/* RPN RULES MODULE Use RPNLib library (https://github.com/xoseperez/rpnlib) Copyright (C) 2019 by Xose PĂ©rez */ #include "rpnrules.h" #if RPN_RULES_SUPPORT #include #include "light.h" #include "mqtt.h" #include "ntp.h" #include "ntp_timelib.h" #include "relay.h" #include "rfbridge.h" #include "rpc.h" #include "rtcmem.h" #include "sensor.h" #include "terminal.h" #include "wifi.h" #include "ws.h" #include #include #include // ----------------------------------------------------------------------------- // Custom commands // ----------------------------------------------------------------------------- rpn_context _rpn_ctxt; bool _rpn_run = false; unsigned long _rpn_delay = RPN_DELAY; unsigned long _rpn_last = 0; struct RpnRunner { enum class Policy { OneShot, Periodic }; RpnRunner(Policy policy_, uint32_t period_) : policy(policy_), period(period_), last(millis()) {} Policy policy { Policy::Periodic }; uint32_t period { 0ul }; uint32_t last { 0ul }; bool expired { false }; }; std::vector _rpn_runners; rpn_operator_error _rpnRunnerHandler(rpn_context & ctxt, RpnRunner::Policy policy, uint32_t time) { for (auto& runner : _rpn_runners) { if ((policy == runner.policy) && (time == runner.period)) { return runner.expired ? rpn_operator_error::Ok : rpn_operator_error::CannotContinue; } } _rpn_runners.emplace_back(policy, time); return rpn_operator_error::CannotContinue; } // ----------------------------------------------------------------------------- bool _rpnWebSocketOnKeyCheck(const char * key, JsonVariant& value) { return (strncmp(key, "rpn", 3) == 0); } void _rpnWebSocketOnConnected(JsonObject& root) { root["rpnSticky"] = getSetting("rpnSticky", 1 == RPN_STICKY); root["rpnDelay"] = getSetting("rpnDelay", RPN_DELAY); JsonArray& rules = root.createNestedArray("rpnRules"); unsigned char i = 0; String rule = getSetting({"rpnRule", i}); while (rule.length()) { rules.add(rule); rule = getSetting({"rpnRule", ++i}); } #if MQTT_SUPPORT i=0; JsonArray& topics = root.createNestedArray("rpnTopics"); JsonArray& names = root.createNestedArray("rpnNames"); String rpn_topic = getSetting({"rpnTopic", i}); while (rpn_topic.length() > 0) { String rpn_name = getSetting({"rpnName", i}); topics.add(rpn_topic); names.add(rpn_name); rpn_topic = getSetting({"rpnTopic", ++i}); } #endif } #if MQTT_SUPPORT void _rpnMQTTSubscribe() { unsigned char i = 0; String rpn_topic = getSetting({"rpnTopic", i}); while (rpn_topic.length()) { mqttSubscribeRaw(rpn_topic.c_str()); rpn_topic = getSetting({"rpnTopic", ++i}); } } void _rpnMQTTCallback(unsigned int type, const char * topic, const char * payload) { if (type == MQTT_CONNECT_EVENT) { _rpnMQTTSubscribe(); } if (type == MQTT_MESSAGE_EVENT) { unsigned char i = 0; String rpn_topic = getSetting({"rpnTopic", i}); while (rpn_topic.length()) { if (rpn_topic.equals(topic)) { String rpn_name = getSetting({"rpnName", i}); if (rpn_name.length()) { rpn_value value { atof(payload) }; rpn_variable_set(_rpn_ctxt, rpn_name, value); _rpn_run = true; break; } } rpn_topic = getSetting({"rpnTopic", ++i}); } } } #endif // MQTT_SUPPORT void _rpnConfigure() { #if MQTT_SUPPORT if (mqttConnected()) { _rpnMQTTSubscribe(); } #endif _rpn_delay = getSetting("rpnDelay", RPN_DELAY); } void _rpnRelayStatus(size_t id, bool status) { char name[32] = {0}; snprintf(name, sizeof(name), "relay%u", id); rpn_variable_set(_rpn_ctxt, name, rpn_value(status)); _rpn_run = true; } void _rpnLightStatus() { auto channels = lightChannels(); char name[32] = {0}; for (decltype(channels) channel = 0; channel < channels; ++channel) { auto value = rpn_value(static_cast(lightChannel(channel))); snprintf(name, sizeof(name), "channel%u", channel); rpn_variable_set(_rpn_ctxt, name, std::move(value)); } _rpn_run = true; } #if SENSOR_SUPPORT void _rpnSensorMagnitudeRead(const String& topic, unsigned char index, double reading, const char*) { static_assert(sizeof(double) == sizeof(rpn_float), ""); String name; name.reserve(topic.length() + 3); name += topic; name += index; rpn_variable_set(_rpn_ctxt, name, rpn_value(static_cast(reading))); } #endif #if NTP_SUPPORT namespace { constexpr bool time_t_is_32bit { sizeof(time_t) == 4 }; constexpr bool time_t_is_64bit { sizeof(time_t) == 8 }; static_assert(time_t_is_32bit || time_t_is_64bit, ""); template using split_t = std::integral_constant; using RpnNtpFunc = rpn_int(*)(time_t); rpn_error _rpnNtpPopTimestampPair(rpn_context& ctxt, RpnNtpFunc func) { rpn_value rhs = rpn_stack_pop(ctxt); rpn_value lhs = rpn_stack_pop(ctxt); auto timestamp = (static_cast(lhs.toInt()) << 32ll) | (static_cast(rhs.toInt())); rpn_value value(func(timestamp)); rpn_stack_push(ctxt, value); return 0; } rpn_error _rpnNtpPopTimestampSingle(rpn_context& ctxt, RpnNtpFunc func) { rpn_value input = rpn_stack_pop(ctxt); rpn_value result(func(input.toInt())); rpn_stack_push(ctxt, result); return 0; } void _rpnNtpPushTimestampPair(rpn_context& ctxt, time_t timestamp) { rpn_value lhs(static_cast((static_cast(timestamp) >> 32ll) & 0xffffffffll)); rpn_value rhs(static_cast(static_cast(timestamp) & 0xffffffffll)); rpn_stack_push(ctxt, lhs); rpn_stack_push(ctxt, rhs); } void _rpnNtpPushTimestampSingle(rpn_context& ctxt, time_t timestamp) { rpn_value result(static_cast(timestamp)); rpn_stack_push(ctxt, result); } inline rpn_error _rpnNtpPopTimestamp(const std::true_type&, rpn_context& ctxt, RpnNtpFunc func) { return _rpnNtpPopTimestampPair(ctxt, func); } inline rpn_error _rpnNtpPopTimestamp(const std::false_type&, rpn_context& ctxt, RpnNtpFunc func) { return _rpnNtpPopTimestampSingle(ctxt, func); } rpn_error _rpnNtpPopTimestamp(rpn_context& ctxt, RpnNtpFunc func) { return _rpnNtpPopTimestamp(split_t{}, ctxt, func); } inline void _rpnNtpPushTimestamp(const std::true_type&, rpn_context& ctxt, time_t timestamp) { _rpnNtpPushTimestampPair(ctxt, timestamp); } inline void _rpnNtpPushTimestamp(const std::false_type&, rpn_context& ctxt, time_t timestamp) { _rpnNtpPushTimestampSingle(ctxt, timestamp); } void _rpnNtpPushTimestamp(rpn_context& ctxt, time_t timestamp) { _rpnNtpPushTimestamp(split_t{}, ctxt, timestamp); } rpn_error _rpnNtpNow(rpn_context & ctxt) { if (ntpSynced()) { _rpnNtpPushTimestamp(ctxt, now()); return 0; } return rpn_operator_error::CannotContinue; } rpn_error _rpnNtpFunc(rpn_context & ctxt, RpnNtpFunc func) { return _rpnNtpPopTimestamp(ctxt, func); } bool _rpn_ntp_tick_minute { false }; bool _rpn_ntp_tick_hour { false }; rpn_error _rpnNtpTickMinute(rpn_context& ctxt) { if (_rpn_ntp_tick_minute) { _rpn_ntp_tick_minute = false; return 0; } return rpn_operator_error::CannotContinue; } rpn_error _rpnNtpTickHour(rpn_context& ctxt) { if (_rpn_ntp_tick_hour) { _rpn_ntp_tick_hour = false; return 0; } return rpn_operator_error::CannotContinue; } } // namespace #endif // NTP_SUPPORT String _rpnValueToString(const rpn_value& value) { String out; if (value.isString()) { out = value.toString(); } else if (value.isFloat()) { out = String(value.toFloat(), 10); } else if (value.isInt()) { out = String(value.toInt(), 10); } else if (value.isUint()) { out = String(value.toUint(), 10); } else if (value.isBoolean()) { out = String(value.toBoolean() ? "true" : "false"); } else if (value.isNull()) { out = F("(null)"); } return out; } char _rpnStackTypeTag(rpn_stack_value::Type type) { switch (type) { case rpn_stack_value::Type::None: return 'N'; case rpn_stack_value::Type::Variable: return '$'; case rpn_stack_value::Type::Array: return 'A'; case rpn_stack_value::Type::Value: default: return ' '; } } #if RELAY_SUPPORT rpn_error _rpnRelayStatus(rpn_context & ctxt, bool force) { rpn_value id; rpn_value status; rpn_stack_pop(ctxt, id); rpn_stack_pop(ctxt, status); rpn_uint value = status.toUint(); if (value == 2) { relayToggle(id.toUint()); } else if (relayStatusTarget(id.toUint()) != (value == 1)) { relayStatus(id.toUint(), value == 1); } return 0; } #endif // RELAY_SUPPORT #if RFB_SUPPORT struct rpn_rfbridge_code { unsigned char protocol; String raw; size_t count; decltype(millis()) last; }; // TODO: in theory, we could do with forward_list. however, this would require a more complicated removal process, // as we would no longer know the previous element and would need to track 2 elements at a time static std::list _rfb_codes; static uint32_t _rfb_code_repeat_window; static uint32_t _rfb_code_stale_delay; static uint32_t _rfb_code_match_window; struct rpn_rfbridge_match { unsigned char protocol; String raw; }; rpn_error _rpnRfbSequence(rpn_context& ctxt) { auto raw_second = rpn_stack_pop(ctxt); auto proto_second = rpn_stack_pop(ctxt); auto raw_first = rpn_stack_pop(ctxt); auto proto_first = rpn_stack_pop(ctxt); // find 2 codes in the same order and save pointers rpn_rfbridge_match match[2] { {static_cast(proto_first.toUint()), raw_first.toString()}, {static_cast(proto_second.toUint()), raw_second.toString()} }; rpn_rfbridge_code* refs[2] {nullptr, nullptr}; for (auto& recent : _rfb_codes) { if ((refs[0] != nullptr) && (refs[1] != nullptr)) { break; } for (int index = 0; index < 2; ++index) { if ((refs[index] == nullptr) && (match[index].protocol == recent.protocol) && (match[index].raw == recent.raw)) { refs[index] = &recent; } } } if ((refs[0] == nullptr) || (refs[1] == nullptr)) { return rpn_operator_error::CannotContinue; } // purge codes to avoid matching again on the next rules run if ((millis() - refs[0]->last) > (millis() - refs[1]->last)) { _rfb_codes.remove_if([&refs](rpn_rfbridge_code& code) { return (refs[0] == &code) || (refs[1] == &code); }); return rpn_operator_error::Ok; } return rpn_operator_error::CannotContinue; } decltype(_rfb_codes)::iterator _rpnRfbFindCode(unsigned char protocol, const String& match) { return std::find_if(_rfb_codes.begin(), _rfb_codes.end(), [protocol, &match](const rpn_rfbridge_code& code) { return (code.protocol == protocol) && (code.raw == match); }); } rpn_error _rpnRfbSend(rpn_context& ctxt) { auto code = rpn_stack_pop(ctxt); if (!code.isString()) { return rpn_operator_error::InvalidArgument; } rfbSend(code.toString()); return rpn_operator_error::Ok; } rpn_error _rpnRfbPop(rpn_context& ctxt) { auto code = rpn_stack_pop(ctxt); auto proto = rpn_stack_pop(ctxt); auto result = _rpnRfbFindCode(proto.toUint(), code.toString()); if (result == _rfb_codes.end()) { return rpn_operator_error::CannotContinue; } _rfb_codes.erase(result); return rpn_operator_error::Ok; } rpn_error _rpnRfbInfo(rpn_context& ctxt) { auto code = rpn_stack_pop(ctxt); auto proto = rpn_stack_pop(ctxt); auto result = _rpnRfbFindCode(proto.toUint(), code.toString()); if (result == _rfb_codes.end()) { return rpn_operator_error::CannotContinue; } rpn_stack_push(ctxt, rpn_value( static_cast((*result).count))); rpn_stack_push(ctxt, rpn_value( static_cast((*result).last))); return rpn_operator_error::Ok; } rpn_error _rpnRfbWaitMatch(rpn_context& ctxt) { auto code = rpn_stack_pop(ctxt); auto proto = rpn_stack_pop(ctxt); auto count = rpn_stack_pop(ctxt); auto time = rpn_stack_pop(ctxt); auto result = _rpnRfbFindCode(proto.toUint(), code.toString()); if (result == _rfb_codes.end()) { return rpn_operator_error::CannotContinue; } if ((*result).count < count.toUint()) { return rpn_operator_error::CannotContinue; } // purge code to avoid matching again on the next rules run if (rpn_operator_error::Ok == _rpnRunnerHandler(ctxt, RpnRunner::Policy::OneShot, time.toUint())) { _rfb_codes.erase(result); return rpn_operator_error::Ok; } return rpn_operator_error::CannotContinue; } rpn_error _rpnRfbMatcher(rpn_context& ctxt) { auto code = rpn_stack_pop(ctxt); auto proto = rpn_stack_pop(ctxt); auto count = rpn_stack_pop(ctxt); auto result = _rpnRfbFindCode(proto.toUint(), code.toString()); if (result == _rfb_codes.end()) { return rpn_operator_error::CannotContinue; } // only process recent codes, ignore when rule is processing outside of this small window if (millis() - (*result).last >= _rfb_code_match_window) { return rpn_operator_error::CannotContinue; } // purge code to avoid matching again on the next rules run if ((*result).count == count.toUint()) { _rfb_codes.erase(result); return rpn_operator_error::Ok; } return rpn_operator_error::CannotContinue; } void _rpnRfbridgeCodeHandler(unsigned char protocol, const char* raw_code) { // remove really old codes that we have not seen in a while to avoid memory exhaustion auto ts = millis(); auto old = std::remove_if(_rfb_codes.begin(), _rfb_codes.end(), [ts](rpn_rfbridge_code& code) { return (ts - code.last) >= _rfb_code_stale_delay; }); if (old != _rfb_codes.end()) { _rfb_codes.erase(old, _rfb_codes.end()); } auto result = _rpnRfbFindCode(protocol, raw_code); if (result != _rfb_codes.end()) { // we also need to reset the counter at a certain point to allow next batch of repeats to go through if (millis() - (*result).last >= _rfb_code_repeat_window) { (*result).count = 0; } (*result).last = millis(); (*result).count += 1u; } else { _rfb_codes.push_back({protocol, raw_code, 1u, millis()}); } _rpn_run = true; } void _rpnRfbSetup() { // - Repeat window is an arbitrary time, just about 3-4 more times it takes for // a code to be sent again when holding a generic remote button // Code counter is reset to 0 when outside of the window. // - Stale delay allows the handler to remove really old codes. // (TODO: can this happen in loop() cb instead?) _rfb_code_repeat_window = getSetting("rfbRepeatWindow", 2000ul); _rfb_code_match_window = getSetting("rfbMatchWindow", 2000ul); _rfb_code_stale_delay = getSetting("rfbStaleDelay", 10000ul); #if TERMINAL_SUPPORT terminalRegisterCommand(F("RFB.CODES"), [](const terminal::CommandContext& ctx) { for (auto& code : _rfb_codes) { char buffer[128] = {0}; snprintf_P(buffer, sizeof(buffer), PSTR("proto=%u raw=\"%s\" count=%u last=%u"), code.protocol, code.raw.c_str(), code.count, code.last ); ctx.output.println(buffer); } }); #endif // Main bulk of the processing goes on in here rfbSetCodeHandler(_rpnRfbridgeCodeHandler); } #endif // RFB_SUPPORT void _rpnDeepSleep(uint64_t duration, RFMode mode); void _rpnDeepSleepSchedule(uint64_t duration, RFMode mode) { schedule_function([duration, mode]() { _rpnDeepSleep(duration, mode); }); } void _rpnDeepSleep(uint64_t duration, RFMode mode) { if (WiFi.getMode() != WIFI_OFF) { wifiTurnOff(); _rpnDeepSleepSchedule(duration, mode); return; } ESP.deepSleep(duration, mode); } void _rpnShowStack(Print& print) { print.println(F("Stack:")); auto index = rpn_stack_size(_rpn_ctxt); if (!index) { print.println(F(" (empty)")); return; } rpn_stack_foreach(_rpn_ctxt, [&index, &print](rpn_stack_value::Type type, const rpn_value& value) { print.printf("%c %02u: %s\n", _rpnStackTypeTag(type), index--, _rpnValueToString(value).c_str() ); }); } void _rpnInit() { // Init context rpn_init(_rpn_ctxt); #if NTP_SUPPORT { constexpr size_t time_t_argc { split_t{} ? 2 : 1 }; rpn_operator_set(_rpn_ctxt, "tick_1h", 0, _rpnNtpTickHour); rpn_operator_set(_rpn_ctxt, "tick_1m", 0, _rpnNtpTickMinute); rpn_operator_set(_rpn_ctxt, "utc", 0, _rpnNtpNow); rpn_operator_set(_rpn_ctxt, "now", 0, _rpnNtpNow); rpn_operator_set(_rpn_ctxt, "utc_month", time_t_argc, [](rpn_context & ctxt) { return _rpnNtpFunc(ctxt, utc_month); }); rpn_operator_set(_rpn_ctxt, "month", time_t_argc, [](rpn_context & ctxt) { return _rpnNtpFunc(ctxt, month); }); rpn_operator_set(_rpn_ctxt, "utc_day", time_t_argc, [](rpn_context & ctxt) { return _rpnNtpFunc(ctxt, utc_day); }); rpn_operator_set(_rpn_ctxt, "day", time_t_argc, [](rpn_context & ctxt) { return _rpnNtpFunc(ctxt, day); }); rpn_operator_set(_rpn_ctxt, "utc_dow", time_t_argc, [](rpn_context & ctxt) { return _rpnNtpFunc(ctxt, utc_weekday); }); rpn_operator_set(_rpn_ctxt, "dow", time_t_argc, [](rpn_context & ctxt) { return _rpnNtpFunc(ctxt, weekday); }); rpn_operator_set(_rpn_ctxt, "utc_hour", time_t_argc, [](rpn_context & ctxt) { return _rpnNtpFunc(ctxt, utc_hour); }); rpn_operator_set(_rpn_ctxt, "hour", time_t_argc, [](rpn_context & ctxt) { return _rpnNtpFunc(ctxt, hour); }); rpn_operator_set(_rpn_ctxt, "utc_minute", time_t_argc, [](rpn_context & ctxt) { return _rpnNtpFunc(ctxt, utc_minute); }); rpn_operator_set(_rpn_ctxt, "minute", time_t_argc, [](rpn_context & ctxt) { return _rpnNtpFunc(ctxt, minute); }); } #endif // Accept relay number and numeric API status value (0, 1 and 2) #if RELAY_SUPPORT // apply status and reset timers when called rpn_operator_set(_rpn_ctxt, "relay_reset", 2, [](rpn_context & ctxt) { return _rpnRelayStatus(ctxt, true); }); // only update status when target status differs, keep running timers rpn_operator_set(_rpn_ctxt, "relay", 2, [](rpn_context & ctxt) { return _rpnRelayStatus(ctxt, false); }); #endif // RELAY_SUPPORT == 1 // Channel operators #if LIGHT_PROVIDER != LIGHT_PROVIDER_NONE rpn_operator_set(_rpn_ctxt, "update", 0, [](rpn_context & ctxt) -> rpn_error { lightUpdate(); return 0; }); rpn_operator_set(_rpn_ctxt, "black", 0, [](rpn_context & ctxt) -> rpn_error { lightColor(0ul); return 0; }); rpn_operator_set(_rpn_ctxt, "channel", 2, [](rpn_context & ctxt) -> rpn_error { rpn_value value; rpn_value id; rpn_stack_pop(ctxt, id); rpn_stack_pop(ctxt, value); lightChannel(id.toUint(), id.toInt()); return 0; }); #endif #if RFB_SUPPORT rpn_operator_set(_rpn_ctxt, "rfb_send", 1, _rpnRfbSend); rpn_operator_set(_rpn_ctxt, "rfb_pop", 2, _rpnRfbPop); rpn_operator_set(_rpn_ctxt, "rfb_info", 2, _rpnRfbInfo); rpn_operator_set(_rpn_ctxt, "rfb_sequence", 4, _rpnRfbSequence); rpn_operator_set(_rpn_ctxt, "rfb_match", 3, _rpnRfbMatcher); rpn_operator_set(_rpn_ctxt, "rfb_match_wait", 4, _rpnRfbWaitMatch); #endif #if MQTT_SUPPORT rpn_operator_set(_rpn_ctxt, "mqtt_send", 2, [](rpn_context & ctxt) -> rpn_error { rpn_value message; rpn_stack_pop(ctxt, message); rpn_value topic; rpn_stack_pop(ctxt, topic); return mqttSendRaw(topic.toString().c_str(), message.toString().c_str()) ? rpn_operator_error::Ok : rpn_operator_error::CannotContinue; }); #endif // Some debugging. Dump stack contents #if TERMINAL_SUPPORT rpn_operator_set(_rpn_ctxt, "showstack", 0, [](rpn_context & ctxt) -> rpn_error { _rpnShowStack(terminalDefaultStream()); return 0; }); #endif // And, simple string logging #if DEBUG_SUPPORT rpn_operator_set(_rpn_ctxt, "dbgmsg", 1, [](rpn_context & ctxt) -> rpn_error { rpn_value message; rpn_stack_pop(ctxt, message); DEBUG_MSG_P(PSTR("[RPN] %s\n"), message.toString().c_str()); return 0; }); #endif rpn_operator_set(_rpn_ctxt, "mem?", 0, [](rpn_context & ctxt) -> rpn_error { rpn_stack_push(ctxt, rpn_value(rtcmemStatus())); return 0; }); rpn_operator_set(_rpn_ctxt, "mem_write", 2, [](rpn_context & ctxt) -> rpn_error { auto addr = rpn_stack_pop(ctxt).toUint(); auto value = rpn_stack_pop(ctxt).toUint(); if (addr < RTCMEM_BLOCKS) { auto* rtcmem = reinterpret_cast(RTCMEM_ADDR); *(rtcmem + addr) = value; return 0; } return rpn_operator_error::InvalidArgument; }); rpn_operator_set(_rpn_ctxt, "mem_read", 1, [](rpn_context & ctxt) -> rpn_error { auto addr = rpn_stack_pop(ctxt).toUint(); if (addr < RTCMEM_BLOCKS) { auto* rtcmem = reinterpret_cast(RTCMEM_ADDR); rpn_uint result = *(rtcmem + addr); rpn_stack_push(ctxt, rpn_value(result)); return 0; } return rpn_operator_error::InvalidArgument; }); rpn_operator_set(_rpn_ctxt, "sleep", 2, [](rpn_context & ctxt) -> rpn_error { static bool once { false }; if (once) { return rpn_operator_error::CannotContinue; } auto value = rpn_stack_pop(ctxt).checkedToUint(); if (!value.ok()) { return value.error(); } uint64_t duration = value.value(); if (!duration) { return rpn_operator_error::CannotContinue; } auto mode = rpn_stack_pop(ctxt).toUint(); once = true; _rpnDeepSleep(duration * 1000000ull, static_cast(mode)); return 0; }); rpn_operator_set(_rpn_ctxt, "stations", 0, [](rpn_context & ctxt) -> rpn_error { rpn_uint out = (WiFi.getMode() & WIFI_AP) ? static_cast(WiFi.softAPgetStationNum()) : 0u; rpn_stack_push(ctxt, rpn_value(out)); return 0; }); rpn_operator_set(_rpn_ctxt, "disconnect", 0, [](rpn_context & ctxt) -> rpn_error { wifiDisconnect(); yield(); return 0; }); rpn_operator_set(_rpn_ctxt, "rssi", 0, [](rpn_context & ctxt) -> rpn_error { if (wifiConnected()) { rpn_stack_push(ctxt, rpn_value(static_cast(WiFi.RSSI()))); return 0; } return rpn_operator_error::CannotContinue; }); rpn_operator_set(_rpn_ctxt, "delay", 1, [](rpn_context & ctxt) -> rpn_error { auto ms = rpn_stack_pop(ctxt); delay(ms.toUint()); return 0; }); rpn_operator_set(_rpn_ctxt, "yield", 0, [](rpn_context & ctxt) -> rpn_error { yield(); return 0; }); rpn_operator_set(_rpn_ctxt, "reset", 0, [](rpn_context & ctxt) -> rpn_error { static bool once = ([]() { deferredReset(100, CustomResetReason::Rule); return true; })(); return once ? rpn_operator_error::CannotContinue : rpn_operator_error::Ok; }); rpn_operator_set(_rpn_ctxt, "millis", 0, [](rpn_context & ctxt) -> rpn_error { rpn_stack_push(ctxt, rpn_value(static_cast(millis()))); return 0; }); rpn_operator_set(_rpn_ctxt, "oneshot_ms", 1, [](rpn_context & ctxt) -> rpn_error { auto every = rpn_stack_pop(ctxt); return _rpnRunnerHandler(ctxt, RpnRunner::Policy::OneShot, every.toUint()); }); rpn_operator_set(_rpn_ctxt, "every_ms", 1, [](rpn_context & ctxt) -> rpn_error { auto every = rpn_stack_pop(ctxt); return _rpnRunnerHandler(ctxt, RpnRunner::Policy::Periodic, every.toUint()); }); // XXX: workaround for the vector 2x growth on push. will need to fix this in the rpnlib _rpn_ctxt.operators.shrink_to_fit(); DEBUG_MSG_P(PSTR("[RPN] Registered %u operators\n"), _rpn_ctxt.operators.size()); } #if TERMINAL_SUPPORT void _rpnInitCommands() { terminalRegisterCommand(F("RPN.RUNNERS"), [](const terminal::CommandContext& ctx) { if (!_rpn_runners.size()) { terminalError(ctx, F("No active runners")); return; } for (auto& runner : _rpn_runners) { char buffer[128] = {0}; snprintf_P(buffer, sizeof(buffer), PSTR("%p %s %u ms, last %u ms"), &runner, (RpnRunner::Policy::Periodic == runner.policy) ? "every" : "one-shot", runner.period, runner.last ); ctx.output.println(buffer); } terminalOK(ctx); }); terminalRegisterCommand(F("RPN.VARS"), [](const terminal::CommandContext& ctx) { rpn_variables_foreach(_rpn_ctxt, [&ctx](const String& name, const rpn_value& value) { char buffer[256] = {0}; snprintf_P(buffer, sizeof(buffer), PSTR(" %s: %s"), name.c_str(), _rpnValueToString(value).c_str()); ctx.output.println(buffer); }); terminalOK(ctx); }); terminalRegisterCommand(F("RPN.OPS"), [](const terminal::CommandContext& ctx) { rpn_operators_foreach(_rpn_ctxt, [&ctx](const String& name, size_t argc, rpn_operator::callback_type) { char buffer[128] = {0}; snprintf_P(buffer, sizeof(buffer), PSTR(" %s (%d)"), name.c_str(), argc); ctx.output.println(buffer); }); terminalOK(ctx); }); terminalRegisterCommand(F("RPN.TEST"), [](const terminal::CommandContext& ctx) { if (ctx.argc != 2) { terminalError(F("Wrong arguments")); return; } ctx.output.print(F("Running RPN expression: ")); ctx.output.println(ctx.argv[1].c_str()); if (!rpn_process(_rpn_ctxt, ctx.argv[1].c_str())) { rpn_stack_clear(_rpn_ctxt); char buffer[64] = {0}; snprintf_P(buffer, sizeof(buffer), PSTR("position=%u category=%d code=%d"), _rpn_ctxt.error.position, static_cast(_rpn_ctxt.error.category), _rpn_ctxt.error.code); terminalError(ctx, buffer); return; } _rpnShowStack(ctx.output); rpn_stack_clear(_rpn_ctxt); terminalOK(ctx); }); } #endif // enables us to use rules without any events firing // notice: requires rpnRun to trigger at least once so that we can install runners void _rpnRunnersCheck() { auto ts = millis(); for (auto& runner : _rpn_runners) { if (ts - runner.last >= runner.period) { runner.expired = true; runner.last = ts; _rpn_run = true; } } } void _rpnRunnersReset() { auto old = std::remove_if(_rpn_runners.begin(), _rpn_runners.end(), [](RpnRunner& runner) { return (RpnRunner::Policy::OneShot == runner.policy) && runner.expired; }); if (old != _rpn_runners.end()) { _rpn_runners.erase(old, _rpn_runners.end()); } for (auto& runner : _rpn_runners) { runner.expired = false; } } void _rpnRun() { if (!_rpn_run) { return; } if (millis() - _rpn_last <= _rpn_delay) { return; } _rpn_last = millis(); _rpn_run = false; String rule; unsigned char i = 0; while ((rule = getSetting({"rpnRule", i++})).length()) { rpn_process(_rpn_ctxt, rule.c_str()); rpn_stack_clear(_rpn_ctxt); } if (!getSetting("rpnSticky", 1 == RPN_STICKY)) { rpn_variables_clear(_rpn_ctxt); } } void _rpnLoop() { _rpnRunnersCheck(); _rpnRun(); _rpnRunnersReset(); } void rpnSetup() { // Init context _rpnInit(); // Load & cache settings _rpnConfigure(); // Terminal commands #if TERMINAL_SUPPORT _rpnInitCommands(); #endif // Websockets #if WEB_SUPPORT wsRegister() .onVisible([](JsonObject& root) { root["rpnVisible"] = 1; }) .onConnected(_rpnWebSocketOnConnected) .onKeyCheck(_rpnWebSocketOnKeyCheck); #endif // MQTT #if MQTT_SUPPORT mqttRegister(_rpnMQTTCallback); #endif #if NTP_SUPPORT ntpOnTick([](NtpTick tick) { switch (tick) { case NtpTick::EveryMinute: _rpn_ntp_tick_minute = true; break; case NtpTick::EveryHour: _rpn_ntp_tick_hour = true; break; } _rpn_run = true; }); #endif #if RELAY_SUPPORT relaySetStatusChange(_rpnRelayStatus); #endif #if LIGHT_PROVIDER != LIGHT_PROVIDER_NONE lightSetReportListener(_rpnLightStatus); #endif #if RFB_SUPPORT _rpnRfbSetup(); #endif #if SENSOR_SUPPORT sensorSetMagnitudeRead(_rpnSensorMagnitudeRead); #endif espurnaRegisterReload(_rpnConfigure); espurnaRegisterLoop(_rpnLoop); _rpn_last = millis(); _rpn_run = true; } #endif // RPN_RULES_SUPPORT