/* SETTINGS MODULE Copyright (C) 2016-2018 by Xose PĂ©rez */ #include #include #include "libs/EmbedisWrap.h" #include #ifdef DEBUG_PORT #define EMBEDIS_PORT DEBUG_PORT #else #define EMBEDIS_PORT Serial #endif #if TELNET_SUPPORT #include "libs/StreamInjector.h" StreamInjector _serial = StreamInjector(EMBEDIS_PORT, TERMINAL_BUFFER_SIZE); #undef EMBEDIS_PORT #define EMBEDIS_PORT _serial #endif EmbedisWrap embedis(EMBEDIS_PORT, TERMINAL_BUFFER_SIZE); #if TERMINAL_SUPPORT #if SERIAL_RX_ENABLED char _serial_rx_buffer[TERMINAL_BUFFER_SIZE]; static unsigned char _serial_rx_pointer = 0; #endif // SERIAL_RX_ENABLED #endif // TERMINAL_SUPPORT bool _settings_save = false; // ----------------------------------------------------------------------------- // Reverse engineering EEPROM storage format // ----------------------------------------------------------------------------- unsigned long settingsSize() { unsigned pos = SPI_FLASH_SEC_SIZE - 1; while (size_t len = EEPROM.read(pos)) { pos = pos - len - 2; } return SPI_FLASH_SEC_SIZE - pos; } // ----------------------------------------------------------------------------- unsigned int _settingsKeyCount() { unsigned count = 0; unsigned pos = SPI_FLASH_SEC_SIZE - 1; while (size_t len = EEPROM.read(pos)) { pos = pos - len - 2; len = EEPROM.read(pos); pos = pos - len - 2; count ++; } return count; } String _settingsKeyName(unsigned int index) { String s; unsigned count = 0; unsigned pos = SPI_FLASH_SEC_SIZE - 1; while (size_t len = EEPROM.read(pos)) { pos = pos - len - 2; if (count == index) { s.reserve(len); for (unsigned char i = 0 ; i < len; i++) { s += (char) EEPROM.read(pos + i + 1); } break; } count++; len = EEPROM.read(pos); pos = pos - len - 2; } return s; } std::vector _settingsKeys() { // Get sorted list of keys std::vector keys; //unsigned int size = settingsKeyCount(); unsigned int size = _settingsKeyCount(); for (unsigned int i=0; i 0) { keys.insert(keys.begin() + j, key); inserted = true; break; } } // If we could not insert it, just push it at the end if (!inserted) keys.push_back(key); } return keys; } // ----------------------------------------------------------------------------- // Commands // ----------------------------------------------------------------------------- void _settingsHelpCommand() { // Get sorted list of commands std::vector commands; unsigned char size = embedis.getCommandCount(); for (unsigned int i=0; i 0) { commands.insert(commands.begin() + j, command); inserted = true; break; } } // If we could not insert it, just push it at the end if (!inserted) commands.push_back(command); } // Output the list DEBUG_MSG_P(PSTR("Available commands:\n")); for (unsigned char i=0; i %s\n"), (commands[i]).c_str()); } } void _settingsKeysCommand() { // Get sorted list of keys std::vector keys = _settingsKeys(); // Write key-values DEBUG_MSG_P(PSTR("Current settings:\n")); for (unsigned int i=0; i %s => %s\n"), (keys[i]).c_str(), value.c_str()); } unsigned long freeEEPROM = SPI_FLASH_SEC_SIZE - settingsSize(); DEBUG_MSG_P(PSTR("Number of keys: %d\n"), keys.size()); DEBUG_MSG_P(PSTR("Free EEPROM: %d bytes (%d%%)\n"), freeEEPROM, 100 * freeEEPROM / SPI_FLASH_SEC_SIZE); } void _settingsFactoryResetCommand() { for (unsigned int i = 0; i < SPI_FLASH_SEC_SIZE; i++) { EEPROM.write(i, 0xFF); } EEPROM.commit(); } void _settingsDumpCommand(bool ascii) { for (unsigned int i = 0; i < SPI_FLASH_SEC_SIZE; i++) { if (i % 16 == 0) DEBUG_MSG_P(PSTR("\n[%04X] "), i); byte c = EEPROM.read(i); if (ascii && 32 <= c && c <= 126) { DEBUG_MSG_P(PSTR(" %c "), c); } else { DEBUG_MSG_P(PSTR("%02X "), c); } } } void _settingsInitCommands() { #if DEBUG_SUPPORT settingsRegisterCommand(F("CRASH"), [](Embedis* e) { debugDumpCrashInfo(); debugClearCrashInfo(); DEBUG_MSG_P(PSTR("+OK\n")); }); #endif settingsRegisterCommand(F("COMMANDS"), [](Embedis* e) { _settingsHelpCommand(); DEBUG_MSG_P(PSTR("+OK\n")); }); settingsRegisterCommand(F("EEPROM.DUMP"), [](Embedis* e) { bool ascii = false; if (e->argc == 2) ascii = String(e->argv[1]).toInt() == 1; _settingsDumpCommand(ascii); DEBUG_MSG_P(PSTR("\n+OK\n")); }); settingsRegisterCommand(F("ERASE.CONFIG"), [](Embedis* e) { DEBUG_MSG_P(PSTR("+OK\n")); resetReason(CUSTOM_RESET_TERMINAL); ESP.eraseConfig(); *((int*) 0) = 0; // see https://github.com/esp8266/Arduino/issues/1494 }); #if I2C_SUPPORT settingsRegisterCommand(F("I2C.SCAN"), [](Embedis* e) { _settingsI2CScanCommand(); DEBUG_MSG_P(PSTR("+OK\n")); }); settingsRegisterCommand(F("I2C.CLEAR"), [](Embedis* e) { i2cClearBus(); DEBUG_MSG_P(PSTR("+OK\n")); }); #endif settingsRegisterCommand(F("FACTORY.RESET"), [](Embedis* e) { _settingsFactoryResetCommand(); DEBUG_MSG_P(PSTR("+OK\n")); }); settingsRegisterCommand(F("GPIO"), [](Embedis* e) { if (e->argc < 2) { DEBUG_MSG_P(PSTR("-ERROR: Wrong arguments\n")); return; } int pin = String(e->argv[1]).toInt(); //if (!gpioValid(pin)) { // DEBUG_MSG_P(PSTR("-ERROR: Invalid GPIO\n")); // return; //} if (e->argc > 2) { bool state = String(e->argv[2]).toInt() == 1; digitalWrite(pin, state); } DEBUG_MSG_P(PSTR("GPIO %d is %s\n"), pin, digitalRead(pin) == HIGH ? "HIGH" : "LOW"); DEBUG_MSG_P(PSTR("+OK\n")); }); settingsRegisterCommand(F("HEAP"), [](Embedis* e) { DEBUG_MSG_P(PSTR("Free HEAP: %d bytes\n"), getFreeHeap()); DEBUG_MSG_P(PSTR("+OK\n")); }); settingsRegisterCommand(F("HELP"), [](Embedis* e) { _settingsHelpCommand(); DEBUG_MSG_P(PSTR("+OK\n")); }); settingsRegisterCommand(F("INFO"), [](Embedis* e) { info(); wifiStatus(); //StreamString s; //WiFi.printDiag(s); //DEBUG_MSG(s.c_str()); DEBUG_MSG_P(PSTR("+OK\n")); }); settingsRegisterCommand(F("KEYS"), [](Embedis* e) { _settingsKeysCommand(); DEBUG_MSG_P(PSTR("+OK\n")); }); settingsRegisterCommand(F("RESET"), [](Embedis* e) { DEBUG_MSG_P(PSTR("+OK\n")); deferredReset(100, CUSTOM_RESET_TERMINAL); }); settingsRegisterCommand(F("UPTIME"), [](Embedis* e) { DEBUG_MSG_P(PSTR("Uptime: %d seconds\n"), getUptime()); DEBUG_MSG_P(PSTR("+OK\n")); }); } // ----------------------------------------------------------------------------- // Key-value API // ----------------------------------------------------------------------------- void moveSetting(const char * from, const char * to) { String value = getSetting(from); if (value.length() > 0) setSetting(to, value); delSetting(from); } template String getSetting(const String& key, T defaultValue) { String value; if (!Embedis::get(key, value)) value = String(defaultValue); return value; } template String getSetting(const String& key, unsigned int index, T defaultValue) { return getSetting(key + String(index), defaultValue); } String getSetting(const String& key) { return getSetting(key, ""); } template bool setSetting(const String& key, T value) { return Embedis::set(key, String(value)); } template bool setSetting(const String& key, unsigned int index, T value) { return setSetting(key + String(index), value); } bool delSetting(const String& key) { return Embedis::del(key); } bool delSetting(const String& key, unsigned int index) { return delSetting(key + String(index)); } bool hasSetting(const String& key) { return getSetting(key).length() != 0; } bool hasSetting(const String& key, unsigned int index) { return getSetting(key, index, "").length() != 0; } void saveSettings() { #if not SETTINGS_AUTOSAVE _settings_save = true; #endif } void resetSettings() { _settingsFactoryResetCommand(); } // ----------------------------------------------------------------------------- // Settings // ----------------------------------------------------------------------------- #if TELNET_SUPPORT void settingsInject(void *data, size_t len) { _serial.inject((char *) data, len); } #endif size_t settingsMaxSize() { size_t size = EEPROM_SIZE; if (size > SPI_FLASH_SEC_SIZE) size = SPI_FLASH_SEC_SIZE; size = (size + 3) & (~3); return size; } bool settingsRestoreJson(JsonObject& data) { const char* app = data["app"]; if (strcmp(app, APP_NAME) != 0) return false; for (unsigned int i = EEPROM_DATA_END; i < SPI_FLASH_SEC_SIZE; i++) { EEPROM.write(i, 0xFF); } for (auto element : data) { if (strcmp(element.key, "app") == 0) continue; if (strcmp(element.key, "version") == 0) continue; setSetting(element.key, element.value.as()); } saveSettings(); DEBUG_MSG_P(PSTR("[SETTINGS] Settings restored successfully\n")); return true; } bool settingsGetJson(JsonObject& root) { // Get sorted list of keys std::vector keys = _settingsKeys(); // Add the key-values to the json object for (unsigned int i=0; i char { return EEPROM.read(pos); }, [](size_t pos, char value) { EEPROM.write(pos, value); }, #if SETTINGS_AUTOSAVE []() { _settings_save = true; } #else []() {} #endif ); _settingsInitCommands(); #if TERMINAL_SUPPORT #if SERIAL_RX_ENABLED SERIAL_RX_PORT.begin(SERIAL_RX_BAUDRATE); #endif // SERIAL_RX_ENABLED #endif // TERMINAL_SUPPORT // Register loop espurnaRegisterLoop(settingsLoop); } void settingsLoop() { if (_settings_save) { EEPROM.commit(); _settings_save = false; } #if TERMINAL_SUPPORT embedis.process(); #if SERIAL_RX_ENABLED while (SERIAL_RX_PORT.available() > 0) { char rc = Serial.read(); _serial_rx_buffer[_serial_rx_pointer++] = rc; if ((_serial_rx_pointer == TERMINAL_BUFFER_SIZE) || (rc == 10)) { settingsInject(_serial_rx_buffer, (size_t) _serial_rx_pointer); _serial_rx_pointer = 0; } } #endif // SERIAL_RX_ENABLED #endif // TERMINAL_SUPPORT }