/* I2C MODULE Copyright (C) 2017-2018 by Xose PĂ©rez Module key prefix: i2c */ #if I2C_SUPPORT unsigned int _i2c_locked[16] = {0}; #if I2C_USE_BRZO #include "brzo_i2c.h" unsigned long _i2c_scl_frequency = 0; #else #include "Wire.h" #endif // ----------------------------------------------------------------------------- // Private // ----------------------------------------------------------------------------- int _i2cClearbus(int sda, int scl) { #if defined(TWCR) && defined(TWEN) // Disable the Atmel 2-Wire interface so we can control the SDA and SCL pins directly TWCR &= ~(_BV(TWEN)); #endif // Make SDA (data) and SCL (clock) pins inputs with pullup pinMode(sda, INPUT_PULLUP); pinMode(scl, INPUT_PULLUP); nice_delay(2500); // Wait 2.5 secs. This is strictly only necessary on the first power // up of the DS3231 module to allow it to initialize properly, // but is also assists in reliable programming of FioV3 boards as it gives the // IDE a chance to start uploaded the program // before existing sketch confuses the IDE by sending Serial data. // If it is held low the device cannot become the I2C master // I2C bus error. Could not clear SCL clock line held low boolean scl_low = (digitalRead(scl) == LOW); if (scl_low) return 1; boolean sda_low = (digitalRead(sda) == LOW); int clockCount = 20; // > 2x9 clock // While SDA is low for at most 20 cycles while (sda_low && (clockCount > 0)) { clockCount--; // Note: I2C bus is open collector so do NOT drive SCL or SDA high pinMode(scl, INPUT); // release SCL pullup so that when made output it will be LOW pinMode(scl, OUTPUT); // then clock SCL Low delayMicroseconds(10); // for >5uS pinMode(scl, INPUT); // release SCL LOW pinMode(scl, INPUT_PULLUP); // turn on pullup resistors again // do not force high as slave may be holding it low for clock stretching delayMicroseconds(10); // The >5uS is so that even the slowest I2C devices are handled // loop waiting for SCL to become high only wait 2sec scl_low = (digitalRead(scl) == LOW); int counter = 20; while (scl_low && (counter > 0)) { counter--; nice_delay(100); scl_low = (digitalRead(scl) == LOW); } // If still low after 2 sec error // I2C bus error. Could not clear. SCL clock line held low by slave clock stretch for >2sec if (scl_low) return 2; sda_low = (digitalRead(sda) == LOW); // and check SDA input again and loop } // If still low // I2C bus error. Could not clear. SDA data line held low if (sda_low) return 3; // Pull SDA line low for "start" or "repeated start" pinMode(sda, INPUT); // remove pullup pinMode(sda, OUTPUT); // and then make it LOW i.e. send an I2C Start or Repeated start control // When there is only one I2C master a "start" or "repeat start" has the same function as a "stop" and clears the bus // A Repeat Start is a Start occurring after a Start with no intervening Stop. delayMicroseconds(10); // wait >5uS pinMode(sda, INPUT); // remove output low pinMode(sda, INPUT_PULLUP); // and make SDA high i.e. send I2C STOP control. delayMicroseconds(10); // wait >5uS pinMode(sda, INPUT); // and reset pins as tri-state inputs which is the default state on reset pinMode(scl, INPUT); // Everything OK return 0; } #if WEB_SUPPORT bool _i2cWebSocketOnReceive(const char * key, JsonVariant& value) { return (strncmp(key, "i2c", 3) == 0); } #endif // WEB_SUPPORT // --------------------------------------------------------------------- // I2C API // --------------------------------------------------------------------- #if I2C_USE_BRZO void i2c_wakeup(uint8_t address) { brzo_i2c_start_transaction(_address, _i2c_scl_frequency); brzo_i2c_end_transaction(); } uint8_t i2c_write_uint8(uint8_t address, uint8_t value) { uint8_t buffer[1] = {value}; brzo_i2c_start_transaction(_address, _i2c_scl_frequency); brzo_i2c_write_uint8(buffer, 1, false); return brzo_i2c_end_transaction(); } uint8_t i2c_write_buffer(uint8_t address, uint8_t * buffer, size_t len) { brzo_i2c_start_transaction(_address, _i2c_scl_frequency); brzo_i2c_write_uint8(buffer, len, false); return brzo_i2c_end_transaction(); } uint8_t i2c_read_uint8(uint8_t address) { uint8_t buffer[1] = {reg}; brzo_i2c_start_transaction(_address, _i2c_scl_frequency); brzo_i2c_read(buffer, 1, false); brzo_i2c_end_transaction(); return buffer[0]; }; uint8_t i2c_read_uint8(uint8_t address, uint8_t reg) { uint8_t buffer[1] = {reg}; brzo_i2c_start_transaction(_address, _i2c_scl_frequency); brzo_i2c_write_uint8(buffer, 1, false); brzo_i2c_read(buffer, 1, false); brzo_i2c_end_transaction(); return buffer[0]; }; uint16_t i2c_read_uint16(uint8_t address) { uint8_t buffer[2] = {reg, 0}; brzo_i2c_start_transaction(_address, _i2c_scl_frequency); brzo_i2c_read(buffer, 2, false); brzo_i2c_end_transaction(); return (buffer[0] * 256) | buffer[1]; }; uint16_t i2c_read_uint16(uint8_t address, uint8_t reg) { uint8_t buffer[2] = {reg, 0}; brzo_i2c_start_transaction(_address, _i2c_scl_frequency); brzo_i2c_write_uint8(buffer, 1, false); brzo_i2c_read(buffer, 2, false); brzo_i2c_end_transaction(); return (buffer[0] * 256) | buffer[1]; }; void i2c_read_buffer(uint8_t address, uint8_t * buffer, size_t len) { brzo_i2c_start_transaction(address, _i2c_scl_frequency); brzo_i2c_read(buffer, len, false); brzo_i2c_end_transaction(); } #else // not I2C_USE_BRZO void i2c_wakeup(uint8_t address) { Wire.beginTransmission((uint8_t) address); Wire.endTransmission(); } uint8_t i2c_write_uint8(uint8_t address, uint8_t value) { Wire.beginTransmission((uint8_t) address); Wire.write((uint8_t) value); return Wire.endTransmission(); } uint8_t i2c_write_buffer(uint8_t address, uint8_t * buffer, size_t len) { Wire.beginTransmission((uint8_t) address); Wire.write(buffer, len); return Wire.endTransmission(); } uint8_t i2c_read_uint8(uint8_t address) { uint8_t value; Wire.beginTransmission((uint8_t) address); Wire.requestFrom((uint8_t) address, (uint8_t) 1); value = Wire.read(); Wire.endTransmission(); return value; }; uint8_t i2c_read_uint8(uint8_t address, uint8_t reg) { uint8_t value; Wire.beginTransmission((uint8_t) address); Wire.write((uint8_t) reg); Wire.endTransmission(); Wire.requestFrom((uint8_t) address, (uint8_t) 1); value = Wire.read(); Wire.endTransmission(); return value; }; uint16_t i2c_read_uint16(uint8_t address) { uint16_t value; Wire.beginTransmission((uint8_t) address); Wire.requestFrom((uint8_t) address, (uint8_t) 2); value = (Wire.read() * 256) | Wire.read(); Wire.endTransmission(); return value; }; uint16_t i2c_read_uint16(uint8_t address, uint8_t reg) { uint16_t value; Wire.beginTransmission((uint8_t) address); Wire.write((uint8_t) reg); Wire.endTransmission(); Wire.requestFrom((uint8_t) address, (uint8_t) 2); value = (Wire.read() * 256) | Wire.read(); Wire.endTransmission(); return value; }; void i2c_read_buffer(uint8_t address, uint8_t * buffer, size_t len) { Wire.beginTransmission((uint8_t) address); Wire.requestFrom(address, (uint8_t) len); for (int i=0; i> 8) & 0xFF; buffer[2] = (value >> 0) & 0xFF; return i2c_write_buffer(address, buffer, 3); } uint8_t i2c_write_uint16(uint8_t address, uint16_t value) { uint8_t buffer[2]; buffer[0] = (value >> 8) & 0xFF; buffer[1] = (value >> 0) & 0xFF; return i2c_write_buffer(address, buffer, 2); } uint16_t i2c_read_uint16_le(uint8_t address, uint8_t reg) { uint16_t temp = i2c_read_uint16(address, reg); return (temp / 256) | (temp * 256); }; int16_t i2c_read_int16(uint8_t address, uint8_t reg) { return (int16_t) i2c_read_uint16(address, reg); }; int16_t i2c_read_int16_le(uint8_t address, uint8_t reg) { return (int16_t) i2c_read_uint16_le(address, reg); }; // ----------------------------------------------------------------------------- // Utils // ----------------------------------------------------------------------------- void i2cClearBus() { unsigned char sda = getSetting("i2cSDA", I2C_SDA_PIN).toInt(); unsigned char scl = getSetting("i2cSCL", I2C_SCL_PIN).toInt(); DEBUG_MSG_P(PSTR("[I2C] Clear bus (response: %d)\n"), _i2cClearbus(sda, scl)); } bool i2cCheck(unsigned char address) { #if I2C_USE_BRZO brzo_i2c_start_transaction(address, _i2c_scl_frequency); brzo_i2c_ACK_polling(1000); return brzo_i2c_end_transaction(); #else Wire.beginTransmission(address); return Wire.endTransmission(); #endif } bool i2cGetLock(unsigned char address) { unsigned char index = address / 8; unsigned char mask = 1 << (address % 8); if (_i2c_locked[index] & mask) return false; _i2c_locked[index] = _i2c_locked[index] | mask; DEBUG_MSG_P(PSTR("[I2C] Address 0x%02X locked\n"), address); return true; } bool i2cReleaseLock(unsigned char address) { unsigned char index = address / 8; unsigned char mask = 1 << (address % 8); if (_i2c_locked[index] & mask) { _i2c_locked[index] = _i2c_locked[index] & ~mask; return true; } return false; } unsigned char i2cFind(size_t size, unsigned char * addresses, unsigned char &start) { for (unsigned char i=start; i