/* RELAY MODULE Copyright (C) 2016-2017 by Xose PĂ©rez */ #include #include #include #include #include typedef struct { unsigned char pin; unsigned char type; unsigned char reset_pin; unsigned char led; unsigned long delay_on; unsigned long delay_off; unsigned int floodWindowStart; unsigned char floodWindowChanges; bool scheduled; unsigned int scheduledStatusTime; bool scheduledStatus; bool scheduledReport; Ticker pulseTicker; } relay_t; std::vector _relays; bool recursive = false; #if RELAY_PROVIDER == RELAY_PROVIDER_DUAL unsigned char _dual_status = 0; #endif // ----------------------------------------------------------------------------- // RELAY PROVIDERS // ----------------------------------------------------------------------------- void relayProviderStatus(unsigned char id, bool status) { if (id >= _relays.size()) return; #if RELAY_PROVIDER == RELAY_PROVIDER_RFBRIDGE rfbStatus(id, status); #endif #if RELAY_PROVIDER == RELAY_PROVIDER_DUAL _dual_status ^= (1 << id); Serial.flush(); Serial.write(0xA0); Serial.write(0x04); Serial.write(_dual_status); Serial.write(0xA1); Serial.flush(); #endif #if RELAY_PROVIDER == RELAY_PROVIDER_LIGHT lightState(status); lightUpdate(true, true); #endif #if RELAY_PROVIDER == RELAY_PROVIDER_RELAY if (_relays[id].type == RELAY_TYPE_NORMAL) { digitalWrite(_relays[id].pin, status); } else if (_relays[id].type == RELAY_TYPE_INVERSE) { digitalWrite(_relays[id].pin, !status); } else if (_relays[id].type == RELAY_TYPE_LATCHED) { if (status) { digitalWrite(_relays[id].pin, HIGH); delay(RELAY_LATCHING_PULSE); digitalWrite(_relays[id].pin, LOW); } else { digitalWrite(_relays[id].reset_pin, HIGH); delay(RELAY_LATCHING_PULSE); digitalWrite(_relays[id].reset_pin, LOW); } } #endif } bool relayProviderStatus(unsigned char id) { if (id >= _relays.size()) return false; #if RELAY_PROVIDER == RELAY_PROVIDER_RFBRIDGE return _relays[id].scheduledStatus; #endif #if RELAY_PROVIDER == RELAY_PROVIDER_DUAL return ((_dual_status & (1 << id)) > 0); #endif #if RELAY_PROVIDER == RELAY_PROVIDER_LIGHT return lightState(); #endif #if RELAY_PROVIDER == RELAY_PROVIDER_RELAY if (_relays[id].type == RELAY_TYPE_NORMAL) { return (digitalRead(_relays[id].pin) == HIGH); } else if (_relays[id].type == RELAY_TYPE_INVERSE) { return (digitalRead(_relays[id].pin) == LOW); } else if (_relays[id].type == RELAY_TYPE_LATCHED) { return _relays[id].scheduledStatus; } #endif } // ----------------------------------------------------------------------------- // RELAY // ----------------------------------------------------------------------------- void relayPulse(unsigned char id) { byte relayPulseMode = getSetting("relayPulseMode", RELAY_PULSE_MODE).toInt(); if (relayPulseMode == RELAY_PULSE_NONE) return; long relayPulseTime = 1000.0 * getSetting("relayPulseTime", RELAY_PULSE_TIME).toFloat(); if (relayPulseTime == 0) return; bool status = relayStatus(id); bool pulseStatus = (relayPulseMode == RELAY_PULSE_ON); if (pulseStatus == status) { _relays[id].pulseTicker.detach(); return; } _relays[id].pulseTicker.once_ms(relayPulseTime, relayToggle, id); } unsigned int relayPulseMode() { unsigned int value = getSetting("relayPulseMode", RELAY_PULSE_MODE).toInt(); return value; } void relayPulseMode(unsigned int value, bool report) { setSetting("relayPulseMode", value); /* if (report) { char topic[strlen(MQTT_TOPIC_RELAY) + 10]; sprintf_P(topic, PSTR("%s/pulse"), MQTT_TOPIC_RELAY); char value[2]; sprintf_P(value, PSTR("%d"), value); mqttSend(topic, value); } */ char message[20]; sprintf_P(message, PSTR("{\"relayPulseMode\": %d}"), value); wsSend(message); } void relayPulseMode(unsigned int value) { relayPulseMode(value, true); } void relayPulseToggle() { unsigned int value = relayPulseMode(); value = (value == RELAY_PULSE_NONE) ? RELAY_PULSE_OFF : RELAY_PULSE_NONE; relayPulseMode(value); } bool relayStatus(unsigned char id, bool status, bool report) { if (id >= _relays.size()) return false; bool changed = false; #if TRACK_RELAY_STATUS if (relayStatus(id) == status) { if (_relays[id].scheduled) { DEBUG_MSG_P(PSTR("[RELAY] #%d scheduled change cancelled\n"), id); _relays[id].scheduled = false; _relays[id].scheduledStatus = status; _relays[id].scheduledReport = false; changed = true; } } else { #endif unsigned int currentTime = millis(); unsigned int floodWindowEnd = _relays[id].floodWindowStart + 1000 * RELAY_FLOOD_WINDOW; unsigned long delay = status ? _relays[id].delay_on : _relays[id].delay_off; _relays[id].floodWindowChanges++; _relays[id].scheduledStatusTime = currentTime + delay; // If currentTime is off-limits the floodWindow... if (currentTime < _relays[id].floodWindowStart || floodWindowEnd <= currentTime) { // We reset the floodWindow _relays[id].floodWindowStart = currentTime; _relays[id].floodWindowChanges = 1; // If currentTime is in the floodWindow and there have been too many requests... } else if (_relays[id].floodWindowChanges >= RELAY_FLOOD_CHANGES) { // We schedule the changes to the end of the floodWindow // unless it's already delayed beyond that point if (floodWindowEnd - delay > currentTime) { _relays[id].scheduledStatusTime = floodWindowEnd; } } _relays[id].scheduled = true; _relays[id].scheduledStatus = status; if (report) _relays[id].scheduledReport = true; DEBUG_MSG_P(PSTR("[RELAY] #%d scheduled %s in %u ms\n"), id, status ? "ON" : "OFF", (_relays[id].scheduledStatusTime - currentTime)); changed = true; #if TRACK_RELAY_STATUS } #endif return changed; } bool relayStatus(unsigned char id, bool status) { return relayStatus(id, status, true); } bool relayStatus(unsigned char id) { return relayProviderStatus(id); } void relaySync(unsigned char id) { if (_relays.size() > 1) { recursive = true; byte relaySync = getSetting("relaySync", RELAY_SYNC).toInt(); bool status = relayStatus(id); // If RELAY_SYNC_SAME all relays should have the same state if (relaySync == RELAY_SYNC_SAME) { for (unsigned short i=0; i<_relays.size(); i++) { if (i != id) relayStatus(i, status); } // If NONE_OR_ONE or ONE and setting ON we should set OFF all the others } else if (status) { if (relaySync != RELAY_SYNC_ANY) { for (unsigned short i=0; i<_relays.size(); i++) { if (i != id) relayStatus(i, false); } } // If ONLY_ONE and setting OFF we should set ON the other one } else { if (relaySync == RELAY_SYNC_ONE) { unsigned char i = (id + 1) % _relays.size(); relayStatus(i, true); } } recursive = false; } } void relaySave() { unsigned char bit = 1; unsigned char mask = 0; for (unsigned int i=0; i < _relays.size(); i++) { if (relayStatus(i)) mask += bit; bit += bit; } EEPROM.write(EEPROM_RELAY_STATUS, mask); DEBUG_MSG_P(PSTR("[RELAY] Saving mask: %d\n"), mask); EEPROM.commit(); } void relayRetrieve(bool invert) { recursive = true; unsigned char bit = 1; unsigned char mask = invert ? ~EEPROM.read(EEPROM_RELAY_STATUS) : EEPROM.read(EEPROM_RELAY_STATUS); DEBUG_MSG_P(PSTR("[RELAY] Retrieving mask: %d\n"), mask); for (unsigned int id=0; id < _relays.size(); id++) { _relays[id].scheduledStatus = ((mask & bit) == bit); _relays[id].scheduledReport = true; bit += bit; } if (invert) { EEPROM.write(EEPROM_RELAY_STATUS, mask); EEPROM.commit(); } recursive = false; } void relayToggle(unsigned char id) { if (id >= _relays.size()) return; relayStatus(id, !relayStatus(id)); } unsigned char relayCount() { return _relays.size(); } //------------------------------------------------------------------------------ // REST API //------------------------------------------------------------------------------ void relaySetupAPI() { // API entry points (protected with apikey) for (unsigned int relayID=0; relayID= _relays.size()) return; mqttSend(MQTT_TOPIC_RELAY, id, relayStatus(id) ? "1" : "0"); } void relayMQTT() { for (unsigned int i=0; i < _relays.size(); i++) { relayMQTT(i); } } void relayMQTTCallback(unsigned int type, const char * topic, const char * payload) { if (type == MQTT_CONNECT_EVENT) { #if not HEARTBEAT_REPORT_RELAY relayMQTT(); #endif char buffer[strlen(MQTT_TOPIC_RELAY) + 3]; sprintf_P(buffer, PSTR("%s/+"), MQTT_TOPIC_RELAY); mqttSubscribe(buffer); } if (type == MQTT_MESSAGE_EVENT) { // Match topic String t = mqttSubtopic((char *) topic); if (!t.startsWith(MQTT_TOPIC_RELAY)) return; // Get value unsigned int value = (char)payload[0] - '0'; // Pulse topic if (t.endsWith("pulse")) { relayPulseMode(value, mqttForward()); return; } // Get relay ID unsigned int relayID = t.substring(strlen(MQTT_TOPIC_RELAY)+1).toInt(); if (relayID >= relayCount()) { DEBUG_MSG_P(PSTR("[RELAY] Wrong relayID (%d)\n"), relayID); return; } // Action to perform if (value == 2) { relayToggle(relayID); } else { relayStatus(relayID, value > 0, mqttForward()); } } } void relaySetupMQTT() { mqttRegister(relayMQTTCallback); } //------------------------------------------------------------------------------ // InfluxDB //------------------------------------------------------------------------------ #if ENABLE_INFLUXDB void relayInfluxDB(unsigned char id) { if (id >= _relays.size()) return; char buffer[10]; sprintf_P(buffer, PSTR("%s,id=%d"), MQTT_TOPIC_RELAY, id); influxDBSend(buffer, relayStatus(id) ? "1" : "0"); } #endif //------------------------------------------------------------------------------ // Setup //------------------------------------------------------------------------------ void relaySetup() { // Dummy relays for AI Light, Magic Home LED Controller, H801, // Sonoff Dual and Sonoff RF Bridge #ifdef DUMMY_RELAY_COUNT for (unsigned char i=0; i < DUMMY_RELAY_COUNT; i++) { _relays.push_back((relay_t) {0, RELAY_TYPE_NORMAL}); _relays[i].scheduled = false; } #else #ifdef RELAY1_PIN _relays.push_back((relay_t) { RELAY1_PIN, RELAY1_TYPE, RELAY1_RESET_PIN, RELAY1_LED, RELAY1_DELAY_ON, RELAY1_DELAY_OFF }); #endif #ifdef RELAY2_PIN _relays.push_back((relay_t) { RELAY2_PIN, RELAY2_TYPE, RELAY2_RESET_PIN, RELAY2_LED, RELAY2_DELAY_ON, RELAY2_DELAY_OFF }); #endif #ifdef RELAY3_PIN _relays.push_back((relay_t) { RELAY3_PIN, RELAY3_TYPE, RELAY3_RESET_PIN, RELAY3_LED, RELAY3_DELAY_ON, RELAY3_DELAY_OFF }); #endif #ifdef RELAY4_PIN _relays.push_back((relay_t) { RELAY4_PIN, RELAY4_TYPE, RELAY4_RESET_PIN, RELAY4_LED, RELAY4_DELAY_ON, RELAY4_DELAY_OFF }); #endif #endif byte relayMode = getSetting("relayMode", RELAY_MODE).toInt(); for (unsigned int i=0; i < _relays.size(); i++) { pinMode(_relays[i].pin, OUTPUT); if (relayMode == RELAY_MODE_OFF) relayStatus(i, false); if (relayMode == RELAY_MODE_ON) relayStatus(i, true); } if (relayMode == RELAY_MODE_SAME) relayRetrieve(false); if (relayMode == RELAY_MODE_TOOGLE) relayRetrieve(true); relayLoop(); relaySetupAPI(); relaySetupMQTT(); DEBUG_MSG_P(PSTR("[RELAY] Number of relays: %d\n"), _relays.size()); } void relayLoop(void) { unsigned char id; for (id = 0; id < _relays.size(); id++) { unsigned int currentTime = millis(); bool status = _relays[id].scheduledStatus; if (_relays[id].scheduled && currentTime >= _relays[id].scheduledStatusTime) { DEBUG_MSG_P(PSTR("[RELAY] #%d set to %s\n"), id, status ? "ON" : "OFF"); // Call the provider to perform the action relayProviderStatus(id, status); // Change the binded LED if any if (_relays[id].led > 0) { ledStatus(_relays[id].led - 1, status); } // Send MQTT report if requested if (_relays[id].scheduledReport) { relayMQTT(id); } if (!recursive) { relayPulse(id); relaySync(id); relaySave(); relayWS(); } #if ENABLE_DOMOTICZ domoticzSendRelay(id); #endif #if ENABLE_INFLUXDB relayInfluxDB(id); #endif _relays[id].scheduled = false; _relays[id].scheduledReport = false; } } }