------------------------------------- magnitude.filter->add(value_raw); // Special case for MovingAverageFilter if (MAGNITUDE_COUNT == magnitude.type || MAGNITUDE_GEIGER_CPM ==magnitude. type || MAGNITUDE_GEIGER_SIEVERT == magnitude.type) { value_raw = magnitude.filter->result(); } // ------------------------------------------------------------- // Procesing (units and decimals) // ------------------------------------------------------------- value_show = _magnitudeProcess(magnitude.type, magnitude.decimals, value_raw); #if BROKER_SUPPORT { char buffer[64]; dtostrf(value_show, 1-sizeof(buffer), magnitude.decimals, buffer); SensorReadBroker::Publish(magnitudeTopic(magnitude.type), magnitude.global, value_show, buffer); } #endif // ------------------------------------------------------------- // Debug // ------------------------------------------------------------- #if SENSOR_DEBUG { char buffer[64]; dtostrf(value_show, 1, magnitude.decimals, buffer); DEBUG_MSG_P(PSTR("[SENSOR] %s - %s: %s%s\n"), magnitude.sensor->slot(magnitude.local).c_str(), magnitudeTopic(magnitude.type).c_str(), buffer, magnitudeUnits(magnitude.type).c_str() ); } #endif // SENSOR_DEBUG // ------------------------------------------------------------- // Report // (we do it every _sensor_report_every readings) // ------------------------------------------------------------- bool report = (0 == report_count); if ((MAGNITUDE_ENERGY == magnitude.type) && (magnitude.max_change > 0)) { // for MAGNITUDE_ENERGY, filtered value is last value report = (fabs(value_show - magnitude.reported) >= magnitude.max_change); } // if ((MAGNITUDE_ENERGY == magnitude.type) && (magnitude.max_change > 0)) if (report) { value_filtered = magnitude.filter->result(); value_filtered = _magnitudeProcess(magnitude.type, magnitude.decimals, value_filtered); magnitude.filter->reset(); // Check if there is a minimum change threshold to report if (fabs(value_filtered - magnitude.reported) >= magnitude.min_change) { _magnitudes[i].reported = value_filtered; _sensorReport(i, value_filtered); } // if (fabs(value_filtered - magnitude.reported) >= magnitude.min_change) // Persist total energy value if (MAGNITUDE_ENERGY == magnitude.type) { _sensorEnergyTotal(magnitude.global, value_raw); } } // if (report_count == 0) } // if (magnitude.sensor->status()) } // for (unsigned char i=0; i<_magnitudes.size(); i++) // Post-read hook _sensorPost(); #if WEB_SUPPORT wsPost(_sensorWebSocketSendData); #endif #if THINGSPEAK_SUPPORT if (report_count == 0) tspkFlush(); #endif } } #endif // SENSOR_SUPPORT