/* SENSOR MODULE Copyright (C) 2016-2018 by Xose Pérez */ #if SENSOR_SUPPORT #include #include "filters/LastFilter.h" #include "filters/MaxFilter.h" #include "filters/MedianFilter.h" #include "filters/MovingAverageFilter.h" #include "sensors/BaseSensor.h" typedef struct { BaseSensor * sensor; // Sensor object BaseFilter * filter; // Filter object unsigned char local; // Local index in its provider unsigned char type; // Type of measurement unsigned char global; // Global index in its type double current; // Current (last) value, unfiltered double reported; // Last reported value double min_change; // Minimum value change to report double max_change; // Maximum value change to report } sensor_magnitude_t; std::vector _sensors; std::vector _magnitudes; bool _sensors_ready = false; unsigned char _counts[MAGNITUDE_MAX]; bool _sensor_realtime = API_REAL_TIME_VALUES; unsigned long _sensor_read_interval = 1000 * SENSOR_READ_INTERVAL; unsigned char _sensor_report_every = SENSOR_REPORT_EVERY; unsigned char _sensor_save_every = SENSOR_SAVE_EVERY; unsigned char _sensor_power_units = SENSOR_POWER_UNITS; unsigned char _sensor_energy_units = SENSOR_ENERGY_UNITS; unsigned char _sensor_temperature_units = SENSOR_TEMPERATURE_UNITS; double _sensor_temperature_correction = SENSOR_TEMPERATURE_CORRECTION; double _sensor_humidity_correction = SENSOR_HUMIDITY_CORRECTION; #if PZEM004T_SUPPORT PZEM004TSensor *pzem004t_sensor; #endif String _sensor_energy_reset_ts = String(); // ----------------------------------------------------------------------------- // Private // ----------------------------------------------------------------------------- unsigned char _magnitudeDecimals(unsigned char type) { // Hardcoded decimals (these should be linked to the unit, instead of the magnitude) if (type == MAGNITUDE_ANALOG) return ANALOG_DECIMALS; if (type == MAGNITUDE_ENERGY || type == MAGNITUDE_ENERGY_DELTA) { if (_sensor_energy_units == ENERGY_KWH) return 3; } if (type == MAGNITUDE_POWER_ACTIVE || type == MAGNITUDE_POWER_APPARENT || type == MAGNITUDE_POWER_REACTIVE) { if (_sensor_power_units == POWER_KILOWATTS) return 3; } if (type < MAGNITUDE_MAX) return pgm_read_byte(magnitude_decimals + type); return 0; } double _magnitudeProcess(unsigned char type, double value) { // Hardcoded conversions (these should be linked to the unit, instead of the magnitude) if (type == MAGNITUDE_TEMPERATURE) { if (_sensor_temperature_units == TMP_FAHRENHEIT) value = value * 1.8 + 32; value = value + _sensor_temperature_correction; } if (type == MAGNITUDE_HUMIDITY) { value = constrain(value + _sensor_humidity_correction, 0, 100); } if (type == MAGNITUDE_ENERGY || type == MAGNITUDE_ENERGY_DELTA) { if (_sensor_energy_units == ENERGY_KWH) value = value / 3600000; } if (type == MAGNITUDE_POWER_ACTIVE || type == MAGNITUDE_POWER_APPARENT || type == MAGNITUDE_POWER_REACTIVE) { if (_sensor_power_units == POWER_KILOWATTS) value = value / 1000; } return roundTo(value, _magnitudeDecimals(type)); } // ----------------------------------------------------------------------------- #if WEB_SUPPORT bool _sensorWebSocketOnReceive(const char * key, JsonVariant& value) { if (strncmp(key, "pwr", 3) == 0) return true; if (strncmp(key, "sns", 3) == 0) return true; if (strncmp(key, "tmp", 3) == 0) return true; if (strncmp(key, "hum", 3) == 0) return true; if (strncmp(key, "ene", 3) == 0) return true; return false; } void _sensorWebSocketSendData(JsonObject& root) { char buffer[10]; bool hasTemperature = false; bool hasHumidity = false; bool hasMICS = false; JsonArray& list = root.createNestedArray("magnitudes"); for (unsigned char i=0; i<_magnitudes.size(); i++) { sensor_magnitude_t magnitude = _magnitudes[i]; if (magnitude.type == MAGNITUDE_EVENT) continue; unsigned char decimals = _magnitudeDecimals(magnitude.type); dtostrf(magnitude.current, 1-sizeof(buffer), decimals, buffer); JsonObject& element = list.createNestedObject(); element["index"] = int(magnitude.global); element["type"] = int(magnitude.type); element["value"] = String(buffer); element["units"] = magnitudeUnits(magnitude.type); element["error"] = magnitude.sensor->error(); if (magnitude.type == MAGNITUDE_ENERGY) { if (_sensor_energy_reset_ts.length() == 0) _sensorResetTS(); element["description"] = magnitude.sensor->slot(magnitude.local) + String(" (since ") + _sensor_energy_reset_ts + String(")"); } else { element["description"] = magnitude.sensor->slot(magnitude.local); } if (magnitude.type == MAGNITUDE_TEMPERATURE) hasTemperature = true; if (magnitude.type == MAGNITUDE_HUMIDITY) hasHumidity = true; #if MICS2710_SUPPORT || MICS5525_SUPPORT if (magnitude.type == MAGNITUDE_CO || magnitude.type == MAGNITUDE_NO2) hasMICS = true; #endif } if (hasTemperature) root["temperatureVisible"] = 1; if (hasHumidity) root["humidityVisible"] = 1; if (hasMICS) root["micsVisible"] = 1; } void _sensorWebSocketStart(JsonObject& root) { for (unsigned char i=0; i<_sensors.size(); i++) { BaseSensor * sensor = _sensors[i]; #if EMON_ANALOG_SUPPORT if (sensor->getID() == SENSOR_EMON_ANALOG_ID) { root["emonVisible"] = 1; root["pwrVisible"] = 1; root["pwrVoltage"] = ((EmonAnalogSensor *) sensor)->getVoltage(); } #endif #if HLW8012_SUPPORT if (sensor->getID() == SENSOR_HLW8012_ID) { root["hlwVisible"] = 1; root["pwrVisible"] = 1; } #endif #if CSE7766_SUPPORT if (sensor->getID() == SENSOR_CSE7766_ID) { root["cseVisible"] = 1; root["pwrVisible"] = 1; } #endif #if V9261F_SUPPORT if (sensor->getID() == SENSOR_V9261F_ID) { root["pwrVisible"] = 1; } #endif #if ECH1560_SUPPORT if (sensor->getID() == SENSOR_ECH1560_ID) { root["pwrVisible"] = 1; } #endif #if PZEM004T_SUPPORT if (sensor->getID() == SENSOR_PZEM004T_ID) { root["pzemVisible"] = 1; root["pwrVisible"] = 1; } #endif #if PULSEMETER_SUPPORT if (sensor->getID() == SENSOR_PULSEMETER_ID) { root["pmVisible"] = 1; root["pwrRatioE"] = ((PulseMeterSensor *) sensor)->getEnergyRatio(); } #endif } if (_magnitudes.size() > 0) { root["snsVisible"] = 1; //root["apiRealTime"] = _sensor_realtime; root["pwrUnits"] = _sensor_power_units; root["eneUnits"] = _sensor_energy_units; root["tmpUnits"] = _sensor_temperature_units; root["tmpCorrection"] = _sensor_temperature_correction; root["humCorrection"] = _sensor_humidity_correction; root["snsRead"] = _sensor_read_interval / 1000; root["snsReport"] = _sensor_report_every; root["snsSave"] = _sensor_save_every; } /* // Sensors manifest JsonArray& manifest = root.createNestedArray("manifest"); #if BMX280_SUPPORT BMX280Sensor::manifest(manifest); #endif // Sensors configuration JsonArray& sensors = root.createNestedArray("sensors"); for (unsigned char i; i<_sensors.size(); i++) { JsonObject& sensor = sensors.createNestedObject(); sensor["index"] = i; sensor["id"] = _sensors[i]->getID(); _sensors[i]->getConfig(sensor); } */ } #endif // WEB_SUPPORT #if API_SUPPORT void _sensorAPISetup() { for (unsigned char magnitude_id=0; magnitude_id<_magnitudes.size(); magnitude_id++) { sensor_magnitude_t magnitude = _magnitudes[magnitude_id]; String topic = magnitudeTopic(magnitude.type); if (SENSOR_USE_INDEX || (_counts[magnitude.type] > 1)) topic = topic + "/" + String(magnitude.global); apiRegister(topic.c_str(), [magnitude_id](char * buffer, size_t len) { sensor_magnitude_t magnitude = _magnitudes[magnitude_id]; unsigned char decimals = _magnitudeDecimals(magnitude.type); double value = _sensor_realtime ? magnitude.current : magnitude.reported; dtostrf(value, 1-len, decimals, buffer); }); } } #endif // API_SUPPORT #if TERMINAL_SUPPORT void _sensorInitCommands() { terminalRegisterCommand(F("MAGNITUDES"), [](Embedis* e) { for (unsigned char i=0; i<_magnitudes.size(); i++) { sensor_magnitude_t magnitude = _magnitudes[i]; DEBUG_MSG_P(PSTR("[SENSOR] * %2d: %s @ %s (%s/%d)\n"), i, magnitudeTopic(magnitude.type).c_str(), magnitude.sensor->slot(magnitude.local).c_str(), magnitudeTopic(magnitude.type).c_str(), magnitude.global ); } DEBUG_MSG_P(PSTR("+OK\n")); }); #if PZEM004T_SUPPORT terminalRegisterCommand(F("PZ.ADDRESS"), [](Embedis* e) { if (e->argc == 1) { DEBUG_MSG_P(PSTR("[SENSOR] PZEM004T\n")); unsigned char dev_count = pzem004t_sensor->getAddressesCount(); for(unsigned char dev = 0; dev < dev_count; dev++) { DEBUG_MSG_P(PSTR("Device %d/%s\n"), dev, pzem004t_sensor->getAddress(dev).c_str()); } DEBUG_MSG_P(PSTR("+OK\n")); } else if(e->argc == 2) { IPAddress addr; if (addr.fromString(String(e->argv[1]))) { if(pzem004t_sensor->setDeviceAddress(&addr)) { DEBUG_MSG_P(PSTR("+OK\n")); } } else { DEBUG_MSG_P(PSTR("-ERROR: Invalid address argument\n")); } } else { DEBUG_MSG_P(PSTR("-ERROR: Wrong arguments\n")); } }); terminalRegisterCommand(F("PZ.RESET"), [](Embedis* e) { if(e->argc > 2) { DEBUG_MSG_P(PSTR("-ERROR: Wrong arguments\n")); } else { unsigned char init = e->argc == 2 ? String(e->argv[1]).toInt() : 0; unsigned char limit = e->argc == 2 ? init +1 : pzem004t_sensor->getAddressesCount(); DEBUG_MSG_P(PSTR("[SENSOR] PZEM004T\n")); for(unsigned char dev = init; dev < limit; dev++) { float offset = pzem004t_sensor->resetEnergy(dev); setSetting("pzEneTotal", dev, offset); DEBUG_MSG_P(PSTR("Device %d/%s - Offset: %s\n"), dev, pzem004t_sensor->getAddress(dev).c_str(), String(offset).c_str()); } DEBUG_MSG_P(PSTR("+OK\n")); } }); terminalRegisterCommand(F("PZ.VALUE"), [](Embedis* e) { if(e->argc > 2) { DEBUG_MSG_P(PSTR("-ERROR: Wrong arguments\n")); } else { unsigned char init = e->argc == 2 ? String(e->argv[1]).toInt() : 0; unsigned char limit = e->argc == 2 ? init +1 : pzem004t_sensor->getAddressesCount(); DEBUG_MSG_P(PSTR("[SENSOR] PZEM004T\n")); for(unsigned char dev = init; dev < limit; dev++) { DEBUG_MSG_P(PSTR("Device %d/%s - Current: %s Voltage: %s Power: %s Energy: %s\n"), // dev, pzem004t_sensor->getAddress(dev).c_str(), String(pzem004t_sensor->value(dev * PZ_MAGNITUDE_CURRENT_INDEX)).c_str(), String(pzem004t_sensor->value(dev * PZ_MAGNITUDE_VOLTAGE_INDEX)).c_str(), String(pzem004t_sensor->value(dev * PZ_MAGNITUDE_POWER_ACTIVE_INDEX)).c_str(), String(pzem004t_sensor->value(dev * PZ_MAGNITUDE_ENERGY_INDEX)).c_str()); } DEBUG_MSG_P(PSTR("+OK\n")); } }); #endif } #endif void _sensorTick() { for (unsigned char i=0; i<_sensors.size(); i++) { _sensors[i]->tick(); } } void _sensorPre() { for (unsigned char i=0; i<_sensors.size(); i++) { _sensors[i]->pre(); if (!_sensors[i]->status()) { DEBUG_MSG_P(PSTR("[SENSOR] Error reading data from %s (error: %d)\n"), _sensors[i]->description().c_str(), _sensors[i]->error() ); } } } void _sensorPost() { for (unsigned char i=0; i<_sensors.size(); i++) { _sensors[i]->post(); } } void _sensorResetTS() { #if NTP_SUPPORT if (ntpSynced()) { if (_sensor_energy_reset_ts.length() == 0) { _sensor_energy_reset_ts = ntpDateTime(now() - millis() / 1000); } else { _sensor_energy_reset_ts = ntpDateTime(now()); } } else { _sensor_energy_reset_ts = String(); } setSetting("snsResetTS", _sensor_energy_reset_ts); #endif } // ----------------------------------------------------------------------------- // Sensor initialization // ----------------------------------------------------------------------------- void _sensorLoad() { /* This is temporal, in the future sensors will be initialized based on soft configuration (data stored in EEPROM config) so you will be able to define and configure new sensors on the fly At the time being, only enabled sensors (those with *_SUPPORT to 1) are being loaded and initialized here. If you want to add new sensors of the same type just duplicate the block and change the arguments for the set* methods. Check the DHT block below for an example */ #if AM2320_SUPPORT { AM2320Sensor * sensor = new AM2320Sensor(); sensor->setAddress(AM2320_ADDRESS); _sensors.push_back(sensor); } #endif #if ANALOG_SUPPORT { AnalogSensor * sensor = new AnalogSensor(); sensor->setSamples(ANALOG_SAMPLES); sensor->setDelay(ANALOG_DELAY); //CICM For analog scaling sensor->setFactor(ANALOG_FACTOR); sensor->setOffset(ANALOG_OFFSET); _sensors.push_back(sensor); } #endif #if BH1750_SUPPORT { BH1750Sensor * sensor = new BH1750Sensor(); sensor->setAddress(BH1750_ADDRESS); sensor->setMode(BH1750_MODE); _sensors.push_back(sensor); } #endif #if BMP180_SUPPORT { BMP180Sensor * sensor = new BMP180Sensor(); sensor->setAddress(BMP180_ADDRESS); _sensors.push_back(sensor); } #endif #if BMX280_SUPPORT { BMX280Sensor * sensor = new BMX280Sensor(); sensor->setAddress(BMX280_ADDRESS); _sensors.push_back(sensor); } #endif #if CSE7766_SUPPORT { CSE7766Sensor * sensor = new CSE7766Sensor(); sensor->setRX(CSE7766_PIN); _sensors.push_back(sensor); } #endif #if DALLAS_SUPPORT { DallasSensor * sensor = new DallasSensor(); sensor->setGPIO(DALLAS_PIN); _sensors.push_back(sensor); } #endif #if DHT_SUPPORT { DHTSensor * sensor = new DHTSensor(); sensor->setGPIO(DHT_PIN); sensor->setType(DHT_TYPE); _sensors.push_back(sensor); } #endif /* // Example on how to add a second DHT sensor // DHT2_PIN and DHT2_TYPE should be defined in sensors.h file #if DHT_SUPPORT { DHTSensor * sensor = new DHTSensor(); sensor->setGPIO(DHT2_PIN); sensor->setType(DHT2_TYPE); _sensors.push_back(sensor); } #endif */ #if DIGITAL_SUPPORT { DigitalSensor * sensor = new DigitalSensor(); sensor->setGPIO(DIGITAL_PIN); sensor->setMode(DIGITAL_PIN_MODE); sensor->setDefault(DIGITAL_DEFAULT_STATE); _sensors.push_back(sensor); } #endif #if ECH1560_SUPPORT { ECH1560Sensor * sensor = new ECH1560Sensor(); sensor->setCLK(ECH1560_CLK_PIN); sensor->setMISO(ECH1560_MISO_PIN); sensor->setInverted(ECH1560_INVERTED); _sensors.push_back(sensor); } #endif #if EMON_ADC121_SUPPORT { EmonADC121Sensor * sensor = new EmonADC121Sensor(); sensor->setAddress(EMON_ADC121_I2C_ADDRESS); sensor->setVoltage(EMON_MAINS_VOLTAGE); sensor->setReference(EMON_REFERENCE_VOLTAGE); sensor->setCurrentRatio(0, EMON_CURRENT_RATIO); _sensors.push_back(sensor); } #endif #if EMON_ADS1X15_SUPPORT { EmonADS1X15Sensor * sensor = new EmonADS1X15Sensor(); sensor->setAddress(EMON_ADS1X15_I2C_ADDRESS); sensor->setType(EMON_ADS1X15_TYPE); sensor->setMask(EMON_ADS1X15_MASK); sensor->setGain(EMON_ADS1X15_GAIN); sensor->setVoltage(EMON_MAINS_VOLTAGE); sensor->setCurrentRatio(0, EMON_CURRENT_RATIO); sensor->setCurrentRatio(1, EMON_CURRENT_RATIO); sensor->setCurrentRatio(2, EMON_CURRENT_RATIO); sensor->setCurrentRatio(3, EMON_CURRENT_RATIO); _sensors.push_back(sensor); } #endif #if EMON_ANALOG_SUPPORT { EmonAnalogSensor * sensor = new EmonAnalogSensor(); sensor->setVoltage(EMON_MAINS_VOLTAGE); sensor->setReference(EMON_REFERENCE_VOLTAGE); sensor->setCurrentRatio(0, EMON_CURRENT_RATIO); _sensors.push_back(sensor); } #endif #if EVENTS_SUPPORT { EventSensor * sensor = new EventSensor(); sensor->setGPIO(EVENTS_PIN); sensor->setTrigger(EVENTS_TRIGGER); sensor->setPinMode(EVENTS_PIN_MODE); sensor->setDebounceTime(EVENTS_DEBOUNCE); sensor->setInterruptMode(EVENTS_INTERRUPT_MODE); _sensors.push_back(sensor); } #endif #if GEIGER_SUPPORT { GeigerSensor * sensor = new GeigerSensor(); // Create instance of thr Geiger module. sensor->setGPIO(GEIGER_PIN); // Interrupt pin of the attached geiger counter board. sensor->setMode(GEIGER_PIN_MODE); // This pin is an input. sensor->setDebounceTime(GEIGER_DEBOUNCE); // Debounce time 25ms, because https://github.com/Trickx/espurna/wiki/Geiger-counter sensor->setInterruptMode(GEIGER_INTERRUPT_MODE); // Interrupt triggering: edge detection rising. sensor->setCPM2SievertFactor(GEIGER_CPM2SIEVERT); // Conversion factor from counts per minute to µSv/h _sensors.push_back(sensor); } #endif #if GUVAS12SD_SUPPORT { GUVAS12SDSensor * sensor = new GUVAS12SDSensor(); sensor->setGPIO(GUVAS12SD_PIN); _sensors.push_back(sensor); } #endif #if SONAR_SUPPORT { SonarSensor * sensor = new SonarSensor(); sensor->setEcho(SONAR_ECHO); sensor->setIterations(SONAR_ITERATIONS); sensor->setMaxDistance(SONAR_MAX_DISTANCE); sensor->setTrigger(SONAR_TRIGGER); _sensors.push_back(sensor); } #endif #if HLW8012_SUPPORT { HLW8012Sensor * sensor = new HLW8012Sensor(); sensor->setSEL(HLW8012_SEL_PIN); sensor->setCF(HLW8012_CF_PIN); sensor->setCF1(HLW8012_CF1_PIN); sensor->setSELCurrent(HLW8012_SEL_CURRENT); _sensors.push_back(sensor); } #endif #if MHZ19_SUPPORT { MHZ19Sensor * sensor = new MHZ19Sensor(); sensor->setRX(MHZ19_RX_PIN); sensor->setTX(MHZ19_TX_PIN); _sensors.push_back(sensor); } #endif #if MICS2710_SUPPORT { MICS2710Sensor * sensor = new MICS2710Sensor(); sensor->setAnalogGPIO(MICS2710_NOX_PIN); sensor->setPreHeatGPIO(MICS2710_PRE_PIN); sensor->setRL(MICS2710_RL); _sensors.push_back(sensor); } #endif #if MICS5525_SUPPORT { MICS5525Sensor * sensor = new MICS5525Sensor(); sensor->setAnalogGPIO(MICS5525_RED_PIN); sensor->setRL(MICS5525_RL); _sensors.push_back(sensor); } #endif #if NTC_SUPPORT { NTCSensor * sensor = new NTCSensor(); sensor->setSamples(NTC_SAMPLES); sensor->setDelay(NTC_DELAY); sensor->setUpstreamResistor(NTC_R_UP); sensor->setDownstreamResistor(NTC_R_DOWN); sensor->setBeta(NTC_BETA); sensor->setR0(NTC_R0); sensor->setT0(NTC_T0); _sensors.push_back(sensor); } #endif #if PMSX003_SUPPORT { PMSX003Sensor * sensor = new PMSX003Sensor(); #if PMS_USE_SOFT sensor->setRX(PMS_RX_PIN); sensor->setTX(PMS_TX_PIN); #else sensor->setSerial(& PMS_HW_PORT); #endif sensor->setType(PMS_TYPE); _sensors.push_back(sensor); } #endif #if PULSEMETER_SUPPORT { PulseMeterSensor * sensor = new PulseMeterSensor(); sensor->setGPIO(PULSEMETER_PIN); sensor->setEnergyRatio(PULSEMETER_ENERGY_RATIO); sensor->setDebounceTime(PULSEMETER_DEBOUNCE); _sensors.push_back(sensor); } #endif #if PZEM004T_SUPPORT { PZEM004TSensor * sensor = pzem004t_sensor = new PZEM004TSensor(); #if PZEM004T_USE_SOFT sensor->setRX(PZEM004T_RX_PIN); sensor->setTX(PZEM004T_TX_PIN); #else sensor->setSerial(& PZEM004T_HW_PORT); #endif sensor->setAddresses(PZEM004T_ADDRESSES); // Read saved energy offset unsigned char dev_count = sensor->getAddressesCount(); for(unsigned char dev = 0; dev < dev_count; dev++) { float value = getSetting("pzEneTotal", dev, 0).toFloat(); if (value > 0) sensor->resetEnergy(dev, value); } _sensors.push_back(sensor); } #endif #if SENSEAIR_SUPPORT { SenseAirSensor * sensor = new SenseAirSensor(); sensor->setRX(SENSEAIR_RX_PIN); sensor->setTX(SENSEAIR_TX_PIN); _sensors.push_back(sensor); } #endif #if SDS011_SUPPORT { SDS011Sensor * sensor = new SDS011Sensor(); sensor->setRX(SDS011_RX_PIN); sensor->setTX(SDS011_TX_PIN); _sensors.push_back(sensor); } #endif #if SHT3X_I2C_SUPPORT { SHT3XI2CSensor * sensor = new SHT3XI2CSensor(); sensor->setAddress(SHT3X_I2C_ADDRESS); _sensors.push_back(sensor); } #endif #if SI7021_SUPPORT { SI7021Sensor * sensor = new SI7021Sensor(); sensor->setAddress(SI7021_ADDRESS); _sensors.push_back(sensor); } #endif #if TMP3X_SUPPORT { TMP3XSensor * sensor = new TMP3XSensor(); sensor->setType(TMP3X_TYPE); _sensors.push_back(sensor); } #endif #if V9261F_SUPPORT { V9261FSensor * sensor = new V9261FSensor(); sensor->setRX(V9261F_PIN); sensor->setInverted(V9261F_PIN_INVERSE); _sensors.push_back(sensor); } #endif #if MAX6675_SUPPORT { MAX6675Sensor * sensor = new MAX6675Sensor(); sensor->setCS(MAX6675_CS_PIN); sensor->setSO(MAX6675_SO_PIN); sensor->setSCK(MAX6675_SCK_PIN); _sensors.push_back(sensor); } #endif #if VEML6075_SUPPORT { VEML6075Sensor * sensor = new VEML6075Sensor(); sensor->setIntegrationTime(VEML6075_INTEGRATION_TIME); sensor->setDynamicMode(VEML6075_DYNAMIC_MODE); _sensors.push_back(sensor); } #endif #if VL53L1X_SUPPORT { VL53L1XSensor * sensor = new VL53L1XSensor(); sensor->setInterMeasurementPeriod(VL53L1X_INTER_MEASUREMENT_PERIOD); sensor->setDistanceMode(VL53L1X_DISTANCE_MODE); sensor->setMeasurementTimingBudget(VL53L1X_MEASUREMENT_TIMING_BUDGET); _sensors.push_back(sensor); } #endif #if EZOPH_SUPPORT { EZOPHSensor * sensor = new EZOPHSensor(); sensor->setRX(EZOPH_RX_PIN); sensor->setTX(EZOPH_TX_PIN); _sensors.push_back(sensor); } #endif } void _sensorCallback(unsigned char i, unsigned char type, double value) { DEBUG_MSG_P(PSTR("[SENSOR] Sensor #%u callback, type %u, payload: '%s'\n"), i, type, String(value).c_str()); for (unsigned char k=0; k<_magnitudes.size(); k++) { if ((_sensors[i] == _magnitudes[k].sensor) && (type == _magnitudes[k].type)) { _sensorReport(k, value); return; } } } void _sensorInit() { _sensors_ready = true; _sensor_save_every = getSetting("snsSave", 0).toInt(); for (unsigned char i=0; i<_sensors.size(); i++) { // Do not process an already initialized sensor if (_sensors[i]->ready()) continue; DEBUG_MSG_P(PSTR("[SENSOR] Initializing %s\n"), _sensors[i]->description().c_str()); // Force sensor to reload config _sensors[i]->begin(); if (!_sensors[i]->ready()) { if (_sensors[i]->error() != 0) DEBUG_MSG_P(PSTR("[SENSOR] -> ERROR %d\n"), _sensors[i]->error()); _sensors_ready = false; continue; } // Initialize magnitudes for (unsigned char k=0; k<_sensors[i]->count(); k++) { unsigned char type = _sensors[i]->type(k); sensor_magnitude_t new_magnitude; new_magnitude.sensor = _sensors[i]; new_magnitude.local = k; new_magnitude.type = type; new_magnitude.global = _counts[type]; new_magnitude.current = 0; new_magnitude.reported = 0; new_magnitude.min_change = 0; new_magnitude.max_change = 0; // TODO: find a proper way to extend this to min/max of any magnitude if (MAGNITUDE_ENERGY == type) { new_magnitude.max_change = getSetting("eneMaxDelta", ENERGY_MAX_CHANGE).toFloat(); } else if (MAGNITUDE_TEMPERATURE == type) { new_magnitude.min_change = getSetting("tmpMinDelta", TEMPERATURE_MIN_CHANGE).toFloat(); } else if (MAGNITUDE_HUMIDITY == type) { new_magnitude.min_change = getSetting("humMinDelta", HUMIDITY_MIN_CHANGE).toFloat(); } if (MAGNITUDE_ENERGY == type) { new_magnitude.filter = new LastFilter(); } else if (MAGNITUDE_DIGITAL == type) { new_magnitude.filter = new MaxFilter(); } else if (MAGNITUDE_COUNT == type || MAGNITUDE_GEIGER_CPM == type || MAGNITUDE_GEIGER_SIEVERT == type) { // For geiger counting moving average filter is the most appropriate if needed at all. new_magnitude.filter = new MovingAverageFilter(); } else { new_magnitude.filter = new MedianFilter(); } new_magnitude.filter->resize(_sensor_report_every); _magnitudes.push_back(new_magnitude); DEBUG_MSG_P(PSTR("[SENSOR] -> %s:%d\n"), magnitudeTopic(type).c_str(), _counts[type]); _counts[type] = _counts[type] + 1; } // Hook callback _sensors[i]->onEvent([i](unsigned char type, double value) { _sensorCallback(i, type, value); }); // Custom initializations #if MICS2710_SUPPORT if (_sensors[i]->getID() == SENSOR_MICS2710_ID) { MICS2710Sensor * sensor = (MICS2710Sensor *) _sensors[i]; sensor->setR0(getSetting("snsR0", MICS2710_R0).toInt()); } #endif // MICS2710_SUPPORT #if MICS5525_SUPPORT if (_sensors[i]->getID() == SENSOR_MICS5525_ID) { MICS5525Sensor * sensor = (MICS5525Sensor *) _sensors[i]; sensor->setR0(getSetting("snsR0", MICS5525_R0).toInt()); } #endif // MICS5525_SUPPORT #if EMON_ANALOG_SUPPORT if (_sensors[i]->getID() == SENSOR_EMON_ANALOG_ID) { EmonAnalogSensor * sensor = (EmonAnalogSensor *) _sensors[i]; sensor->setCurrentRatio(0, getSetting("pwrRatioC", EMON_CURRENT_RATIO).toFloat()); sensor->setVoltage(getSetting("pwrVoltage", EMON_MAINS_VOLTAGE).toInt()); double value = (_sensor_save_every > 0) ? getSetting("eneTotal", 0).toInt() : 0; if (value > 0) sensor->resetEnergy(0, value); } #endif // EMON_ANALOG_SUPPORT #if HLW8012_SUPPORT if (_sensors[i]->getID() == SENSOR_HLW8012_ID) { HLW8012Sensor * sensor = (HLW8012Sensor *) _sensors[i]; double value; value = getSetting("pwrRatioC", HLW8012_CURRENT_RATIO).toFloat(); if (value > 0) sensor->setCurrentRatio(value); value = getSetting("pwrRatioV", HLW8012_VOLTAGE_RATIO).toFloat(); if (value > 0) sensor->setVoltageRatio(value); value = getSetting("pwrRatioP", HLW8012_POWER_RATIO).toFloat(); if (value > 0) sensor->setPowerRatio(value); value = (_sensor_save_every > 0) ? getSetting("eneTotal", 0).toInt() : 0; if (value > 0) sensor->resetEnergy(value); } #endif // HLW8012_SUPPORT #if CSE7766_SUPPORT if (_sensors[i]->getID() == SENSOR_CSE7766_ID) { CSE7766Sensor * sensor = (CSE7766Sensor *) _sensors[i]; double value; value = getSetting("pwrRatioC", 0).toFloat(); if (value > 0) sensor->setCurrentRatio(value); value = getSetting("pwrRatioV", 0).toFloat(); if (value > 0) sensor->setVoltageRatio(value); value = getSetting("pwrRatioP", 0).toFloat(); if (value > 0) sensor->setPowerRatio(value); value = (_sensor_save_every > 0) ? getSetting("eneTotal", 0).toInt() : 0; if (value > 0) sensor->resetEnergy(value); } #endif // CSE7766_SUPPORT #if PULSEMETER_SUPPORT if (_sensors[i]->getID() == SENSOR_PULSEMETER_ID) { PulseMeterSensor * sensor = (PulseMeterSensor *) _sensors[i]; sensor->setEnergyRatio(getSetting("pwrRatioE", PULSEMETER_ENERGY_RATIO).toInt()); } #endif // PULSEMETER_SUPPORT } } void _sensorConfigure() { // General sensor settings _sensor_read_interval = 1000 * constrain(getSetting("snsRead", SENSOR_READ_INTERVAL).toInt(), SENSOR_READ_MIN_INTERVAL, SENSOR_READ_MAX_INTERVAL); _sensor_report_every = constrain(getSetting("snsReport", SENSOR_REPORT_EVERY).toInt(), SENSOR_REPORT_MIN_EVERY, SENSOR_REPORT_MAX_EVERY); _sensor_save_every = getSetting("snsSave", SENSOR_SAVE_EVERY).toInt(); _sensor_realtime = getSetting("apiRealTime", API_REAL_TIME_VALUES).toInt() == 1; _sensor_power_units = getSetting("pwrUnits", SENSOR_POWER_UNITS).toInt(); _sensor_energy_units = getSetting("eneUnits", SENSOR_ENERGY_UNITS).toInt(); _sensor_temperature_units = getSetting("tmpUnits", SENSOR_TEMPERATURE_UNITS).toInt(); _sensor_temperature_correction = getSetting("tmpCorrection", SENSOR_TEMPERATURE_CORRECTION).toFloat(); _sensor_humidity_correction = getSetting("humCorrection", SENSOR_HUMIDITY_CORRECTION).toFloat(); _sensor_energy_reset_ts = getSetting("snsResetTS", ""); // Specific sensor settings for (unsigned char i=0; i<_sensors.size(); i++) { #if MICS2710_SUPPORT if (_sensors[i]->getID() == SENSOR_MICS2710_ID) { if (getSetting("snsResetCalibration", 0).toInt() == 1) { MICS2710Sensor * sensor = (MICS2710Sensor *) _sensors[i]; sensor->calibrate(); setSetting("snsR0", sensor->getR0()); } } #endif // MICS2710_SUPPORT #if MICS5525_SUPPORT if (_sensors[i]->getID() == SENSOR_MICS5525_ID) { if (getSetting("snsResetCalibration", 0).toInt() == 1) { MICS5525Sensor * sensor = (MICS5525Sensor *) _sensors[i]; sensor->calibrate(); setSetting("snsR0", sensor->getR0()); } } #endif // MICS5525_SUPPORT #if EMON_ANALOG_SUPPORT if (_sensors[i]->getID() == SENSOR_EMON_ANALOG_ID) { double value; EmonAnalogSensor * sensor = (EmonAnalogSensor *) _sensors[i]; if ((value = getSetting("pwrExpectedP", 0).toInt())) { sensor->expectedPower(0, value); setSetting("pwrRatioC", sensor->getCurrentRatio(0)); } if (getSetting("pwrResetCalibration", 0).toInt() == 1) { sensor->setCurrentRatio(0, EMON_CURRENT_RATIO); delSetting("pwrRatioC"); } if (getSetting("pwrResetE", 0).toInt() == 1) { sensor->resetEnergy(); delSetting("eneTotal"); _sensorResetTS(); } sensor->setVoltage(getSetting("pwrVoltage", EMON_MAINS_VOLTAGE).toInt()); } #endif // EMON_ANALOG_SUPPORT #if EMON_ADC121_SUPPORT if (_sensors[i]->getID() == SENSOR_EMON_ADC121_ID) { EmonADC121Sensor * sensor = (EmonADC121Sensor *) _sensors[i]; if (getSetting("pwrResetE", 0).toInt() == 1) { sensor->resetEnergy(); delSetting("eneTotal"); _sensorResetTS(); } } #endif #if EMON_ADS1X15_SUPPORT if (_sensors[i]->getID() == SENSOR_EMON_ADS1X15_ID) { EmonADS1X15Sensor * sensor = (EmonADS1X15Sensor *) _sensors[i]; if (getSetting("pwrResetE", 0).toInt() == 1) { sensor->resetEnergy(); delSetting("eneTotal"); _sensorResetTS(); } } #endif #if HLW8012_SUPPORT if (_sensors[i]->getID() == SENSOR_HLW8012_ID) { double value; HLW8012Sensor * sensor = (HLW8012Sensor *) _sensors[i]; if (value = getSetting("pwrExpectedC", 0).toFloat()) { sensor->expectedCurrent(value); setSetting("pwrRatioC", sensor->getCurrentRatio()); } if (value = getSetting("pwrExpectedV", 0).toInt()) { sensor->expectedVoltage(value); setSetting("pwrRatioV", sensor->getVoltageRatio()); } if (value = getSetting("pwrExpectedP", 0).toInt()) { sensor->expectedPower(value); setSetting("pwrRatioP", sensor->getPowerRatio()); } if (getSetting("pwrResetE", 0).toInt() == 1) { sensor->resetEnergy(); delSetting("eneTotal"); _sensorResetTS(); } if (getSetting("pwrResetCalibration", 0).toInt() == 1) { sensor->resetRatios(); delSetting("pwrRatioC"); delSetting("pwrRatioV"); delSetting("pwrRatioP"); } } #endif // HLW8012_SUPPORT #if CSE7766_SUPPORT if (_sensors[i]->getID() == SENSOR_CSE7766_ID) { double value; CSE7766Sensor * sensor = (CSE7766Sensor *) _sensors[i]; if ((value = getSetting("pwrExpectedC", 0).toFloat())) { sensor->expectedCurrent(value); setSetting("pwrRatioC", sensor->getCurrentRatio()); } if ((value = getSetting("pwrExpectedV", 0).toInt())) { sensor->expectedVoltage(value); setSetting("pwrRatioV", sensor->getVoltageRatio()); } if ((value = getSetting("pwrExpectedP", 0).toInt())) { sensor->expectedPower(value); setSetting("pwrRatioP", sensor->getPowerRatio()); } if (getSetting("pwrResetE", 0).toInt() == 1) { sensor->resetEnergy(); delSetting("eneTotal"); _sensorResetTS(); } if (getSetting("pwrResetCalibration", 0).toInt() == 1) { sensor->resetRatios(); delSetting("pwrRatioC"); delSetting("pwrRatioV"); delSetting("pwrRatioP"); } } #endif // CSE7766_SUPPORT #if PULSEMETER_SUPPORT if (_sensors[i]->getID() == SENSOR_PULSEMETER_ID) { PulseMeterSensor * sensor = (PulseMeterSensor *) _sensors[i]; if (getSetting("pwrResetE", 0).toInt() == 1) { sensor->resetEnergy(); delSetting("eneTotal"); _sensorResetTS(); } sensor->setEnergyRatio(getSetting("pwrRatioE", PULSEMETER_ENERGY_RATIO).toInt()); } #endif // PULSEMETER_SUPPORT #if PZEM004T_SUPPORT if (_sensors[i]->getID() == SENSOR_PZEM004T_ID) { PZEM004TSensor * sensor = (PZEM004TSensor *) _sensors[i]; if (getSetting("pwrResetE", 0).toInt() == 1) { unsigned char dev_count = sensor->getAddressesCount(); for(unsigned char dev = 0; dev < dev_count; dev++) { sensor->resetEnergy(dev, 0); delSetting("pzEneTotal", dev); } _sensorResetTS(); } } #endif // PZEM004T_SUPPORT } // Update filter sizes for (unsigned char i=0; i<_magnitudes.size(); i++) { _magnitudes[i].filter->resize(_sensor_report_every); } // General processing if (0 == _sensor_save_every) { delSetting("eneTotal"); } // Save settings delSetting("snsResetCalibration"); delSetting("pwrExpectedP"); delSetting("pwrExpectedC"); delSetting("pwrExpectedV"); delSetting("pwrResetCalibration"); delSetting("pwrResetE"); saveSettings(); } void _sensorReport(unsigned char index, double value) { sensor_magnitude_t magnitude = _magnitudes[index]; unsigned char decimals = _magnitudeDecimals(magnitude.type); char buffer[10]; dtostrf(value, 1-sizeof(buffer), decimals, buffer); #if BROKER_SUPPORT brokerPublish(BROKER_MSG_TYPE_SENSOR ,magnitudeTopic(magnitude.type).c_str(), magnitude.local, buffer); #endif #if MQTT_SUPPORT mqttSend(magnitudeTopicIndex(index).c_str(), buffer); #if SENSOR_PUBLISH_ADDRESSES char topic[32]; snprintf(topic, sizeof(topic), "%s/%s", SENSOR_ADDRESS_TOPIC, magnitudeTopic(magnitude.type).c_str()); if (SENSOR_USE_INDEX || (_counts[magnitude.type] > 1)) { mqttSend(topic, magnitude.global, magnitude.sensor->address(magnitude.local).c_str()); } else { mqttSend(topic, magnitude.sensor->address(magnitude.local).c_str()); } #endif // SENSOR_PUBLISH_ADDRESSES #endif // MQTT_SUPPORT #if THINGSPEAK_SUPPORT tspkEnqueueMeasurement(index, buffer); #endif #if DOMOTICZ_SUPPORT { char key[15]; snprintf_P(key, sizeof(key), PSTR("dczMagnitude%d"), index); if (magnitude.type == MAGNITUDE_HUMIDITY) { int status; if (value > 70) { status = HUMIDITY_WET; } else if (value > 45) { status = HUMIDITY_COMFORTABLE; } else if (value > 30) { status = HUMIDITY_NORMAL; } else { status = HUMIDITY_DRY; } char status_buf[5]; itoa(status, status_buf, 10); domoticzSend(key, buffer, status_buf); } else { domoticzSend(key, 0, buffer); } } #endif // DOMOTICZ_SUPPORT } // ----------------------------------------------------------------------------- // Public // ----------------------------------------------------------------------------- unsigned char sensorCount() { return _sensors.size(); } unsigned char magnitudeCount() { return _magnitudes.size(); } String magnitudeName(unsigned char index) { if (index < _magnitudes.size()) { sensor_magnitude_t magnitude = _magnitudes[index]; return magnitude.sensor->slot(magnitude.local); } return String(); } unsigned char magnitudeType(unsigned char index) { if (index < _magnitudes.size()) { return int(_magnitudes[index].type); } return MAGNITUDE_NONE; } unsigned char magnitudeIndex(unsigned char index) { if (index < _magnitudes.size()) { return int(_magnitudes[index].global); } return 0; } String magnitudeTopic(unsigned char type) { char buffer[16] = {0}; if (type < MAGNITUDE_MAX) strncpy_P(buffer, magnitude_topics[type], sizeof(buffer)); return String(buffer); } String magnitudeTopicIndex(unsigned char index) { char topic[32] = {0}; if (index < _magnitudes.size()) { sensor_magnitude_t magnitude = _magnitudes[index]; if (SENSOR_USE_INDEX || (_counts[magnitude.type] > 1)) { snprintf(topic, sizeof(topic), "%s/%u", magnitudeTopic(magnitude.type).c_str(), magnitude.global); } else { snprintf(topic, sizeof(topic), "%s", magnitudeTopic(magnitude.type).c_str()); } } return String(topic); } String magnitudeUnits(unsigned char type) { char buffer[8] = {0}; if (type < MAGNITUDE_MAX) { if ((type == MAGNITUDE_TEMPERATURE) && (_sensor_temperature_units == TMP_FAHRENHEIT)) { strncpy_P(buffer, magnitude_fahrenheit, sizeof(buffer)); } else if ( (type == MAGNITUDE_ENERGY || type == MAGNITUDE_ENERGY_DELTA) && (_sensor_energy_units == ENERGY_KWH)) { strncpy_P(buffer, magnitude_kwh, sizeof(buffer)); } else if ( (type == MAGNITUDE_POWER_ACTIVE || type == MAGNITUDE_POWER_APPARENT || type == MAGNITUDE_POWER_REACTIVE) && (_sensor_power_units == POWER_KILOWATTS)) { strncpy_P(buffer, magnitude_kw, sizeof(buffer)); } else { strncpy_P(buffer, magnitude_units[type], sizeof(buffer)); } } return String(buffer); } // ----------------------------------------------------------------------------- void sensorSetup() { // Backwards compatibility moveSetting("powerUnits", "pwrUnits"); moveSetting("energyUnits", "eneUnits"); // Load sensors _sensorLoad(); _sensorInit(); // Configure stored values _sensorConfigure(); // Websockets #if WEB_SUPPORT wsOnSendRegister(_sensorWebSocketStart); wsOnReceiveRegister(_sensorWebSocketOnReceive); wsOnSendRegister(_sensorWebSocketSendData); #endif // API #if API_SUPPORT _sensorAPISetup(); #endif // Terminal #if TERMINAL_SUPPORT _sensorInitCommands(); #endif // Main callbacks espurnaRegisterLoop(sensorLoop); espurnaRegisterReload(_sensorConfigure); } void sensorLoop() { // Check if we still have uninitialized sensors static unsigned long last_init = 0; if (!_sensors_ready) { if (millis() - last_init > SENSOR_INIT_INTERVAL) { last_init = millis(); _sensorInit(); } } if (_magnitudes.size() == 0) return; // Tick hook _sensorTick(); // Check if we should read new data static unsigned long last_update = 0; static unsigned long report_count = 0; static unsigned long save_count = 0; if (millis() - last_update > _sensor_read_interval) { last_update = millis(); report_count = (report_count + 1) % _sensor_report_every; double current; double filtered; // Pre-read hook _sensorPre(); // Get the first relay state #if SENSOR_POWER_CHECK_STATUS bool relay_off = (relayCount() > 0) && (relayStatus(0) == 0); #endif // Get readings for (unsigned char i=0; i<_magnitudes.size(); i++) { sensor_magnitude_t magnitude = _magnitudes[i]; if (magnitude.sensor->status()) { // ------------------------------------------------------------- // Instant value // ------------------------------------------------------------- current = magnitude.sensor->value(magnitude.local); // Completely remove spurious values if relay is OFF #if SENSOR_POWER_CHECK_STATUS if (relay_off) { if (magnitude.type == MAGNITUDE_POWER_ACTIVE || magnitude.type == MAGNITUDE_POWER_REACTIVE || magnitude.type == MAGNITUDE_POWER_APPARENT || magnitude.type == MAGNITUDE_CURRENT || magnitude.type == MAGNITUDE_ENERGY_DELTA ) { current = 0; } } #endif // ------------------------------------------------------------- // Processing (filters) // ------------------------------------------------------------- magnitude.filter->add(current); // Special case for MovingAvergaeFilter if (MAGNITUDE_COUNT == magnitude.type || MAGNITUDE_GEIGER_CPM ==magnitude. type || MAGNITUDE_GEIGER_SIEVERT == magnitude.type) { current = magnitude.filter->result(); } current = _magnitudeProcess(magnitude.type, current); _magnitudes[i].current = current; // ------------------------------------------------------------- // Debug // ------------------------------------------------------------- #if SENSOR_DEBUG { char buffer[64]; dtostrf(current, 1-sizeof(buffer), _magnitudeDecimals(magnitude.type), buffer); DEBUG_MSG_P(PSTR("[SENSOR] %s - %s: %s%s\n"), magnitude.sensor->slot(magnitude.local).c_str(), magnitudeTopic(magnitude.type).c_str(), buffer, magnitudeUnits(magnitude.type).c_str() ); } #endif // SENSOR_DEBUG // ------------------------------------------------------------- // Report // (we do it every _sensor_report_every readings) // ------------------------------------------------------------- bool report = (0 == report_count); if ((MAGNITUDE_ENERGY == magnitude.type) && (magnitude.max_change > 0)) { // for MAGNITUDE_ENERGY, filtered value is last value double value = _magnitudeProcess(magnitude.type, current); report = (fabs(value - magnitude.reported) >= magnitude.max_change); } // if ((MAGNITUDE_ENERGY == magnitude.type) && (magnitude.max_change > 0)) if (report) { filtered = magnitude.filter->result(); filtered = _magnitudeProcess(magnitude.type, filtered); magnitude.filter->reset(); // Check if there is a minimum change threshold to report if (fabs(filtered - magnitude.reported) >= magnitude.min_change) { _magnitudes[i].reported = filtered; _sensorReport(i, filtered); } // if (fabs(filtered - magnitude.reported) >= magnitude.min_change) // ------------------------------------------------------------- // Saving to EEPROM // (we do it every _sensor_save_every readings) // ------------------------------------------------------------- if (_sensor_save_every > 0) { save_count = (save_count + 1) % _sensor_save_every; if (0 == save_count) { if (MAGNITUDE_ENERGY == magnitude.type) { setSetting("eneTotal", current); saveSettings(); } } // if (0 == save_count) } // if (_sensor_save_every > 0) } // if (report_count == 0) } // if (magnitude.sensor->status()) } // for (unsigned char i=0; i<_magnitudes.size(); i++) // Post-read hook _sensorPost(); #if WEB_SUPPORT wsSend(_sensorWebSocketSendData); #endif #if THINGSPEAK_SUPPORT if (report_count == 0) tspkFlush(); #endif } } #endif // SENSOR_SUPPORT