/* SENSOR MODULE Copyright (C) 2016-2018 by Xose Pérez Module key prefix: sns Magnitude-based key prefix: pwr ene cur vol tmp hum Sensor-based key previs: air am ana bh bmx cse dht dig ds ech emon evt gei guv hlw mhz ntc pms pzem sht son tmp3x v92 */ #if SENSOR_SUPPORT #include #include "filters/MaxFilter.h" #include "filters/MedianFilter.h" #include "filters/MovingAverageFilter.h" #include "sensors/BaseSensor.h" typedef struct { BaseSensor * sensor; // Sensor object BaseFilter * filter; // Filter object unsigned char local; // Local index in its provider unsigned char type; // Type of measurement unsigned char global; // Global index in its type double current; // Current (last) value, unfiltered double filtered; // Filtered (averaged) value double reported; // Last reported value double min_change; // Minimum value change to report } sensor_magnitude_t; std::vector _sensors; std::vector _magnitudes; bool _sensors_ready = false; unsigned char _counts[MAGNITUDE_MAX]; bool _sensor_realtime = API_REAL_TIME_VALUES; unsigned long _sensor_read_interval = 1000 * SENSOR_READ_INTERVAL; unsigned char _sensor_report_every = SENSOR_REPORT_EVERY; unsigned char _sensor_power_units = SENSOR_POWER_UNITS; unsigned char _sensor_energy_units = SENSOR_ENERGY_UNITS; unsigned char _sensor_temperature_units = SENSOR_TEMPERATURE_UNITS; double _sensor_temperature_correction = SENSOR_TEMPERATURE_CORRECTION; double _sensor_humidity_correction = SENSOR_HUMIDITY_CORRECTION; String _sensor_energy_reset_ts = String(); // ----------------------------------------------------------------------------- // Private // ----------------------------------------------------------------------------- unsigned char _magnitudeDecimals(unsigned char type) { // Hardcoded decimals (these should be linked to the unit, instead of the magnitude) if (type == MAGNITUDE_ENERGY || type == MAGNITUDE_ENERGY_DELTA) { if (_sensor_energy_units == ENERGY_KWH) return 3; } if (type == MAGNITUDE_POWER_ACTIVE || type == MAGNITUDE_POWER_APPARENT || type == MAGNITUDE_POWER_REACTIVE) { if (_sensor_power_units == POWER_KILOWATTS) return 3; } if (type < MAGNITUDE_MAX) return pgm_read_byte(magnitude_decimals + type); return 0; } double _magnitudeProcess(unsigned char type, double value) { // Hardcoded conversions (these should be linked to the unit, instead of the magnitude) if (type == MAGNITUDE_TEMPERATURE) { if (_sensor_temperature_units == TMP_FAHRENHEIT) value = value * 1.8 + 32; value = value + _sensor_temperature_correction; } if (type == MAGNITUDE_HUMIDITY) { value = constrain(value + _sensor_humidity_correction, 0, 100); } if (type == MAGNITUDE_ENERGY || type == MAGNITUDE_ENERGY_DELTA) { if (_sensor_energy_units == ENERGY_KWH) value = value / 3600000; } if (type == MAGNITUDE_POWER_ACTIVE || type == MAGNITUDE_POWER_APPARENT || type == MAGNITUDE_POWER_REACTIVE) { if (_sensor_power_units == POWER_KILOWATTS) value = value / 1000; } return roundTo(value, _magnitudeDecimals(type)); } // ----------------------------------------------------------------------------- #if WEB_SUPPORT void _sensorWebSocketSendData(JsonObject& root) { char buffer[10]; bool hasTemperature = false; bool hasHumidity = false; JsonArray& list = root.createNestedArray("magnitudes"); for (unsigned char i=0; i<_magnitudes.size(); i++) { sensor_magnitude_t magnitude = _magnitudes[i]; if (magnitude.type == MAGNITUDE_EVENT) continue; unsigned char decimals = _magnitudeDecimals(magnitude.type); dtostrf(magnitude.current, 1-sizeof(buffer), decimals, buffer); JsonObject& element = list.createNestedObject(); element["index"] = int(magnitude.global); element["type"] = int(magnitude.type); element["value"] = String(buffer); element["units"] = magnitudeUnits(magnitude.type); element["error"] = magnitude.sensor->error(); if (magnitude.type == MAGNITUDE_ENERGY) { if (_sensor_energy_reset_ts.length() == 0) _sensorReset(); element["description"] = magnitude.sensor->slot(magnitude.local) + _sensor_energy_reset_ts; } else { element["description"] = magnitude.sensor->slot(magnitude.local); } if (magnitude.type == MAGNITUDE_TEMPERATURE) hasTemperature = true; if (magnitude.type == MAGNITUDE_HUMIDITY) hasHumidity = true; } if (hasTemperature) root["tmpVisible"] = 1; if (hasHumidity) root["humVisible"] = 1; } void _sensorWebSocketStart(JsonObject& root) { for (unsigned char i=0; i<_sensors.size(); i++) { BaseSensor * sensor = _sensors[i]; #if EMON_ANALOG_SUPPORT if (sensor->getID() == SENSOR_EMON_ANALOG_ID) { root["emonVisible"] = 1; root["pwrVisible"] = 1; root["volNominal"] = ((EmonAnalogSensor *) sensor)->getVoltage(); } #endif #if HLW8012_SUPPORT if (sensor->getID() == SENSOR_HLW8012_ID) { root["hlwVisible"] = 1; root["pwrVisible"] = 1; } #endif #if CSE7766_SUPPORT if (sensor->getID() == SENSOR_CSE7766_ID) { root["cseVisible"] = 1; root["pwrVisible"] = 1; } #endif #if V9261F_SUPPORT if (sensor->getID() == SENSOR_V9261F_ID) { root["pwrVisible"] = 1; } #endif #if ECH1560_SUPPORT if (sensor->getID() == SENSOR_ECH1560_ID) { root["pwrVisible"] = 1; } #endif #if PZEM004T_SUPPORT if (sensor->getID() == SENSOR_PZEM004T_ID) { root["pzemVisible"] = 1; root["pwrVisible"] = 1; } #endif } if (_magnitudes.size() > 0) { root["snsVisible"] = 1; root["pwrUnits"] = _sensor_power_units; root["eneUnits"] = _sensor_energy_units; root["tmpUnits"] = _sensor_temperature_units; root["tmpOffset"] = _sensor_temperature_correction; root["humOffset"] = _sensor_humidity_correction; root["snsRead"] = _sensor_read_interval / 1000; root["snsReport"] = _sensor_report_every; } /* // Sensors manifest JsonArray& manifest = root.createNestedArray("manifest"); #if BMX280_SUPPORT BMX280Sensor::manifest(manifest); #endif // Sensors configuration JsonArray& sensors = root.createNestedArray("sensors"); for (unsigned char i; i<_sensors.size(); i++) { JsonObject& sensor = sensors.createNestedObject(); sensor["index"] = i; sensor["id"] = _sensors[i]->getID(); _sensors[i]->getConfig(sensor); } */ } #endif // WEB_SUPPORT #if API_SUPPORT void _sensorAPISetup() { for (unsigned char magnitude_id=0; magnitude_id<_magnitudes.size(); magnitude_id++) { sensor_magnitude_t magnitude = _magnitudes[magnitude_id]; String topic = magnitudeTopic(magnitude.type); if (SENSOR_USE_INDEX || (_counts[magnitude.type] > 1)) topic = topic + "/" + String(magnitude.global); apiRegister(topic.c_str(), [magnitude_id](char * buffer, size_t len) { sensor_magnitude_t magnitude = _magnitudes[magnitude_id]; unsigned char decimals = _magnitudeDecimals(magnitude.type); double value = _sensor_realtime ? magnitude.current : magnitude.filtered; dtostrf(value, 1-len, decimals, buffer); }); } } #endif // API_SUPPORT #if TERMINAL_SUPPORT void _sensorInitCommands() { settingsRegisterCommand(F("MAGNITUDES"), [](Embedis* e) { for (unsigned char i=0; i<_magnitudes.size(); i++) { sensor_magnitude_t magnitude = _magnitudes[i]; DEBUG_MSG_P(PSTR("[SENSOR] * %2d: %s @ %s (%s/%d)\n"), i, magnitudeTopic(magnitude.type).c_str(), magnitude.sensor->slot(magnitude.local).c_str(), magnitudeTopic(magnitude.type).c_str(), magnitude.global ); } DEBUG_MSG_P(PSTR("+OK\n")); }); } #endif void _sensorTick() { for (unsigned char i=0; i<_sensors.size(); i++) { _sensors[i]->tick(); } } void _sensorPre() { for (unsigned char i=0; i<_sensors.size(); i++) { _sensors[i]->pre(); if (!_sensors[i]->status()) { DEBUG_MSG_P(PSTR("[SENSOR] Error reading data from %s (error: %d)\n"), _sensors[i]->description().c_str(), _sensors[i]->error() ); } } } void _sensorPost() { for (unsigned char i=0; i<_sensors.size(); i++) { _sensors[i]->post(); } } void _sensorReset() { #if NTP_SUPPORT if (ntpSynced()) { _sensor_energy_reset_ts = String(" (since ") + ntpDateTime() + String(")"); } #endif } // ----------------------------------------------------------------------------- // Sensor initialization // ----------------------------------------------------------------------------- void _sensorLoad() { /* Only loaded (those with *_SUPPORT to 1) and enabled (*Enabled setting to 1) sensors are being initialized here. */ unsigned char index = 0; unsigned char gpio = GPIO_NONE; #if AM2320_SUPPORT if (getSetting("amEnabled", 0).toInt() == 1) { AM2320Sensor * sensor = new AM2320Sensor(); sensor->setAddress(getSetting("amAddress", AM2320_ADDRESS).toInt()); _sensors.push_back(sensor); } #endif #if ANALOG_SUPPORT if (getSetting("anaEnabled", 0).toInt() == 1) { AnalogSensor * sensor = new AnalogSensor(); sensor->setSamples(getSetting("anaSamples", ANALOG_SAMPLES).toInt()); sensor->setDelay(getSetting("anaDelay", ANALOG_DELAY).toInt()); _sensors.push_back(sensor); } #endif #if BH1750_SUPPORT if (getSetting("bhEnabled", 0).toInt() == 1) { BH1750Sensor * sensor = new BH1750Sensor(); sensor->setAddress(getSetting("bhAddress", BH1750_ADDRESS).toInt()); sensor->setMode(getSetting("bhMode", BH1750_MODE).toInt()); _sensors.push_back(sensor); } #endif #if BMX280_SUPPORT if (getSetting("bmx280Enabled", 0).toInt() == 1) { BMX280Sensor * sensor = new BMX280Sensor(); sensor->setAddress(getSetting("bmx280Address", BMX280_ADDRESS).toInt()); _sensors.push_back(sensor); } #endif #if CSE7766_SUPPORT if (getSetting("cseEnabled", 0).toInt() == 1) { if ((gpio = getSetting("cseGPIO", GPIO_NONE).toInt()) != GPIO_NONE) { CSE7766Sensor * sensor = new CSE7766Sensor(); sensor->setRX(gpio); double value; value = getSetting("curRatio", 0).toFloat(); if (value > 0) sensor->setCurrentRatio(value); value = getSetting("volRatio", 0).toFloat(); if (value > 0) sensor->setVoltageRatio(value); value = getSetting("pwrRatio", 0).toFloat(); if (value > 0) sensor->setPowerRatio(value); _sensors.push_back(sensor); } } #endif #if DALLAS_SUPPORT if (getSetting("dsEnabled", 0).toInt() == 1) { index = 0; while ((gpio = getSetting("dsGPIO", index, GPIO_NONE).toInt()) != GPIO_NONE) { DallasSensor * sensor = new DallasSensor(); sensor->setGPIO(gpio); _sensors.push_back(sensor); index++; } } #endif #if DHT_SUPPORT if (getSetting("dhtEnabled", 0).toInt() == 1) { index = 0; while ((gpio = getSetting("dhtGPIO", index, GPIO_NONE).toInt()) != GPIO_NONE) { DHTSensor * sensor = new DHTSensor(); sensor->setGPIO(gpio); sensor->setType(getSetting("dhtType", index, DHT_CHIP_DHT22).toInt()); _sensors.push_back(sensor); index++; } } #endif #if DIGITAL_SUPPORT if (getSetting("digEnabled", 0).toInt() == 1) { index = 0; while ((gpio = getSetting("digGPIO", index, GPIO_NONE).toInt()) != GPIO_NONE) { DigitalSensor * sensor = new DigitalSensor(); sensor->setGPIO(gpio); sensor->setMode(getSetting("digMode", index, DIGITAL_PIN_MODE).toInt()); sensor->setDefault(getSetting("digDefault", index, DIGITAL_DEFAULT_STATE).toInt()); _sensors.push_back(sensor); index++; } } #endif #if ECH1560_SUPPORT if (getSetting("echEnabled", 0).toInt() == 1) { ECH1560Sensor * sensor = new ECH1560Sensor(); sensor->setCLK(getSetting("echCLKGPIO", ECH1560_CLK_PIN).toInt()); sensor->setMISO(getSetting("echMISOGPIO", ECH1560_MISO_PIN).toInt()); sensor->setInverted(getSetting("echLogic", ECH1560_INVERTED).toInt()); _sensors.push_back(sensor); } #endif #if EMON_ADC121_SUPPORT || EMON_ADS1X15_SUPPORT || EMON_ANALOG_SUPPORT if (getSetting("emonEnabled", 0).toInt() == 1) { #if EMON_ADC121_SUPPORT if (getSetting("emonProvider", 0).toInt() == EMON_PROVIDER_ADC121) { EmonADC121Sensor * sensor = new EmonADC121Sensor(); sensor->setAddress(getSetting("emonAddress", EMON_ADC121_I2C_ADDRESS).toInt()); sensor->setReference(getSetting("emonReference", EMON_REFERENCE_VOLTAGE).toInt()); sensor->setCurrentRatio(0, getSetting("curRatio", EMON_CURRENT_RATIO).toFloat()); sensor->setVoltage(getSetting("volNominal", EMON_MAINS_VOLTAGE).toInt()); _sensors.push_back(sensor); } #endif #if EMON_ADS1X15_SUPPORT if (getSetting("emonProvider", 0).toInt() == EMON_PROVIDER_ADS1X15) { EmonADS1X15Sensor * sensor = new EmonADS1X15Sensor(); sensor->setAddress(getSetting("emonAddress", EMON_ADS1X15_I2C_ADDRESS).toInt()); sensor->setType(getSetting("emonType", EMON_ADS1X15_TYPE).toInt()); sensor->setMask(getSetting("emonMask", EMON_ADS1X15_MASK).toInt()); sensor->setGain(getSetting("emonGain", EMON_ADS1X15_GAIN).toInt()); sensor->setReference(getSetting("emonReference", EMON_REFERENCE_VOLTAGE).toInt()); double curRatio = getSetting("curRatio", EMON_CURRENT_RATIO).toFloat(); sensor->setCurrentRatio(0, getSetting("curRatio", 0, curRatio).toFloat()); sensor->setCurrentRatio(1, getSetting("curRatio", 1, curRatio).toFloat()); sensor->setCurrentRatio(2, getSetting("curRatio", 2, curRatio).toFloat()); sensor->setCurrentRatio(3, getSetting("curRatio", 3, curRatio).toFloat()); sensor->setVoltage(getSetting("volNominal", EMON_MAINS_VOLTAGE).toInt()); _sensors.push_back(sensor); } #endif #if EMON_ANALOG_SUPPORT if (getSetting("emonProvider", 0).toInt() == EMON_PROVIDER_ANALOG) { EmonAnalogSensor * sensor = new EmonAnalogSensor(); sensor->setReference(getSetting("emonReference", EMON_REFERENCE_VOLTAGE).toInt()); sensor->setCurrentRatio(0, getSetting("curRatio", EMON_CURRENT_RATIO).toFloat()); sensor->setVoltage(getSetting("volNominal", EMON_MAINS_VOLTAGE).toInt()); _sensors.push_back(sensor); } #endif } #endif #if EVENTS_SUPPORT if (getSetting("evtEnabled", 0).toInt() == 1) { index = 0; while ((gpio = getSetting("evtGPIO", index, GPIO_NONE).toInt()) != GPIO_NONE) { EventSensor * sensor = new EventSensor(); sensor->setGPIO(gpio); sensor->setTrigger(getSetting("evtTrigger", index, EVENTS_TRIGGER).toInt()); sensor->setPinMode(getSetting("evtMode", index, EVENTS_PIN_MODE).toInt()); sensor->setDebounceTime(getSetting("evtDebounce", index, EVENTS_DEBOUNCE).toInt()); sensor->setInterruptMode(getSetting("evtIntMode", index, EVENTS_INTERRUPT_MODE).toInt()); _sensors.push_back(sensor); index++; } } #endif #if GEIGER_SUPPORT if (getSetting("geiEnabled", 0).toInt() == 1) { if ((gpio = getSetting("geiGPIO", GPIO_NONE).toInt()) != GPIO_NONE) { GeigerSensor * sensor = new GeigerSensor(); // Create instance of the Geiger module. sensor->setGPIO(gpio); // Interrupt pin of the attached geiger counter board. sensor->setMode(getSetting("geiMode", GEIGER_PIN_MODE).toInt()); // This pin is an input. sensor->setDebounceTime(getSetting("geiDebounce", GEIGER_DEBOUNCE).toInt()); // Debounce time 25ms, because https://github.com/Trickx/espurna/wiki/Geiger-counter sensor->setInterruptMode(getSetting("geiIntMode", GEIGER_INTERRUPT_MODE).toInt()); // Interrupt triggering: edge detection rising. sensor->setCPM2SievertFactor(getSetting("geiRatio", GEIGER_CPM2SIEVERT).toInt()); // Conversion factor from counts per minute to µSv/h _sensors.push_back(sensor); } } #endif #if GUVAS12SD_SUPPORT if (getSetting("guvEnabled", 0).toInt() == 1) { if ((gpio = getSetting("guvGPIO", GPIO_NONE).toInt()) != GPIO_NONE) { GUVAS12SDSensor * sensor = new GUVAS12SDSensor(); sensor->setGPIO(gpio); _sensors.push_back(sensor); } } #endif #if SONAR_SUPPORT if (getSetting("sonEnabled", 0).toInt() == 1) { SonarSensor * sensor = new SonarSensor(); sensor->setEcho(getSetting("sonEcho", SONAR_ECHO).toInt()); sensor->setTrigger(getSetting("sonTrigger", SONAR_TRIGGER).toInt()); sensor->setIterations(getSetting("sonIterations", SONAR_ITERATIONS).toInt()); sensor->setMaxDistance(getSetting("sonMaxDist", SONAR_MAX_DISTANCE0).toInt()); _sensors.push_back(sensor); } #endif #if HLW8012_SUPPORT if (getSetting("hlwEnabled", 0).toInt() == 1) { HLW8012Sensor * sensor = new HLW8012Sensor(); sensor->setSEL(getSetting("hlwSELGPIO", HLW8012_SEL_PIN).toInt()); sensor->setCF(getSetting("hlwCFGPIO", HLW8012_CF_PIN).toInt()); sensor->setCF1(getSetting("hlwCF1GPIO", HLW8012_CF1_PIN).toInt()); sensor->setCurrentSEL(getSetting("hlwCurSel", HLW8012_SEL_CURRENT).toInt()); sensor->setInterruptMode(getSetting("hlwIntMode", HLW8012_INTERRUPT_ON).toInt()); sensor->setCurrentResistor(getSetting("hlwCurRes", HLW8012_CURRENT_R ).toFloat()); sensor->setUpstreamResistor(getSetting("hlwVolResUp", HLW8012_VOLTAGE_R_UP).toFloat()); sensor->setDownstreamResistor(getSetting("hlwVolResDw", HLW8012_VOLTAGE_R_DOWN).toFloat()); double value; value = getSetting("curRatio", HLW8012_CURRENT_RATIO).toFloat(); if (value > 0) sensor->setCurrentRatio(value); value = getSetting("volRatio", HLW8012_VOLTAGE_RATIO).toFloat(); if (value > 0) sensor->setVoltageRatio(value); value = getSetting("pwrRatio", HLW8012_POWER_RATIO).toFloat(); if (value > 0) sensor->setPowerRatio(value); _sensors.push_back(sensor); } #endif #if MHZ19_SUPPORT if (getSetting("mhzEnabled", 0).toInt() == 1) { MHZ19Sensor * sensor = new MHZ19Sensor(); sensor->setRX(getSetting("mhzRX", MHZ19_RX_PIN).toInt()); sensor->setTX(getSetting("mhzTX", MHZ19_TX_PIN).toInt()); _sensors.push_back(sensor); } #endif #if NTC_SUPPORT if (getSetting("ntcEnabled", 0).toInt() == 1) { NTCSensor * sensor = new NTCSensor(); sensor->setSamples(getSetting("ntcSamples", NTC_SAMPLES).toInt()); sensor->setDelay(getSetting("ntcDelay", NTC_DELAY).toInt()); sensor->setUpstreamResistor(getSetting("ntcResUp", NTC_R_UP).toInt()); sensor->setDownstreamResistor(getSetting("ntcResDown", NTC_R_DOWN).toInt()); sensor->setBeta(getSetting("ntcBeta", NTC_BETA).toInt()); sensor->setR0(getSetting("ntcR0", NTC_R0).toInt()); sensor->setT0(getSetting("ntcT0", NTC_T0).toFloat()); _sensors.push_back(sensor); } #endif #if SENSEAIR_SUPPORT if (getSetting("airEnabled", 0).toInt() == 1) { SenseAirSensor * sensor = new SenseAirSensor(); sensor->setRX(getSetting("airRX", SENSEAIR_RX_PIN).toInt()); sensor->setTX(getSetting("airTX", SENSEAIR_TX_PIN).toInt()); _sensors.push_back(sensor); } #endif #if PMSX003_SUPPORT if (getSetting("pmsEnabled", 0).toInt() == 1) { PMSX003Sensor * sensor = new PMSX003Sensor(); if (getSetting("pmsSoft", PMS_USE_SOFT).toInt() == 1) { sensor->setRX(getSetting("pmsRX", PMS_RX_PIN).toInt()); sensor->setTX(getSetting("pmsTX", PMS_TX_PIN).toInt()); } else { sensor->setSerial(& PMS_HW_PORT); } sensor->setType(getSetting("pmsType", PMS_TYPE).toInt()); _sensors.push_back(sensor); } #endif #if PZEM004T_SUPPORT if (getSetting("pzemEnabled", 0).toInt() == 1) { PZEM004TSensor * sensor = new PZEM004TSensor(); if (getSetting("pzemSoft", PZEM004T_USE_SOFT).toInt() == 1) { sensor->setRX(getSetting("pzemRX", PZEM004T_RX_PIN).toInt()); sensor->setTX(getSetting("pzemTX", PZEM004T_TX_PIN).toInt()); } else { sensor->setSerial(& PZEM004T_HW_PORT); } _sensors.push_back(sensor); } #endif #if SHT3X_I2C_SUPPORT if (getSetting("shtEnabled", 0).toInt() == 1) { SHT3XI2CSensor * sensor = new SHT3XI2CSensor(); sensor->setAddress(getSetting("shtAddress", SHT3X_I2C_ADDRESS).toInt()); _sensors.push_back(sensor); } #endif #if SI7021_SUPPORT if (getSetting("si7021Enabled", 0).toInt() == 1) { SI7021Sensor * sensor = new SI7021Sensor(); sensor->setAddress(getSetting("si7021Address", SI7021_ADDRESS).toInt()); _sensors.push_back(sensor); } #endif #if TMP3X_SUPPORT if (getSetting("tmp3xEnabled", 0).toInt() == 1) { TMP3XSensor * sensor = new TMP3XSensor(); sensor->setType(getSetting("tmp3xType", TMP3X_TYPE).toInt()); _sensors.push_back(sensor); } #endif #if V9261F_SUPPORT if (getSetting("v92Enabled", 0).toInt() == 1) { if ((gpio = getSetting("v92GPIO", GPIO_NONE).toInt()) != GPIO_NONE) { V9261FSensor * sensor = new V9261FSensor(); sensor->setRX(gpio); sensor->setInverted(getSetting("v92Inverse", V9261F_PIN_INVERSE).toInt()); _sensors.push_back(sensor); } } #endif } void _sensorCallback(unsigned char i, unsigned char type, double value) { DEBUG_MSG_P(PSTR("[SENSOR] Sensor #%u callback, type %u, payload: '%s'\n"), i, type, String(value).c_str()); for (unsigned char k=0; k<_magnitudes.size(); k++) { if ((_sensors[i] == _magnitudes[k].sensor) && (type == _magnitudes[k].type)) { _sensorReport(k, value); return; } } } void _sensorInit() { _sensors_ready = true; for (unsigned char i=0; i<_sensors.size(); i++) { // Do not process an already initialized sensor if (_sensors[i]->ready()) continue; DEBUG_MSG_P(PSTR("[SENSOR] Initializing %s\n"), _sensors[i]->description().c_str()); // Force sensor to reload config _sensors[i]->begin(); if (!_sensors[i]->ready()) { if (_sensors[i]->error() != 0) DEBUG_MSG_P(PSTR("[SENSOR] -> ERROR %d\n"), _sensors[i]->error()); _sensors_ready = false; continue; } // Initialize magnitudes for (unsigned char k=0; k<_sensors[i]->count(); k++) { unsigned char type = _sensors[i]->type(k); sensor_magnitude_t new_magnitude; new_magnitude.sensor = _sensors[i]; new_magnitude.local = k; new_magnitude.type = type; new_magnitude.global = _counts[type]; new_magnitude.current = 0; new_magnitude.filtered = 0; new_magnitude.reported = 0; new_magnitude.min_change = 0; if (type == MAGNITUDE_DIGITAL) { new_magnitude.filter = new MaxFilter(); } else if (type == MAGNITUDE_COUNT || type == MAGNITUDE_GEIGER_CPM|| type == MAGNITUDE_GEIGER_SIEVERT) { // For geiger counting moving average filter is the most appropriate if needed at all. new_magnitude.filter = new MovingAverageFilter(); } else { new_magnitude.filter = new MedianFilter(); } new_magnitude.filter->resize(_sensor_report_every); _magnitudes.push_back(new_magnitude); DEBUG_MSG_P(PSTR("[SENSOR] -> %s:%d\n"), magnitudeTopic(type).c_str(), _counts[type]); _counts[type] = _counts[type] + 1; } // Hook callback _sensors[i]->onEvent([i](unsigned char type, double value) { _sensorCallback(i, type, value); }); } } void _sensorConfigure() { // General sensor settings _sensor_read_interval = 1000 * constrain(getSetting("snsRead", SENSOR_READ_INTERVAL).toInt(), SENSOR_READ_MIN_INTERVAL, SENSOR_READ_MAX_INTERVAL); _sensor_report_every = constrain(getSetting("snsReport", SENSOR_REPORT_EVERY).toInt(), SENSOR_REPORT_MIN_EVERY, SENSOR_REPORT_MAX_EVERY); _sensor_realtime = apiRealTime(); _sensor_power_units = getSetting("pwrUnits", SENSOR_POWER_UNITS).toInt(); _sensor_energy_units = getSetting("eneUnits", SENSOR_ENERGY_UNITS).toInt(); _sensor_temperature_units = getSetting("tmpUnits", SENSOR_TEMPERATURE_UNITS).toInt(); _sensor_temperature_correction = getSetting("tmpOffset", SENSOR_TEMPERATURE_CORRECTION).toFloat(); _sensor_humidity_correction = getSetting("humOffset", SENSOR_HUMIDITY_CORRECTION).toFloat(); // Specific sensor settings for (unsigned char i=0; i<_sensors.size(); i++) { #if EMON_ANALOG_SUPPORT if (_sensors[i]->getID() == SENSOR_EMON_ANALOG_ID) { double value; EmonAnalogSensor * sensor = (EmonAnalogSensor *) _sensors[i]; if ((value = getSetting("pwrExpected", 0).toInt())) { sensor->expectedPower(0, value); setSetting("curRatio", sensor->getCurrentRatio(0)); } if (getSetting("snsResetCalibrarion", 0).toInt() == 1) { sensor->setCurrentRatio(0, EMON_CURRENT_RATIO); delSetting("curRatio"); } if (getSetting("eneReset", 0).toInt() == 1) { sensor->resetEnergy(); _sensorReset(); } sensor->setVoltage(getSetting("volNominal", EMON_MAINS_VOLTAGE).toInt()); } #endif // EMON_ANALOG_SUPPORT #if EMON_ADC121_SUPPORT if (_sensors[i]->getID() == SENSOR_EMON_ADC121_ID) { EmonADC121Sensor * sensor = (EmonADC121Sensor *) _sensors[i]; if (getSetting("eneReset", 0).toInt() == 1) { sensor->resetEnergy(); _sensorReset(); } } #endif #if EMON_ADS1X15_SUPPORT if (_sensors[i]->getID() == SENSOR_EMON_ADS1X15_ID) { EmonADS1X15Sensor * sensor = (EmonADS1X15Sensor *) _sensors[i]; if (getSetting("eneReset", 0).toInt() == 1) { sensor->resetEnergy(); _sensorReset(); } } #endif #if HLW8012_SUPPORT if (_sensors[i]->getID() == SENSOR_HLW8012_ID) { double value; HLW8012Sensor * sensor = (HLW8012Sensor *) _sensors[i]; if (value = getSetting("curExpected", 0).toFloat()) { sensor->expectedCurrent(value); setSetting("curRatio", sensor->getCurrentRatio()); } if (value = getSetting("volExpected", 0).toInt()) { sensor->expectedVoltage(value); setSetting("volRatio", sensor->getVoltageRatio()); } if (value = getSetting("pwrExpected", 0).toInt()) { sensor->expectedPower(value); setSetting("pwrRatio", sensor->getPowerRatio()); } if (getSetting("eneReset", 0).toInt() == 1) { sensor->resetEnergy(); _sensorReset(); } if (getSetting("snsResetCalibrarion", 0).toInt() == 1) { sensor->resetRatios(); delSetting("curRatio"); delSetting("volRatio"); delSetting("pwrRatio"); } } #endif // HLW8012_SUPPORT #if CSE7766_SUPPORT if (_sensors[i]->getID() == SENSOR_CSE7766_ID) { double value; CSE7766Sensor * sensor = (CSE7766Sensor *) _sensors[i]; if ((value = getSetting("curExpected", 0).toFloat())) { sensor->expectedCurrent(value); setSetting("curRatio", sensor->getCurrentRatio()); } if ((value = getSetting("volExpected", 0).toInt())) { sensor->expectedVoltage(value); setSetting("volRatio", sensor->getVoltageRatio()); } if ((value = getSetting("pwrExpected", 0).toInt())) { sensor->expectedPower(value); setSetting("pwrRatio", sensor->getPowerRatio()); } if (getSetting("eneReset", 0).toInt() == 1) { sensor->resetEnergy(); _sensorReset(); } if (getSetting("snsResetCalibrarion", 0).toInt() == 1) { sensor->resetRatios(); delSetting("curRatio"); delSetting("volRatio"); delSetting("pwrRatio"); } } #endif // CSE7766_SUPPORT } // Update filter sizes for (unsigned char i=0; i<_magnitudes.size(); i++) { _magnitudes[i].filter->resize(_sensor_report_every); } // Save settings delSetting("pwrExpected"); delSetting("curExpected"); delSetting("volExpected"); delSetting("snsResetCalibrarion"); delSetting("eneReset"); saveSettings(); } bool _sensorKeyCheck(const char * key) { if (strncmp(key, "sns", 3) == 0) return true; if (strncmp(key, "pwr", 3) == 0) return true; if (strncmp(key, "ene", 3) == 0) return true; if (strncmp(key, "cur", 3) == 0) return true; if (strncmp(key, "vol", 3) == 0) return true; if (strncmp(key, "tmp", 3) == 0) return true; if (strncmp(key, "hum", 3) == 0) return true; if (strncmp(key, "air", 3) == 0) return true; if (strncmp(key, "am", 2) == 0) return true; if (strncmp(key, "ana", 3) == 0) return true; if (strncmp(key, "bh", 2) == 0) return true; if (strncmp(key, "bmx", 3) == 0) return true; if (strncmp(key, "cse", 3) == 0) return true; if (strncmp(key, "dht", 3) == 0) return true; if (strncmp(key, "dig", 3) == 0) return true; if (strncmp(key, "ds" , 2) == 0) return true; if (strncmp(key, "ech", 3) == 0) return true; if (strncmp(key, "emon", 4) == 0) return true; if (strncmp(key, "evt", 3) == 0) return true; if (strncmp(key, "gei", 3) == 0) return true; if (strncmp(key, "guv", 3) == 0) return true; if (strncmp(key, "hlw", 3) == 0) return true; if (strncmp(key, "mhz", 3) == 0) return true; if (strncmp(key, "ntc", 3) == 0) return true; if (strncmp(key, "pms", 3) == 0) return true; if (strncmp(key, "pzem", 4) == 0) return true; if (strncmp(key, "sht", 3) == 0) return true; if (strncmp(key, "son", 3) == 0) return true; if (strncmp(key, "tmp3x", 4) == 0) return true; if (strncmp(key, "v92", 3) == 0) return true; return false; } void _sensorBackwards() { moveSetting("powerUnits", "pwrUnits"); // 1.12.5 - 2018-04-03 moveSetting("tmpCorrection", "tmpOffset"); // 1.14.0 - 2018-06-26 moveSetting("humCorrection", "humOffset"); // 1.14.0 - 2018-06-26 moveSetting("energyUnits", "eneUnits"); // 1.14.0 - 2018-06-26 moveSetting("pwrRatioC", "curRatio"); // 1.14.0 - 2018-06-26 moveSetting("pwrRatioP", "pwrRatio"); // 1.14.0 - 2018-06-26 moveSetting("pwrRatioV", "volRatio"); // 1.14.0 - 2018-06-26 moveSetting("pwrVoltage", "volNominal"); // 1.14.0 - 2018-06-26 moveSetting("pwrExpectedP", "pwrExpected"); // 1.14.0 - 2018-06-26 moveSetting("pwrExpectedC", "curExpected"); // 1.14.0 - 2018-06-26 moveSetting("pwrExpectedV", "volExpected"); // 1.14.0 - 2018-06-26 moveSetting("pwrResetCalibration", "snsResetCalibration"); // 1.14.0 - 2018-06-26 moveSetting("pwrResetE", "eneReset"); // 1.14.0 - 2018-06-26 } void _sensorReport(unsigned char index, double value) { sensor_magnitude_t magnitude = _magnitudes[index]; unsigned char decimals = _magnitudeDecimals(magnitude.type); char buffer[10]; dtostrf(value, 1-sizeof(buffer), decimals, buffer); #if BROKER_SUPPORT brokerPublish(magnitudeTopic(magnitude.type).c_str(), magnitude.local, buffer); #endif #if MQTT_SUPPORT mqttSend(magnitudeTopicIndex(index).c_str(), buffer); #if SENSOR_PUBLISH_ADDRESSES char topic[32]; snprintf(topic, sizeof(topic), "%s/%s", SENSOR_ADDRESS_TOPIC, magnitudeTopic(magnitude.type).c_str()); if (SENSOR_USE_INDEX || (_counts[magnitude.type] > 1)) { mqttSend(topic, magnitude.global, magnitude.sensor->address(magnitude.local).c_str()); } else { mqttSend(topic, magnitude.sensor->address(magnitude.local).c_str()); } #endif // SENSOR_PUBLISH_ADDRESSES #endif // MQTT_SUPPORT #if INFLUXDB_SUPPORT if (SENSOR_USE_INDEX || (_counts[magnitude.type] > 1)) { idbSend(magnitudeTopic(magnitude.type).c_str(), magnitude.global, buffer); } else { idbSend(magnitudeTopic(magnitude.type).c_str(), buffer); } #endif // INFLUXDB_SUPPORT #if THINGSPEAK_SUPPORT tspkEnqueueMeasurement(index, buffer); #endif #if DOMOTICZ_SUPPORT { char key[15]; snprintf_P(key, sizeof(key), PSTR("dczMagnitude%d"), index); if (magnitude.type == MAGNITUDE_HUMIDITY) { int status; if (value > 70) { status = HUMIDITY_WET; } else if (value > 45) { status = HUMIDITY_COMFORTABLE; } else if (value > 30) { status = HUMIDITY_NORMAL; } else { status = HUMIDITY_DRY; } char status_buf[5]; itoa(status, status_buf, 10); domoticzSend(key, buffer, status_buf); } else { domoticzSend(key, 0, buffer); } } #endif // DOMOTICZ_SUPPORT } // ----------------------------------------------------------------------------- // Public // ----------------------------------------------------------------------------- unsigned char sensorCount() { return _sensors.size(); } unsigned char magnitudeCount() { return _magnitudes.size(); } String magnitudeName(unsigned char index) { if (index < _magnitudes.size()) { sensor_magnitude_t magnitude = _magnitudes[index]; return magnitude.sensor->slot(magnitude.local); } return String(); } unsigned char magnitudeType(unsigned char index) { if (index < _magnitudes.size()) { return int(_magnitudes[index].type); } return MAGNITUDE_NONE; } unsigned char magnitudeIndex(unsigned char index) { if (index < _magnitudes.size()) { return int(_magnitudes[index].global); } return 0; } String magnitudeTopic(unsigned char type) { char buffer[16] = {0}; if (type < MAGNITUDE_MAX) strncpy_P(buffer, magnitude_topics[type], sizeof(buffer)); return String(buffer); } String magnitudeTopicIndex(unsigned char index) { char topic[32] = {0}; if (index < _magnitudes.size()) { sensor_magnitude_t magnitude = _magnitudes[index]; if (SENSOR_USE_INDEX || (_counts[magnitude.type] > 1)) { snprintf(topic, sizeof(topic), "%s/%u", magnitudeTopic(magnitude.type).c_str(), magnitude.global); } else { snprintf(topic, sizeof(topic), "%s", magnitudeTopic(magnitude.type).c_str()); } } return String(topic); } String magnitudeUnits(unsigned char type) { char buffer[8] = {0}; if (type < MAGNITUDE_MAX) { if ((type == MAGNITUDE_TEMPERATURE) && (_sensor_temperature_units == TMP_FAHRENHEIT)) { strncpy_P(buffer, magnitude_fahrenheit, sizeof(buffer)); } else if ( (type == MAGNITUDE_ENERGY || type == MAGNITUDE_ENERGY_DELTA) && (_sensor_energy_units == ENERGY_KWH)) { strncpy_P(buffer, magnitude_kwh, sizeof(buffer)); } else if ( (type == MAGNITUDE_POWER_ACTIVE || type == MAGNITUDE_POWER_APPARENT || type == MAGNITUDE_POWER_REACTIVE) && (_sensor_power_units == POWER_KILOWATTS)) { strncpy_P(buffer, magnitude_kw, sizeof(buffer)); } else { strncpy_P(buffer, magnitude_units[type], sizeof(buffer)); } } return String(buffer); } // ----------------------------------------------------------------------------- void sensorSetup() { // Backwards compatibility _sensorBackwards(); // Load sensors _sensorLoad(); _sensorInit(); // Configure stored values _sensorConfigure(); // Websockets #if WEB_SUPPORT wsOnSendRegister(_sensorWebSocketStart); wsOnSendRegister(_sensorWebSocketSendData); wsOnAfterParseRegister(_sensorConfigure); #endif // API #if API_SUPPORT _sensorAPISetup(); #endif // Terminal #if TERMINAL_SUPPORT _sensorInitCommands(); #endif settingsRegisterKeyCheck(_sensorKeyCheck); // Register loop espurnaRegisterLoop(sensorLoop); } void sensorLoop() { // Check if we still have uninitialized sensors static unsigned long last_init = 0; if (!_sensors_ready) { if (millis() - last_init > SENSOR_INIT_INTERVAL) { last_init = millis(); _sensorInit(); } } if (_magnitudes.size() == 0) return; // Tick hook _sensorTick(); // Check if we should read new data static unsigned long last_update = 0; static unsigned long report_count = 0; if (millis() - last_update > _sensor_read_interval) { last_update = millis(); report_count = (report_count + 1) % _sensor_report_every; double current; double filtered; // Pre-read hook _sensorPre(); // Get the first relay state #if SENSOR_POWER_CHECK_STATUS bool relay_off = (relayCount() > 0) && (relayStatus(0) == 0); #endif // Get readings for (unsigned char i=0; i<_magnitudes.size(); i++) { sensor_magnitude_t magnitude = _magnitudes[i]; if (magnitude.sensor->status()) { current = magnitude.sensor->value(magnitude.local); // Completely remove spurious values if relay is OFF #if SENSOR_POWER_CHECK_STATUS if (relay_off) { if (magnitude.type == MAGNITUDE_POWER_ACTIVE || magnitude.type == MAGNITUDE_POWER_REACTIVE || magnitude.type == MAGNITUDE_POWER_APPARENT || magnitude.type == MAGNITUDE_CURRENT || magnitude.type == MAGNITUDE_ENERGY_DELTA ) { current = 0; } } #endif magnitude.filter->add(current); // Special case if (magnitude.type == MAGNITUDE_COUNT) { current = magnitude.filter->result(); } current = _magnitudeProcess(magnitude.type, current); _magnitudes[i].current = current; // Debug #if SENSOR_DEBUG { char buffer[64]; dtostrf(current, 1-sizeof(buffer), _magnitudeDecimals(magnitude.type), buffer); DEBUG_MSG_P(PSTR("[SENSOR] %s - %s: %s%s\n"), magnitude.sensor->slot(magnitude.local).c_str(), magnitudeTopic(magnitude.type).c_str(), buffer, magnitudeUnits(magnitude.type).c_str() ); } #endif // SENSOR_DEBUG // Time to report (we do it every _sensor_report_every readings) if (report_count == 0) { filtered = magnitude.filter->result(); magnitude.filter->reset(); filtered = _magnitudeProcess(magnitude.type, filtered); _magnitudes[i].filtered = filtered; // Check if there is a minimum change threshold to report if (fabs(filtered - magnitude.reported) >= magnitude.min_change) { _magnitudes[i].reported = filtered; _sensorReport(i, filtered); } // if (fabs(filtered - magnitude.reported) >= magnitude.min_change) } // if (report_count == 0) } // if (magnitude.sensor->status()) } // for (unsigned char i=0; i<_magnitudes.size(); i++) // Post-read hook _sensorPost(); #if WEB_SUPPORT wsSend(_sensorWebSocketSendData); #endif #if THINGSPEAK_SUPPORT if (report_count == 0) tspkFlush(); #endif } } #endif // SENSOR_SUPPORT