/* UTILS MODULE Copyright (C) 2017-2019 by Xose PĂ©rez */ #include "espurna.h" #include "board.h" #include "ntp.h" bool tryParseId(const char* p, TryParseIdFunc limit, size_t& out) { static_assert(std::numeric_limits::max() >= std::numeric_limits::max(), ""); char* endp { nullptr }; out = strtoul(p, &endp, 10); if ((endp == p) || (*endp != '\0') || (out >= limit())) { return false; } return true; } void setDefaultHostname() { if (strlen(HOSTNAME) > 0) { setSetting("hostname", F(HOSTNAME)); } else { setSetting("hostname", getIdentifier()); } } const String& getDevice() { static const String value(F(DEVICE)); return value; } const String& getManufacturer() { static const String value(F(MANUFACTURER)); return value; } String getBoardName() { return getSetting("boardName", F(DEVICE_NAME)); } void setBoardName() { if (!isEspurnaCore()) { setSetting("boardName", F(DEVICE_NAME)); } } String getAdminPass() { static const String defaultValue(F(ADMIN_PASS)); return getSetting("adminPass", defaultValue); } const String& getCoreVersion() { static String version; if (!version.length()) { #ifdef ARDUINO_ESP8266_RELEASE version = ESP.getCoreVersion(); if (version.equals("00000000")) { version = String(ARDUINO_ESP8266_RELEASE); } version.replace("_", "."); #else #define _GET_COREVERSION_STR(X) #X #define GET_COREVERSION_STR(X) _GET_COREVERSION_STR(X) version = GET_COREVERSION_STR(ARDUINO_ESP8266_GIT_DESC); #undef _GET_COREVERSION_STR #undef GET_COREVERSION_STR #endif } return version; } const String& getCoreRevision() { static String revision; if (!revision.length()) { #ifdef ARDUINO_ESP8266_GIT_VER revision = String(ARDUINO_ESP8266_GIT_VER, 16); #else revision = "(unspecified)"; #endif } return revision; } const String& getVersion() { static const String value { #if defined(APP_REVISION) F(APP_VERSION APP_REVISION) #else F(APP_VERSION) #endif }; return value; } String buildTime() { #if NTP_LEGACY_SUPPORT && NTP_SUPPORT return ntpDateTime(__UNIX_TIMESTAMP__); #elif NTP_SUPPORT constexpr const time_t ts = __UNIX_TIMESTAMP__; tm timestruct; gmtime_r(&ts, ×truct); return ntpDateTime(×truct); #else char buffer[20]; snprintf_P( buffer, sizeof(buffer), PSTR("%04d-%02d-%02d %02d:%02d:%02d"), __TIME_YEAR__, __TIME_MONTH__, __TIME_DAY__, __TIME_HOUR__, __TIME_MINUTE__, __TIME_SECOND__ ); return String(buffer); #endif } #if NTP_SUPPORT String getUptime() { time_t uptime = systemUptime(); tm spec; gmtime_r(&uptime, &spec); char buffer[64]; sprintf_P(buffer, PSTR("%02dy %02dd %02dh %02dm %02ds"), (spec.tm_year - 70), spec.tm_yday, spec.tm_hour, spec.tm_min, spec.tm_sec ); return String(buffer); } #else String getUptime() { return String(systemUptime(), 10); } #endif // NTP_SUPPORT // ----------------------------------------------------------------------------- // INFO // ----------------------------------------------------------------------------- extern "C" uint32_t _SPIFFS_start; extern "C" uint32_t _SPIFFS_end; unsigned int info_bytes2sectors(size_t size) { return (int) (size + SPI_FLASH_SEC_SIZE - 1) / SPI_FLASH_SEC_SIZE; } unsigned long info_ota_space() { return (ESP.getFreeSketchSpace() - 0x1000) & 0xFFFFF000; } unsigned long info_filesystem_space() { return ((uint32_t)&_SPIFFS_end - (uint32_t)&_SPIFFS_start); } void _info_print_memory_layout_line(const char * name, unsigned long bytes, bool reset) { static unsigned long index = 0; if (reset) index = 0; if (0 == bytes) return; unsigned int _sectors = info_bytes2sectors(bytes); DEBUG_MSG_P(PSTR("[MAIN] %-20s: %8lu bytes / %4d sectors (%4d to %4d)\n"), name, bytes, _sectors, index, index + _sectors - 1); index += _sectors; } void _info_print_memory_layout_line(const char * name, unsigned long bytes) { _info_print_memory_layout_line(name, bytes, false); } void infoMemory(const char * name, unsigned int total_memory, unsigned int free_memory) { DEBUG_MSG_P( PSTR("[MAIN] %-6s: %5u bytes initially | %5u bytes used (%2u%%) | %5u bytes free (%2u%%)\n"), name, total_memory, total_memory - free_memory, 100 * (total_memory - free_memory) / total_memory, free_memory, 100 * free_memory / total_memory ); } void infoMemory(const char* name, const HeapStats& stats) { infoMemory(name, systemInitialFreeHeap(), stats.available); } void infoHeapStats(const char* name, const HeapStats& stats) { DEBUG_MSG_P( PSTR("[MAIN] %-6s: %5u contiguous bytes available (%u%% fragmentation)\n"), name, stats.usable, stats.frag_pct ); } void infoHeapStats(bool show_frag_stats) { auto stats = systemHeapStats(); infoMemory("Heap", stats); if (show_frag_stats) { infoHeapStats("Heap", stats); } } const char* _info_wifi_sleep_mode(WiFiSleepType_t type) { switch (type) { case WIFI_NONE_SLEEP: return "NONE"; case WIFI_LIGHT_SLEEP: return "LIGHT"; case WIFI_MODEM_SLEEP: return "MODEM"; default: break; } return "UNKNOWN"; } void info(bool first) { #if DEBUG_SUPPORT #if DEBUG_LOG_BUFFER_SUPPORT if (first && debugLogBuffer()) return; #endif DEBUG_MSG_P(PSTR("\n\n---8<-------\n\n")); // ------------------------------------------------------------------------- DEBUG_MSG_P(PSTR("[MAIN] " APP_NAME " %s\n"), getVersion().c_str()); DEBUG_MSG_P(PSTR("[MAIN] " APP_AUTHOR "\n")); DEBUG_MSG_P(PSTR("[MAIN] " APP_WEBSITE "\n\n")); DEBUG_MSG_P(PSTR("[MAIN] CPU chip ID: 0x%06X\n"), ESP.getChipId()); DEBUG_MSG_P(PSTR("[MAIN] CPU frequency: %u MHz\n"), ESP.getCpuFreqMHz()); DEBUG_MSG_P(PSTR("[MAIN] SDK version: %s\n"), ESP.getSdkVersion()); DEBUG_MSG_P(PSTR("[MAIN] Core version: %s\n"), getCoreVersion().c_str()); DEBUG_MSG_P(PSTR("[MAIN] Core revision: %s\n"), getCoreRevision().c_str()); DEBUG_MSG_P(PSTR("[MAIN] Built: %s\n"), buildTime().c_str()); DEBUG_MSG_P(PSTR("\n")); // ------------------------------------------------------------------------- FlashMode_t mode [[gnu::unused]] = ESP.getFlashChipMode(); DEBUG_MSG_P(PSTR("[MAIN] Flash chip ID: 0x%06X\n"), ESP.getFlashChipId()); DEBUG_MSG_P(PSTR("[MAIN] Flash speed: %u Hz\n"), ESP.getFlashChipSpeed()); DEBUG_MSG_P(PSTR("[MAIN] Flash mode: %s\n"), mode == FM_QIO ? "QIO" : mode == FM_QOUT ? "QOUT" : mode == FM_DIO ? "DIO" : mode == FM_DOUT ? "DOUT" : "UNKNOWN"); DEBUG_MSG_P(PSTR("\n")); // ------------------------------------------------------------------------- _info_print_memory_layout_line("Flash size (CHIP)", ESP.getFlashChipRealSize(), true); _info_print_memory_layout_line("Flash size (SDK)", ESP.getFlashChipSize(), true); _info_print_memory_layout_line("Reserved", 1 * SPI_FLASH_SEC_SIZE, true); _info_print_memory_layout_line("Firmware size", ESP.getSketchSize()); _info_print_memory_layout_line("Max OTA size", info_ota_space()); _info_print_memory_layout_line("SPIFFS size", info_filesystem_space()); _info_print_memory_layout_line("EEPROM size", eepromSpace()); _info_print_memory_layout_line("Reserved", 4 * SPI_FLASH_SEC_SIZE); DEBUG_MSG_P(PSTR("\n")); // ------------------------------------------------------------------------- #if SPIFFS_SUPPORT FSInfo fs_info; bool fs = SPIFFS.info(fs_info); if (fs) { DEBUG_MSG_P(PSTR("[MAIN] SPIFFS total size : %8u bytes / %4d sectors\n"), fs_info.totalBytes, info_bytes2sectors(fs_info.totalBytes)); DEBUG_MSG_P(PSTR("[MAIN] used size : %8u bytes\n"), fs_info.usedBytes); DEBUG_MSG_P(PSTR("[MAIN] block size : %8u bytes\n"), fs_info.blockSize); DEBUG_MSG_P(PSTR("[MAIN] page size : %8u bytes\n"), fs_info.pageSize); DEBUG_MSG_P(PSTR("[MAIN] max files : %8u\n"), fs_info.maxOpenFiles); DEBUG_MSG_P(PSTR("[MAIN] max length : %8u\n"), fs_info.maxPathLength); } else { DEBUG_MSG_P(PSTR("[MAIN] No SPIFFS partition\n")); } DEBUG_MSG_P(PSTR("\n")); #endif // ------------------------------------------------------------------------- eepromSectorsDebug(); DEBUG_MSG_P(PSTR("\n")); // ------------------------------------------------------------------------- infoMemory("EEPROM", SPI_FLASH_SEC_SIZE, SPI_FLASH_SEC_SIZE - settingsSize()); infoHeapStats(!first); infoMemory("Stack", CONT_STACKSIZE, systemFreeStack()); DEBUG_MSG_P(PSTR("\n")); // ------------------------------------------------------------------------- DEBUG_MSG_P(PSTR("[MAIN] Boot version: %d\n"), ESP.getBootVersion()); DEBUG_MSG_P(PSTR("[MAIN] Boot mode: %d\n"), ESP.getBootMode()); auto reason = customResetReason(); if (CustomResetReason::None != reason) { DEBUG_MSG_P(PSTR("[MAIN] Last reset reason: %s\n"), customResetReasonToPayload(reason).c_str()); } else { DEBUG_MSG_P(PSTR("[MAIN] Last reset reason: %s\n"), ESP.getResetReason().c_str()); DEBUG_MSG_P(PSTR("[MAIN] Last reset info: %s\n"), ESP.getResetInfo().c_str()); } DEBUG_MSG_P(PSTR("\n")); // ------------------------------------------------------------------------- DEBUG_MSG_P(PSTR("[MAIN] Board: %s\n"), getBoardName().c_str()); DEBUG_MSG_P(PSTR("[MAIN] Support: %s\n"), getEspurnaModules().c_str()); DEBUG_MSG_P(PSTR("[MAIN] OTA: %s\n"), getEspurnaOTAModules().c_str()); #if SENSOR_SUPPORT DEBUG_MSG_P(PSTR("[MAIN] Sensors: %s\n"), getEspurnaSensors().c_str()); #endif DEBUG_MSG_P(PSTR("[MAIN] WebUI image: %s\n"), getEspurnaWebUI().c_str()); DEBUG_MSG_P(PSTR("\n")); // ------------------------------------------------------------------------- if (!first) { DEBUG_MSG_P(PSTR("[MAIN] Firmware MD5: %s\n"), (char *) ESP.getSketchMD5().c_str()); } if (ADC_MODE_VALUE == ADC_VCC) { DEBUG_MSG_P(PSTR("[MAIN] Power: %u mV\n"), ESP.getVcc()); } if (espurnaLoopDelay()) { DEBUG_MSG_P(PSTR("[MAIN] Power saving delay value: %lu ms\n"), espurnaLoopDelay()); } const WiFiSleepType_t sleep_mode = WiFi.getSleepMode(); if (sleep_mode != WIFI_NONE_SLEEP) { DEBUG_MSG_P(PSTR("[MAIN] WiFi Sleep Mode: %s\n"), _info_wifi_sleep_mode(sleep_mode)); } // ------------------------------------------------------------------------- #if SYSTEM_CHECK_ENABLED if (!systemCheck()) { DEBUG_MSG_P(PSTR("\n")); DEBUG_MSG_P(PSTR("[MAIN] Device is in SAFE MODE\n")); } #endif // ------------------------------------------------------------------------- DEBUG_MSG_P(PSTR("\n\n---8<-------\n\n")); #endif // DEBUG_SUPPORT == 1 } // ----------------------------------------------------------------------------- // SSL // ----------------------------------------------------------------------------- bool sslCheckFingerPrint(const char * fingerprint) { return (strlen(fingerprint) == 59); } bool sslFingerPrintArray(const char * fingerprint, unsigned char * bytearray) { // check length (20 2-character digits ':' or ' ' separated => 20*2+19 = 59) if (!sslCheckFingerPrint(fingerprint)) return false; // walk the fingerprint for (unsigned int i=0; i<20; i++) { bytearray[i] = strtol(fingerprint + 3*i, NULL, 16); } return true; } bool sslFingerPrintChar(const char * fingerprint, char * destination) { // check length (20 2-character digits ':' or ' ' separated => 20*2+19 = 59) if (!sslCheckFingerPrint(fingerprint)) return false; // copy it strncpy(destination, fingerprint, 59); // walk the fingerprint replacing ':' for ' ' for (unsigned char i = 0; i<59; i++) { if (destination[i] == ':') destination[i] = ' '; } return true; } // ----------------------------------------------------------------------------- // Helper functions // ----------------------------------------------------------------------------- char* ltrim(char * s) { char *p = s; while ((unsigned char) *p == ' ') ++p; return p; } double roundTo(double num, unsigned char positions) { double multiplier = 1; while (positions-- > 0) multiplier *= 10; return round(num * multiplier) / multiplier; } void nice_delay(unsigned long ms) { unsigned long start = millis(); while (millis() - start < ms) delay(1); } bool isNumber(const String& value) { if (value.length()) { const char* begin { value.c_str() }; const char* end { value.c_str() + value.length() }; bool dot { false }; bool digit { false }; const char* ptr { begin }; while (ptr != end) { switch (*ptr) { case '\0': break; case '-': case '+': if (ptr != begin) { return false; } break; case '.': if (dot) { return false; } dot = true; break; case '0' ... '9': digit = true; break; case 'a' ... 'z': case 'A' ... 'Z': return false; } ++ptr; } return digit; } return false; } // ref: lwip2 lwip_strnstr with strnlen char* strnstr(const char* buffer, const char* token, size_t n) { size_t token_len = strnlen(token, n); if (token_len == 0) { return const_cast(buffer); } for (const char* p = buffer; *p && (p + token_len <= buffer + n); p++) { if ((*p == *token) && (strncmp(p, token, token_len) == 0)) { return const_cast(p); } } return nullptr; } // From a byte array to an hexa char array ("A220EE...", double the size) size_t hexEncode(const uint8_t * in, size_t in_size, char * out, size_t out_size) { if ((2 * in_size + 1) > (out_size)) return 0; static const char base16[] = "0123456789ABCDEF"; size_t index = 0; while (index < in_size) { out[(index*2)] = base16[(in[index] & 0xf0) >> 4]; out[(index*2)+1] = base16[(in[index] & 0xf)]; ++index; } out[2*index] = '\0'; return index ? (1 + (2 * index)) : 0; } // From an hexa char array ("A220EE...") to a byte array (half the size) size_t hexDecode(const char* in, size_t in_size, uint8_t* out, size_t out_size) { if ((in_size & 1) || (out_size < (in_size / 2))) { return 0; } // We can only return small values constexpr uint8_t InvalidByte { 255u }; auto char2byte = [](char ch) -> uint8_t { if ((ch >= '0') && (ch <= '9')) { return (ch - '0'); } else if ((ch >= 'a') && (ch <= 'f')) { return 10 + (ch - 'a'); } else if ((ch >= 'A') && (ch <= 'F')) { return 10 + (ch - 'A'); } else { return InvalidByte; } }; size_t index = 0; size_t out_index = 0; while (index < in_size) { const uint8_t lhs = char2byte(in[index]) << 4; const uint8_t rhs = char2byte(in[index + 1]); if ((InvalidByte != lhs) && (InvalidByte != rhs)) { out[out_index++] = lhs | rhs; index += 2; continue; } out_index = 0; break; } return out_index; }