/* RF BRIDGE MODULE Copyright (C) 2016-2019 by Xose PĂ©rez */ #include "rfbridge.h" #if RF_SUPPORT #include #include "api.h" #include "relay.h" #include "terminal.h" #include "mqtt.h" #include "ws.h" #include "utils.h" // ----------------------------------------------------------------------------- // DEFINITIONS // ----------------------------------------------------------------------------- // EFM8 Protocol #define RF_MESSAGE_SIZE 9 #define RF_MAX_MESSAGE_SIZE (112+4) #define RF_CODE_START 0xAA #define RF_CODE_ACK 0xA0 #define RF_CODE_LEARN 0xA1 #define RF_CODE_LEARN_KO 0xA2 #define RF_CODE_LEARN_OK 0xA3 #define RF_CODE_RFIN 0xA4 #define RF_CODE_RFOUT 0xA5 #define RF_CODE_SNIFFING_ON 0xA6 #define RF_CODE_SNIFFING_OFF 0xA7 #define RF_CODE_RFOUT_NEW 0xA8 #define RF_CODE_LEARN_NEW 0xA9 #define RF_CODE_LEARN_KO_NEW 0xAA #define RF_CODE_LEARN_OK_NEW 0xAB #define RF_CODE_RFOUT_BUCKET 0xB0 #define RF_CODE_STOP 0x55 // Settings #define RF_MAX_KEY_LENGTH (9) // ----------------------------------------------------------------------------- // GLOBALS TO THE MODULE // ----------------------------------------------------------------------------- unsigned char _uartbuf[RF_MESSAGE_SIZE+3] = {0}; unsigned char _uartpos = 0; unsigned char _learnId = 0; bool _learnStatus = true; bool _rfbin = false; struct rfb_message_t { uint8_t code[RF_MESSAGE_SIZE]; uint8_t times; }; static std::queue _rfb_message_queue; #if RFB_DIRECT RCSwitch * _rfModem; bool _learning = false; #endif bool _rfb_receive = false; bool _rfb_transmit = false; unsigned char _rfb_repeat = RF_SEND_TIMES; // ----------------------------------------------------------------------------- // PRIVATES // ----------------------------------------------------------------------------- #if WEB_SUPPORT void _rfbWebSocketSendCodeArray(JsonObject& root, unsigned char start, unsigned char size) { JsonObject& rfb = root.createNestedObject("rfb"); rfb["size"] = size; rfb["start"] = start; JsonArray& on = rfb.createNestedArray("on"); JsonArray& off = rfb.createNestedArray("off"); for (uint8_t id=start; id()); } bool _rfbWebSocketOnKeyCheck(const char * key, JsonVariant& value) { return (strncmp(key, "rfb", 3) == 0); } void _rfbWebSocketOnData(JsonObject& root) { _rfbWebSocketSendCodeArray(root, 0, relayCount()); } #endif // WEB_SUPPORT void _rfbAckImpl(); void _rfbLearnImpl(); void _rfbSendImpl(uint8_t * message); void _rfbReceiveImpl(); bool _rfbMatch(char* code, unsigned char& relayID, unsigned char& value, char* buffer = NULL) { if (strlen(code) != 18) return false; bool found = false; String compareto = String(&code[12]); compareto.toUpperCase(); DEBUG_MSG_P(PSTR("[RF] Trying to match code %s\n"), compareto.c_str()); for (unsigned char i=0; i (RF_MAX_MESSAGE_SIZE * 2)) return; if ((rawlen < 2) || (rawlen & 1)) return; DEBUG_MSG_P(PSTR("[RF] Sending RAW MESSAGE '%s'\n"), raw); uint8_t message[RF_MAX_MESSAGE_SIZE]; size_t bytes = hexDecode(raw, (size_t)rawlen, message, sizeof(message)); _rfbSendRaw(message, bytes); } #else // RFB_DIRECT void _rfbAckImpl() {} void _rfbLearnImpl() { DEBUG_MSG_P(PSTR("[RF] Entering LEARN mode\n")); _learning = true; } void _rfbSendImpl(uint8_t * message) { if (!_rfb_transmit) return; unsigned int protocol = message[1]; unsigned int timing = (message[2] << 8) | (message[3] << 0) ; unsigned int bitlength = message[4]; unsigned long rf_code = (message[5] << 24) | (message[6] << 16) | (message[7] << 8) | (message[8] << 0) ; _rfModem->setProtocol(protocol); if (timing > 0) { _rfModem->setPulseLength(timing); } _rfModem->send(rf_code, bitlength); _rfModem->resetAvailable(); } void _rfbReceiveImpl() { if (!_rfb_receive) return; static long learn_start = 0; if (!_learning && learn_start) { learn_start = 0; } if (_learning) { if (!learn_start) { DEBUG_MSG_P(PSTR("[RF] Arming learn timeout\n")); learn_start = millis(); } if (learn_start > 0 && millis() - learn_start > RF_LEARN_TIMEOUT) { DEBUG_MSG_P(PSTR("[RF] Learn timeout triggered\n")); memset(_uartbuf, 0, sizeof(_uartbuf)); _uartbuf[0] = RF_CODE_LEARN_KO; _rfbDecode(); _learning = false; } } if (_rfModem->available()) { static unsigned long last = 0; if (millis() - last > RF_DEBOUNCE) { last = millis(); unsigned long rf_code = _rfModem->getReceivedValue(); if ( rf_code > 0) { DEBUG_MSG_P(PSTR("[RF] Received code: %08X\n"), rf_code); unsigned int timing = _rfModem->getReceivedDelay(); memset(_uartbuf, 0, sizeof(_uartbuf)); unsigned char *msgbuf = _uartbuf + 1; _uartbuf[0] = _learning ? RF_CODE_LEARN_OK: RF_CODE_RFIN; msgbuf[0] = 0xC0; msgbuf[1] = _rfModem->getReceivedProtocol(); msgbuf[2] = timing >> 8; msgbuf[3] = timing >> 0; msgbuf[4] = _rfModem->getReceivedBitlength(); msgbuf[5] = rf_code >> 24; msgbuf[6] = rf_code >> 16; msgbuf[7] = rf_code >> 8; msgbuf[8] = rf_code >> 0; _rfbDecode(); _learning = false; } } _rfModem->resetAvailable(); } yield(); } #endif // RFB_DIRECT void _rfbEnqueue(uint8_t * code, unsigned char times) { if (!_rfb_transmit) return; // rc-switch will repeat on its own #if RFB_DIRECT times = 1; #endif char buffer[RF_MESSAGE_SIZE]; hexEncode(code, RF_MESSAGE_SIZE, buffer, sizeof(buffer)); DEBUG_MSG_P(PSTR("[RF] Enqueuing MESSAGE '%s' %d time(s)\n"), buffer, times); rfb_message_t message; memcpy(message.code, code, RF_MESSAGE_SIZE); message.times = times; _rfb_message_queue.push(message); } void _rfbSendQueued() { if (!_rfb_transmit) return; // Check if there is something in the queue if (_rfb_message_queue.empty()) return; static unsigned long last = 0; if (millis() - last < RF_SEND_DELAY) return; last = millis(); // Pop the first message and send it rfb_message_t message = _rfb_message_queue.front(); _rfb_message_queue.pop(); _rfbSendImpl(message.code); // Push it to the stack again if we need to send it more than once if (message.times > 1) { message.times = message.times - 1; _rfb_message_queue.push(message); } yield(); } bool _rfbCompare(const char * code1, const char * code2) { return strcmp(&code1[12], &code2[12]) == 0; } bool _rfbSameOnOff(unsigned char id) { return _rfbCompare(rfbRetrieve(id, true).c_str(), rfbRetrieve(id, false).c_str()); } void _rfbParseCode(char * code) { // The payload may be a code in HEX format ([0-9A-Z]{18}) or // the code comma the number of times to transmit it. char * tok = strtok(code, ","); // Check if a switch is linked to that message unsigned char id; unsigned char status = 0; if (_rfbMatch(tok, id, status)) { if (status == 2) { relayToggle(id); } else { relayStatus(id, status == 1); } return; } uint8_t message[RF_MESSAGE_SIZE]; if (hexDecode(tok, strlen(tok), message, sizeof(message))) { tok = strtok(nullptr, ","); uint8_t times = (tok != nullptr) ? atoi(tok) : 1; _rfbEnqueue(message, times); } } #if MQTT_SUPPORT void _rfbMqttCallback(unsigned int type, const char * topic, char * payload) { if (type == MQTT_CONNECT_EVENT) { char buffer[strlen(MQTT_TOPIC_RFLEARN) + 3]; snprintf_P(buffer, sizeof(buffer), PSTR("%s/+"), MQTT_TOPIC_RFLEARN); mqttSubscribe(buffer); if (_rfb_transmit) { mqttSubscribe(MQTT_TOPIC_RFOUT); } #if !RFB_DIRECT mqttSubscribe(MQTT_TOPIC_RFRAW); #endif } if (type == MQTT_MESSAGE_EVENT) { // Match topic String t = mqttMagnitude((char *) topic); // Check if should go into learn mode if (t.startsWith(MQTT_TOPIC_RFLEARN)) { _learnId = t.substring(strlen(MQTT_TOPIC_RFLEARN)+1).toInt(); if (_learnId >= relayCount()) { DEBUG_MSG_P(PSTR("[RF] Wrong learnID (%d)\n"), _learnId); return; } _learnStatus = (char)payload[0] != '0'; _rfbLearnImpl(); return; } if (t.equals(MQTT_TOPIC_RFOUT)) { _rfbParseCode(payload); } #if !RFB_DIRECT if (t.equals(MQTT_TOPIC_RFRAW)) { _rfbParseRaw(payload); } #endif } } #endif // MQTT_SUPPORT #if API_SUPPORT void _rfbApiSetup() { apiReserve(3u); apiRegister({ MQTT_TOPIC_RFOUT, Api::Type::Basic, ApiUnusedArg, apiOk, // just a stub, nothing to return [](const Api&, ApiBuffer& buffer) { _rfbParseCode(buffer.data); } }); apiRegister({ MQTT_TOPIC_RFLEARN, Api::Type::Basic, ApiUnusedArg, apiOk, // just a stub, nothing to return [](const Api&, ApiBuffer& buffer) { // The payload must be the relayID plus the mode (0 or 1) char* sep = strchr(buffer.data, ','); if (NULL == sep) { return; } char relay[3] {0, 0, 0}; if ((sep - buffer) > 2) { return; } std::copy(buffer.data, sep, relay); if (!isNumber(relay)) { return; } _learnId = atoi(relay); if (_learnId >= relayCount()) { DEBUG_MSG_P(PSTR("[RF] Wrong learnID (%d)\n"), _learnId); return; } ++sep; if ((*sep == '0') || (*sep == '1')) { _learnStatus = (*sep != '0'); _rfbLearnImpl(); } } }); #if not RFB_DIRECT apiRegister({ MQTT_TOPIC_RFRAW, Api::Type::Basic, ApiUnusedArg, apiOk, // just a stub, nothing to return [](const Api&, ApiBuffer& buffer) { _rfbParseRaw(buffer.data); } }); #endif } #endif // API_SUPPORT #if TERMINAL_SUPPORT void _rfbInitCommands() { terminalRegisterCommand(F("LEARN"), [](const terminal::CommandContext& ctx) { if (ctx.argc != 3) { terminalError(F("Wrong arguments")); return; } // 1st argument is relayID int id = ctx.argv[1].toInt(); if (id >= relayCount()) { DEBUG_MSG_P(PSTR("-ERROR: Wrong relayID (%d)\n"), id); return; } // 2nd argument is status rfbLearn(id, (ctx.argv[2].toInt()) == 1); terminalOK(); }); terminalRegisterCommand(F("FORGET"), [](const terminal::CommandContext& ctx) { if (ctx.argc != 3) { terminalError(F("Wrong arguments")); return; } // 1st argument is relayID int id = ctx.argv[1].toInt(); if (id >= relayCount()) { DEBUG_MSG_P(PSTR("-ERROR: Wrong relayID (%d)\n"), id); return; } // 2nd argument is status rfbForget(id, (ctx.argv[2].toInt()) == 1); terminalOK(); }); #if !RFB_DIRECT terminalRegisterCommand(F("RFB.WRITE"), [](const terminal::CommandContext& ctx) { if (ctx.argc != 2) return; uint8_t data[RF_MAX_MESSAGE_SIZE]; size_t bytes = hexDecode(ctx.argv[1].c_str(), ctx.argv[1].length(), data, sizeof(data)); if (bytes) { _rfbSendRaw(data, bytes); } }); #endif } #endif // TERMINAL_SUPPORT // ----------------------------------------------------------------------------- // PUBLIC // ----------------------------------------------------------------------------- void rfbStore(unsigned char id, bool status, const char * code) { DEBUG_MSG_P(PSTR("[RF] Storing %d-%s => '%s'\n"), id, status ? "ON" : "OFF", code); if (status) { setSetting({"rfbON", id}, code); } else { setSetting({"rfbOFF", id}, code); } } String rfbRetrieve(unsigned char id, bool status) { if (status) { return getSetting({"rfbON", id}); } else { return getSetting({"rfbOFF", id}); } } void rfbStatus(unsigned char id, bool status) { String value = rfbRetrieve(id, status); if (value.length() && !(value.length() & 1)) { uint8_t message[RF_MAX_MESSAGE_SIZE]; size_t bytes = hexDecode(value.c_str(), value.length(), message, sizeof(message)); if (bytes && !_rfbin) { if (value.length() == (RF_MESSAGE_SIZE * 2)) { _rfbEnqueue(message, _rfbSameOnOff(id) ? 1 : _rfb_repeat); } else { #if !RFB_DIRECT _rfbSendRaw(message, bytes); #endif } } } _rfbin = false; } void rfbLearn(unsigned char id, bool status) { _learnId = id; _learnStatus = status; _rfbLearnImpl(); } void rfbForget(unsigned char id, bool status) { char key[RF_MAX_KEY_LENGTH] = {0}; snprintf_P(key, sizeof(key), PSTR("rfb%s%d"), status ? "ON" : "OFF", id); delSetting(key); // Websocket update #if WEB_SUPPORT wsPost([id](JsonObject& root) { _rfbWebSocketSendCodeArray(root, id, 1); }); #endif } // ----------------------------------------------------------------------------- // SETUP & LOOP // ----------------------------------------------------------------------------- void rfbSetup() { #if MQTT_SUPPORT mqttRegister(_rfbMqttCallback); #endif #if API_SUPPORT _rfbApiSetup(); #endif #if WEB_SUPPORT wsRegister() .onVisible(_rfbWebSocketOnVisible) .onConnected(_rfbWebSocketOnConnected) .onData(_rfbWebSocketOnData) .onAction(_rfbWebSocketOnAction) .onKeyCheck(_rfbWebSocketOnKeyCheck); #endif #if TERMINAL_SUPPORT _rfbInitCommands(); #endif _rfb_repeat = getSetting("rfbRepeat", RF_SEND_TIMES); #if RFB_DIRECT const auto rx = getSetting("rfbRX", RFB_RX_PIN); const auto tx = getSetting("rfbTX", RFB_TX_PIN); _rfb_receive = gpioValid(rx); _rfb_transmit = gpioValid(tx); if (!_rfb_transmit && !_rfb_receive) { DEBUG_MSG_P(PSTR("[RF] Neither RX or TX are set\n")); return; } _rfModem = new RCSwitch(); if (_rfb_receive) { _rfModem->enableReceive(rx); DEBUG_MSG_P(PSTR("[RF] RF receiver on GPIO %u\n"), rx); } if (_rfb_transmit) { _rfModem->enableTransmit(tx); _rfModem->setRepeatTransmit(_rfb_repeat); DEBUG_MSG_P(PSTR("[RF] RF transmitter on GPIO %u\n"), tx); } #else _rfb_receive = true; _rfb_transmit = true; #endif // Register loop only when properly configured espurnaRegisterLoop([]() -> void { _rfbReceiveImpl(); _rfbSendQueued(); }); } #endif